Feature coincidence trees for registration of ultrasound breast images

H. Neemuchwala[†], A. O. Hero^{*†#}, P. Carson[†] Dept. EECS^{*}, Dept BME[†], Dept. Statistics[#] University of Michigan - Ann Arbor hero@eecs.umich.edu
http://www.eecs.umich.edu/~hero

Outline

- 1. Breast Imaging and Registration Background
- 2. α -MI Criterion
- 3. Higher Order Feature Selection
- 4. Experimental results

Figure 1: A multidate 3D breast-registration example

Background

Some statistics (US)

- One out of nine women will contract breast cancer in their lifetimes
- Breast cancer is second leading cause of cancer death among women
- Diagnostic ultrasound (UL) is cheap/available screening modality
- 65% of malignant breast lesions are missed by community practitioners

What measures are needed to improve detection?

- Routine screening exams: Serial UL studies
- Volumetric imaging to discriminate low contrast lesions from benign microcalcifications and cysts
- Requirement: Fast and accurate volumetric image registration

MI Registration of Gray Levels (Viola&Wells:ICCV95)

- X: a $N \times N$ UL image (lexicographically ordered)
- *X*(*k*): image gray level at pixel location *k*
- X_0 and X_1 : primary and secondary images to be registered

Hypothesis: $\{(X_0(k), X_i(k))\}_{k=1}^{N^2}$ are i.i.d. r.v.'s with j.p.d.f

$$f_{0,i}(x_0, x_1), \quad x_0, x_1 \in \{0, 1, \dots, 255\}$$

Mutual Information (MI) criterion: $T = \operatorname{argmax}_{T_i} \hat{MI}$

where MI is an estimate of

$$\mathbf{MI}(f_{0,i}) = \int \int f_{0,i}(x_0, x_1) \ln f_{0,i}(x_0, x_1) / (f_0(x_0) f_i(x_1)) dx_1 dx_0.$$
(1)

(a) Image X_1

(b) Image X_0

Figure 2: Single Pixel Coincidences

Joint Feature Histogram Scatterplots

Figure 3: MI Scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.

Figure 4: Three ultrasound breast scans. From top to bottom are: case 151, case 142 and case 162.

Limitations of Gray Level MI Registration Methods

Difficulties:

- 1. Gray levels are uninformative features for UL images
- 2. MI criterion is sub-optimal for classifying correct deformation T

Our approach:

- 1. Generalize gray levels to a more stable and pertinent feature set
- 2. Use inductive learning techniques for feature selection
- 3. Use new α -MI criterion in place of MI criterion

α -MI Registration of Coincident Features

- X: a $N \times N$ UL image (lexicographically ordered)
- *Z* = *Z*(*X*): a general image feature vector in a *P*-dimensional feature space

Let $\{Z_0(k)\}_{k=1}^K$ and $\{Z_i(k)\}_{k=1}^K$ be features extracted from X_0 and X_i at K identical spatial locations

α -MI coincident-feature criterion

$$\mathbf{T} = \operatorname{argmax}_{\mathbf{T}_i} \hat{\mathbf{M}} \mathbf{I}_{\alpha}$$

where \hat{MI}_{α} is an estimate of

$$\mathrm{MI}_{\alpha}(f_{0,i}) = \frac{1}{\alpha - 1} \log \int \int f_{0,i}^{\alpha}(z_0, z_1) f_0^{1 - \alpha}(z_0) f_i^{1 - \alpha}(z_1) dz_1 dz_0.$$
(2)

Why α -MI?

Special cases:

• α -MI vs. Shannon MI

$$\lim_{\alpha \to 1} \mathrm{MI}_{\alpha}(f_{0,i}) = \int \int f_{0,i} \ln f_{0,i} / (f_0 f_i) dz_1 dz_0.$$

• α -MI vs. Hellinger Mutual Affinity

$$\mathrm{MI}_{\frac{1}{2}}(f_{0,i}) = -\ln\left(\int \int \sqrt{f_{0,i}f_0f_i}\,dz_0dz_1\right)^2$$

• α -MI vs. Batthacharyya-Hellinger information

$$\int \int \left(\sqrt{f_{0,i}} - \sqrt{f_0 f_i}\right)^2 dz_0 dz_1 = 2\left(1 - \exp\{-\mathrm{MI}_{\frac{1}{2}}(f_{0,i})\}\right)$$

α -MI and Decision Theoretic Error Exponents

 H_0 : $Z_0(k), Z_i(k)$ independent H_1 : $Z_0(k), Z_i(k)$ o.w.

Bayes probability of error

$$P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0)$$

Chernoff bound

$$\liminf_{n\to\infty}\frac{1}{n}\log P_e(n) = -\sup_{\alpha\in[0,1]}\left\{(1-\alpha)\mathrm{MI}_\alpha(f_{0,i})\right\}.$$

Figure 6: Curvature α -MI as function of alpha

Higher Order Features

- 1. Local tags
- 2. Spatial relations between local tags
- 3. Forests of randomized feature trees
- 4. Independent components analysis (ICA)

Spatial Relations Between Local Tags

(a) Image X_0

(b) Image X_i

Figure 8: Spatial Relation Coincidences

Feature Coincidence Tree of Local Tags

Figure 9: Part of feature tree data structure.

Figure 10: Leaves of feature tree data structure.

Forests of Randomized Feature Trees

Figure 11: Forest of randomized trees

Registration criterion:

$$\mathbf{T} = \operatorname{argmax}_{\mathbf{T}_i} \sum_{t=1}^{\# trees} \hat{\mathbf{M}} \mathbf{I}_{\alpha}(t)$$

ICA Features

Decomposition of $M \times M$ tag images Y(k) acquired at k = 1, ..., K spatial locations

$$Y(k) = \sum_{p=1}^{P} a_{kp} S_p$$

- $\{S_k\}_{k=1}^P$: statistically independent components
- a_{kp} : projection coefficients of tag Y(k) onto component S_p
- $\{S_k\}_{k=1}^P$ and *P*: selected via MLE and MDL
- Feature vector for coincidence processing:

$$Z(k) = [a_{1k}, \ldots, a_{Pk}]^T$$

low variance white Gaussian while bar is uniform intensity.

Figure 14: Upper curves are single pixel based MI trajectories while lower curves are 4×4 tag based MI trajectories for bar images.

UL Registration Comparisons

	151	142	162	151/8	151/16	151/32
pixel	0.3/0.9	0.6/0.3	0.6/0.3			
tag	0.5/3.6	0.5/3.8	0.4/1.4			
spatial-tag	0.99/14.6	0.99/8.4	0.6/8.3			
ICA				0.7/4.1	0.7/3.9	0.99/7.7

Table 1: Numerator =optimal values of α and Denominator = maximum resolution of mutual α -information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8, 151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis elements run on case 151.

Conclusions

- 1. Inclusion of better higher order features
- 2. Implementation of better registration criterion
- 3. Open issues:
 - (a) How best to estimate α -MI?
 - (b) How to determine best α empirically?
 - (c) What are best 3D features for coarse registration vs. fine registration?