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(a) ImageX0 (b) ImageXi

Figure 1: A multidate 3D breast-registration example
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Background

Some statistics (US)
� One out of nine women will contract breast cancer in their lifetimes

� Breast cancer is second leading cause of cancer death among women

� Diagnostic ultrasound (UL) is cheap/available screening modality

� 65% of malignant breast lesions are missed by community

practitioners

What measures are needed to improve detection?

� Routine screening exams: Serial UL studies

� Volumetric imaging to discriminate low contrast lesions from benign

microcalcifications and cysts

� Requirement:Fast and accurate volumetric image registration
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MI Registration of Gray Levels (Viola&Wells:ICCV95)
� X: aN�N UL image (lexicographically ordered)

� X(k): image gray level at pixel locationk

� X0 andX1: primary and secondary images to be registered

Hypothesis: f(X0(k);Xi(k)gN2

k=1 are i.i.d. r.v.’s with j.p.d.f

f0;i(x0;x1); x0;x1 2 f0;1; : : : ;255g

Mutual Information (MI) criterion : T = argmaxTi
M̂I

whereM̂I is an estimate of

MI( f0;i) =
Z Z

f0;i(x0;x1) ln f0;i(x0;x1)=( f0(x0) fi(x1))dx1dx0: (1)
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(a) ImageX1 (b) ImageX0

Figure 2: Single Pixel Coincidences
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Joint Feature Histogram Scatterplots
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Figure 3:MI Scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.
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Range of UL breast Image Types

Figure 4: Three ultrasound breast scans. From top to bottom are: case 151,

case 142 and case 162.
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Limitations of Gray Level MI Registration Methods

Difficulties:

1. Gray levels are uninformative features for UL images

2. MI criterion is sub-optimal for classifying correct deformation T

Our approach:

1. Generalize gray levels to a more stable and pertinent feature set

2. Use inductive learning techniques for feature selection

3. Use newα-MI criterion in place of MI criterion
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α-MI Registration of Coincident Features
� X: aN�N UL image (lexicographically ordered)

� Z = Z(X): a general image feature vector in aP-dimensional feature

space

Let fZ0(k)gK
k=1 andfZi(k)gK

k=1 be features extracted fromX0 andXi at K

identical spatial locations

α-MI coincident-feature criterion

T = argmaxTi
M̂Iα

whereM̂Iα is an estimate of

MIα( f0;i) =

1
α�1

log

Z Z

f α
0;i(z0;z1) f 1�α

0 (z0) f 1�α
i (z1)dz1dz0: (2)

9



Why α-MI?

Special cases:

� α-MI vs. Shannon MI

lim
α!1

MIα( f0;i) =
Z Z

f0;i ln f0;i=( f0 fi)dz1dz0:

� α-MI vs. Hellinger Mutual Affinity

MI 1
2

( f0;i) = � ln
�Z Z p

f0;i f0 fi dz0dz1

�2

� α-MI vs. Batthacharyya-Hellinger information

Z Z �p

f0;i �
p

f0 fi

�2
dz0dz1 = 2

�
1�expf�MI 1

2

( f0;i)g
�
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α-MI and Decision Theoretic Error Exponents

H0 : Z0(k);Zi(k) independent

H1 : Z0(k);Zi(k) o:w:

Bayes probability of error

Pe(n) = β(n)P(H1)+α(n)P(H0)

Chernoff bound

liminf
n!∞

1
n

logPe(n) =� sup
α2[0;1]

f(1�α)MIα( f0;i)g :
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Gray Level α-MI Trajectories
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Figure 5:α-MI for ultra sound image registration
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Peak Curvature of Gray Level α-MI
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Figure 6: Curvatureα-MI as function of alpha
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Higher Order Features

1. Local tags

2. Spatial relations between local tags

3. Forests of randomized feature trees

4. Independent components analysis (ICA)
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Local Tags

(a) ImageX0 (b) ImageXi

Figure 7: Local Tag Coincidences
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Spatial Relations Between Local Tags
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(b) ImageXi

Figure 8: Spatial Relation Coincidences
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Feature Coincidence Tree of Local Tags

Root Node 

Depth 1 

Depth 2 

Not examined 
     further 

Figure 9:Part of feature tree data structure.

Terminal nodes (Depth 16) 

Figure 10:Leaves of feature tree data structure.

17



Forests of Randomized Feature Trees
RANDOMIZED TREES 

Figure 11:Forest of randomized trees

Registration criterion:

T = argmaxTi

# trees

∑
t=1

M̂Iα(t)
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ICA Features

Decomposition ofM�M tag imagesY(k) acquired atk= 1; : : : ;K spatial

locations

Y(k) =

P

∑
p=1

akpSp

� fSkg

P
k=1: statistically independent components

� akp: projection coefficients of tagY(k) onto componentSp

� fSkg

P
k=1 andP: selected via MLE and MDL

� Feature vector for coincidence processing:

Z(k) = [a1k; : : : ;aPk]
T
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ICA Basis for Breast 141

Figure 12:Estimated ICA basis set for ultrasound breast image database
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Simple Example

Figure 13: Bar images with contrast 1.02, 1.07 and 1.78. Background is

low variance white Gaussian while bar is uniform intensity.
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Single Pixel vs Feature Tag
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Figure 14: Upper curves are single pixel based MI trajectories while lower

curves are 4�4 tag based MI trajectories for bar images.
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UL Registration Comparisons

151 142 162 151/8 151/16 151/32

pixel 0:3=0:9 0:6=0:3 0:6=0:3

tag 0:5=3:6 0:5=3:8 0:4=1:4

spatial-tag 0:99=14:6 0:99=8:4 0:6=8:3

ICA 0:7=4:1 0:7=3:9 0:99=7:7

Table 1: Numerator =optimal values ofα and Denominator = maximum

resolution of mutualα-information for registering various images (Cases

151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8,

151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis ele-

ments run on case 151.
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Conclusions

1. Inclusion of better higher order features

2. Implementation of better registration criterion

3. Open issues:

(a) How best to estimateα-MI?

(b) How to determine bestα empirically?

(c) What are best 3D features for coarse registration vs. fine

registration?
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