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Figure 1: A multidate 3D breast-registration example




Background

Some statistics (US)

e One out of nine women will contract breast cancer in their lifetimeg

e Breast cancer is second leading cause of cancer death among women
e Diagnostic ultrasound (UL) is cheap/available screening modality

e 65% of malignant breast lesions are missed by community
practitioners

What measures are needed to improve detection?

e Routine screening exams: Serial UL studies

e \olumetric imaging to discriminate low contrast lesions from benig
microcalcifications and cysts

e Requirementfast and accurate volumetric image registration



MI Registration of Gray Levels (Viola&Wells:ICCV95)

e X: aN x N UL image (lexicographically ordered)
e X(k): image gray level at pixel locatick
e Xpo andX;j: primary and secondary images to be registered

Hypothesis {(Xo(K), X (k) }N°, are i.i.d. r.v.s with j.p.d.f

fO,i(X07X1)7 X0,X1 € {07 177255}

Mutual Information (MI) criterion : T = argmax|-il\7ll

whereMI is an estimate of

M (fo;) / / foi (X0, X1) In foji (%0, %) /(fo(%o) fi (x1)) dx d%.




(a) ImageXxy (b) ImageXg

Figure 2: Single Pixel Coincidences




Joint Feature Histogram Scatterplots

F|gu e 3 MI Scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.




Range of UL breast Image Types

Figure 4: Three ultrasound breast scans. From top to bottom are: casej151,
case 142 and case 162.



Limitations of Gray Level M| Registration Methods

Difficulties:
1. Gray levels are uninformative features for UL images

2. Ml criterion is sub-optimal for classifying correct deformation T

Our approach:

1. Generalize gray levels to a more stable and pertinent feature set
2. Use inductive learning technigues for feature selection

3. Use newa-Ml criterion in place of MI criterion




a-MI Registration of Coincident Features

e X: aN x N UL image (lexicographically ordered)

e Z=Z7(X): ageneral image feature vector ifPadimensional feature
space

Let {Zo(K)}_; and{Zi(k)}|_, be features extracted froipy andX; atK
Identical spatial locations

a-MI coincident-feature criterion

T = argmax Ml

whereMl 4 is an estimate of

Mig(foi) = ai_lmg / / (8. (20,21) 120 (20) 1% (z1)d21dm.  (2)




Special cases

e 0-Ml vs. Shannon Ml

jim Miq(fo) //fo.lnfo./(fof)dzldzo

a—1

e 0-Ml vs. Hellinger Mutual Affinity

2
My (fo)) = —In(// fo,ifofidzgdzl)

e 0-Ml vs. Batthacharyya-Hellinger information

// (v/Foi - \/ﬁ)zdzodzl = 21— exp{~Mi;(fo;)})




o-MI and Decision Theoretic Error Exponents

Ho : Zo(k),Z (k) independent
Hi :  Zp(k),Z (k) o.w.

Bayes probability of error

Chernoff bound

Iiminf}IogPe( )=— sup {(1—a)Mlqy(foj)}.

N—e N ael0,1]




Gray Level a-MI Trajectories
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Figure 5:a-Ml for ultra sound image registration




Peak Curvature of Gray Level a-Mi
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Figure 6: Curvaturer-MI as function of alpha




Higher Order Features

. Local tags
. Spatial relations between local tags

. Forests of randomized feature trees

. Independent components analysis (ICA)




Local Tags

Figure 7: Local Tag Coincidences




Spatial Relations Between Local Tags

(a) ImageXg (b) ImageX;

Figure 8: Spatial Relation Coincidences




Feature Coincidence Tree of Local Tags

Figure 9:Part of feature tree data structure.
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Figure 10:Leaves of feature tree data structure.




Forests of Randomized Feature Trees
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Figure 11:Forest of randomized trees

Registration criterion:

Htrees

T = argmax; Z Ml g (t)
=



|ICA Features

Decomposition oM x M tag image¥ (k) acquired ak=1,...,K spatial
locations

P
Y(K) = apS
p=1

o {SI[_,: statistically independent components
e &y projection coefficients of tay (k) onto componen$,
e {S}i_; andP: selected via MLE and MDL

e Feature vector for coincidence processing:

Z(k) = [a]_k, - ,a.pk]T




ICA Basis for Breast 141

o O Dl TN
PN
MRENHWW
G0
IR EESET
| T A | R
RY. I

Figure 12:Estimated ICA basis set for ultrasound breast image database
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Simple Example

Figure 13: Bar images with contrast 1.02, 1.07 and 1.78. Backgroung is
low variance white Gaussian while bar is uniform intensity.
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Single Pixel vs Feature Tag

Single pixel based MI peak with submergence of structure in background Tag based MI peak with submergence of structure in background
T T T T T T 2 T T T © T
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Figure 14: Upper curves are single pixel based MI trajectories while lo
curves are 4 4 tag based Ml trajectories for bar images.




UL Registration Comparisons

151 142 162 151/16 | 151/32
pixel 0.3/0.9 0.6/0.3 | 0.6/0.3
tag 0.5/3.6 0.5/3.8 | 0.4/1.4
spatial-tag| 0.99/14.6 | 0.99/8.4 | 0.6/8.3
ICA 0.7/41 | 0.7/3.9 | 0.99/7.7

Table 1: Numerator =optimal values afand Denominator = maximum
resolution of mutuabi-information for registering various images (Casqs
151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8,
151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis qle-
ments run on case 151.
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Conclusions

1. Inclusion of better higher order features
2. Implementation of better registration criterion

3. Open issues:

(a) How best to estimate-MI?

(b) How to determine best empirically?

(c) What are best 3D features for coarse registration vs. fine
registration?




