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ABSTRACT

We provide a methodology for specifying a set of simul-
taneous (1 � �)% con�dence intervals on the intensity of
each image pixel for emission and transmission tomography.
These intervals give a (1 � �)% con�dence region which,
given a speci�c family of noise distributions, e.g. Gaussian
or Poisson, is guaranteed to contain the actual image with
probability at least 1��. This region is a \set estimate" of
the image which can be used to study con�dence levels of
popular image reconstructions such as �ltered back projec-
tion, weighted-least-squares, and maximum likelihood. Al-
ternatively, the set estimate can be used as a feasibility re-
gion from which particular image estimates can be selected
based on additional criteria. A simulation for parallel ray
projection geometries in emission tomography is given.

1. INTRODUCTION

Tomographic reconstruction can be stated in terms of esti-
mating an image intensity � 2 IRp from N projection mea-
surements Y = A� + e where A is an N � p tomographic
system matrix and e represents errors in the linear model
Y = A� due to noise or system mismodeling. A point es-

timator of � is a point function �̂ = �̂(Y ). The maximum
likelihood via EM (MLEM), weighted-least squares (WLS),
algebraic reconstruction technique (ART), and �ltered back
projection (FBP) are examples of point estimation strate-
gies. While some of these point estimators may derived
based on some statistical optimality criterion, for a given
realization a point estimator does not provide any infor-
mation about its statistical con�dence or about its consis-
tency with properties of the projection noise distribution.
Such properties may be strongly parametric characteriza-
tions, e.g. known Poisson or Gaussian noise statistics, or
they may be weaker non-parametric characterizations, e.g.
upper bounds on the � and 1 � � quantiles of the noise
distribution (� 2 [0; 1]).
In this paper the quantiles are used to develop a con�-

dence region on the true image given the measured data
set using methods of bounded error estimation. Using our
methodology we can specify a set estimator which is guar-
anteed to contain the true image with probability at least
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1 � �. An ellipsoid parallel cuts (EPC) algorithm is pre-
sented for constructing con�dence regions for image recon-
struction which uses the QR decomposition to improve run-
time e�ciency. Simulations of a simple PET phantom are
performed and it is determined that: 1) the centroid of the
(1 � �)% con�dence region is a point estimator which is
competitive with the unregularized MLEM and converges
in a �nite number of iterations; 2) Llacer's feasible set of
images is closely related to our con�dence regions.

2. BOUNDED ERROR ESTIMATION

Bounded error estimation has a history in systems identi�-
cation [1], robust estimation and prediction [2], state esti-
mation and �ltering [3], and signal processing [4]. Assume
a nominal linear measurement model: Y k = �T (k)�; k =

1; :::;N , where Y k is the model output, �T (k) is a vector
speci�c to the system, e.g. the k-th row of the tomographic
system matrix A, � 2 IRp is the parameter vector to be
estimated, e.g. �, and k is the measurement index. If it is
known that the error e(k) = Yk � Y (k) is bounded within
[emin(k); emax(k)]:

emin(k) � Yk � �T (k)� � emax(k); k = 1; :::;N; (1)

then the set of all values of � consistent with (1) is given
by the intersection � = \Nk=1Hk of the hyperslabs: Hk =
f� : Yk � emax(k) � �T (k)� � Yk � emin(k)g, k = 1; :::;N .
The Ellipsoid Parallel Cuts (EPC) algorithm [3, 1] �nds a
sequence of successively smaller ellipsoids fEkg

N
k=1 contain-

ing �:

Ek = E(�k;�k) =
�
� : (�� �k)

T��1k (�� �k) � 1
	

(2)

where �k is the centroid and �k is a positive de�nite con-
centration matrix de�ning principal and minor axes of the
ellipsoid. As long as N � p, after N steps the EPC al-
gorithm yields the minimal volume ellipsoid containing �.
(Fig. 1)
INITIALIZATION: �0 = r2 � Ip�p; �0 = 0;
FOR k = 1; : : :N :

�+k =
Ym(k)� �T (k)�k�1 � emax(k)q

�T (k)�k�1�(k)

��k =
�T (k)�k�1 � Ym(k)� emin(k)q

�T (k)�k�1�(k)
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Figure 1. EPC �nds minimal volume ellipsoid containing
\qk=1Hk, q = 1; : : : ;N .

IF �+k > 1 or ��k > 1, null intersection.
THEN ignore Yk, or adjust em(k) and restart EPC.

ELSE �+k = max(�+k ; 1) and ��k = max(��k ; 1)
IF �+k �

�

k � 1=p
The intersection is the same as the current ellipsoid.

THEN Ek = Ek�1 and �k = �k�1
ELSE

IF �+k = ��k
THEN Apply centrally symmetric

parallel-cut as:

�k = �k�1

�k = �k

�
�k�1 �

�k

�T (k)�k�1�(k)
�k�1�(k)�

T (k)�k�1

�

where

�k =
p(1� �2k)

p� 1

�k = 1� p�2k(1� �2k)

ELSE Apply normal parallel cuts as:

�k = �k�1 +
�k(�

+

k � ��k )

2
q
�T (k)�k�1�(k)

�k�1�(k)

�k = �k(�k�1 �
�k

�T (k)�k�1�(k)
�k�1�(k)�

T (k)�k�1)

where

�k =
p2

p2 � 1
(1�

(�+k )
2 + (��k )

2 � �k=p

2
)

�k =
1

p + 1
(p +

2

(�+k � ��k )
2
(1� �+k �

�

k � �k=2));

�k =

q
4(1 � (��k )

2)(1� (��k )
2) + p2((�+k )

2 � (��k )
2)2)):

Taking advantage of symmetries in the EPC calculations,
the EPC algorithm requires on the order ofN(4p2+28p+21)
ops. The principal bottleneck in EPC is the sequence of N
matrix-vector multiplies of the form �k�(k), k = 1; : : : ;N .
By using the QR decomposition we obtain the equivalent

measurement equation: QT Y = R� + QT e. This e�ec-
tively rotates components of the noise e lying outside the
range space of A into the lower N � p elements of QT e,
hence reducing the number of non-zero rows �T

k
from N to

p. Discarding the last N � p zero rows of the above mea-
surement equation, we obtain a p � p system of measure-
ment equations so that the QR-EPC algorithm converges
in only p steps instead of N . We conclude that the total
online cost of QR-EPC becomes (4p3 + 25p2 + 21p + 8Np)
ops. Since the matrix Q is needed, there is also an in-
crease in the memory storage requirements for QR-EPC as
opposed to regular EPC. Storage of the matrix Q requires
O(Np) Bytes if Householder reections are used, whereas
it requires only O(�Np) bytes if Given's rotations are used,
where � 2 [0; 1] is the sparsity factor of A. For comparison
the general (no exploitation of sparse A) MLEM algorithm
needs N(2p2+2p) ops per iteration and may in some cases
require several thousand iterations to converge. In partic-
ular, if N is twice as large p, the time to compute all p
iterations of QR-EPC will be comparable to the time to
compute a single iteration of general MLEM.

3. CONFIDENCE REGIONS

When emax and emin are selected to correspond to spe-
ci�c quantiles of the projection noise distribution the con-
sistency set � can often be manipulated to yield a (1��)%
con�dence region for �. For ECT, the projection data
Y1; : : : ; YN , are distributed as independent Poisson random
variables with rates E[Y ] = A�. It can be shown [5] that
for a Poisson variable Yk, a (1��)% con�dence interval for
the rate E[Yk ] is:

[Lmin(k); Lmax(k)] =
h
1

2
�2�=2(2Yk);

1

2
�21��=2(2[Yk + 1])

i
(3)

where �2�(�) is the �th percentile of the chi-square distribu-
tion with � degrees of freedom. Using this fact a (1� �)%

con�dence rectangle for A� is obtained as [Lmin; Lmax]
def
=

�
N

k=1[Lmin(k); Lmax(k)], where in Lmin(k) and Lmax(k)

(3) we have set � = 1� (1� �)
1

N . From this we obtain a
(1� �)% con�dence region for �:

�1�� = f� : Lmin � A� � Lmaxg

= f� : emin � Y �A� � emaxg (4)

where emin

def
= Y �Lmax; emax

def
= Y �Lmin. The (1��)%

con�dence region (4) is in the form of a bounded error (1)
to which the QR-EPC algorithm can be directly applied to
�nd the minimum ellipsoid �1�� containing �.
If a point estimator �̂ is outside of the ellipsoid region

�1�� then the Euclidean distance between �̂ and the set
Ep is simply:

�(�̂) = (�̂ � �p)
T��1p (�̂� �p)� 1: (5)

The distance �(�̂) + 1 is called the EPC distance, which is

a weighted distance between �̂ and the centroid �p of Ep

where the weight matrix is equal to ��1p . When the EPC
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algorithm is implemented on the noisy projections data, this
distance measure can be used as a measure of closeness of
an image reconstruction �̂ to a (1� �)% con�dence region
for �.

Figure 2. Phantom image used for simulations
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Figure 3. The square root of the eigenvalues of initial ellipsoid
and �nal ellipsoid.

4. NUMERICAL RESULTS

A simple 4 level phantom (Fig. 2) with intensity � sam-
pled over 26�32 pixels was projected onto 42 detector bins
at 90 equally distributed angles over the range of 180 de-
grees using strip integrals to form 3780 mean projections
A�. Using these mean projections as Poisson rates, the
projection data was generated as 3780 independent Poisson
random variables. The total number of counts collected was
approximately 1.96 million.

The EPC algorithm was initialized with a spheroid E0

with radius r0 = 7:07� 102. The QR-EPC algorithm was
implemented with two values 0:9 and 0:95 of 1�� and iter-
ated until convergence occurred at p = 832 iterations. The
square root of the eigenvalues of the �nal ellipsoid matrix
�p for 1 � � = 0:95, which represents the half axes of the
ellipsoid, is shown in Fig. 3. We see that the size of the �nal
ellipsoid is signi�cantly reduced as compared to the initial
spheroid axes.
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Figure 4. Mean square error as a function of EPC iteration
index. Total number of counts is 1.94M. Error bounds used in
EPC correspond to 95% con�dence region.

Figure 5. Left: FBP, Middle: MLEM at 500th iteration, Right:
centroid of the �nal ellipsoid. Error bounds in EPC correspond
to 95% con�dence region.

The sequence of centroids �k = �k(Y ), k = 1; : : : ; p, gen-
erated by the EPC algorithm of Section II, is a sequence of
image reconstructions corresponding to the geometric cen-
ters of the ellipsoids. The mean squared error k�k��k2 be-
tween this sequence and the true image is plotted in Fig. 4
and decreases monotonically as a function of EPC iteration
number k. The non-iterative �ltered backprojection (FBP)
and the iterative maximum likelihood EM (MLEM) image
reconstruction were implemented and compared to the �nal
EPC centroid image reconstruction �p Fig. 5. The MLEM

reconstruction �̂
ML

k is known to become quite noisy after a
large number of iterations k so in the �gure it was stopped
at the iteration (500) which provided the minimum MSE -
an evidently unrealizable stopping rule. Note that the EPC
centroid appears to reconstruct the high frequencies better
than the FPB algorithm without as much granular noise
degradation as the MLEM reconstruction.

Llacer and Veklerov [6] introduced the concept of feasible
sets of images to obtain a statistically based stopping rule
for the MLEM algorithm. For each iteration of MLEM they
computed a statistic, called the H-statistic in [6], which
measured the closeness of the MLEM iterate to a Poisson
distributed image reconstruction. In [6] it was proposed
to stop iterating the MLEM algorithm at an iteration for

which the H(�̂
ML

k ) falls below a threshold, a set of iterates
called a \set of feasible images", where this threshold was
speci�ed to give a false alarm probability �. Various stop-
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ping rules have been proposed, such as the �rst threshold
downcrossing iteration, the minimum H iteration, or the
�rst threshold upcrossing iteration. Here we compare this

with a stopping rule based on the distance �(�̂
ML

k ) between
each MLEM iterate and the boundary of the (1��)% con-
�dence region. Figure 6 indicates that MLEM enters the
95% con�dence region (represented by the\1" line) at the
34th iteration remaining within the con�dence region un-

til the 113th iteration, the minimum value of �(�̂
ML

k ) being
attained at the 54th iteration. Comparing this result with

Llacer's technique applied to MLEM, the H(�̂
ML

k ) curve
Fig. 7 indicates that MLEM enters the 95% feasible set
after the 38th iteration, remaining within this feasible set

until the 106th iteration, the minimum value of H(�̂
ML

k )
being attained at the 53rd iteration. The results for 90%
con�dence levels are analogous. This remarkable similar-
ity suggests that Llacer's estimator-dependent de�nition of
feasible set is closely related to our estimator-independent
de�nition of (1� �)% con�dence region. Figure 8 displays
the MLEM reconstructions at the iterations where it enters
and leaves the 95% con�dence region, and at the iteration

where the distance �(�̂
ML

k ) reaches its minimum value.
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Figure 6. EPC weighted distance shows when the MLEM es-
timate enters and leaves the 90% or 95% con�dence region.
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Figure 7. Llacer's H curve for MLEM with 1� � = 90% and
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Figure 8. MLEM stopped at �rst 95% level downcrossing of
�, minimum �, �rst 95% level upcrossing of �.
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