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ABSTRACT

Image registration is a difficult task especially when spurrious image intensity differences and spatial variations be-
tween the two images are present. To robustify image registration algorithms to such spurrious variations it can be
useful to employ an image registration matching criteria on higher dimensional feature spaces. This paper will present
an overview of our recent work on image registration using high dimensional image features and entropic graph match-
ing criteria. New entropic graph estimates of information divergence measures will be presented. We will demonstrate
the advantage of our approach for ultrasound breast image registration.

Keywords: pattern matching, k-nearest neighbor graphs, information divergence estimation, multimodality image
registration.

1. INTRODUCTION

Image registration methods select a sequence of intensity preserving transformations to maximize an image similarity
measure between a reference image and a target, or secondary, image. The accuracy of the registration algorithm
critically depends on two factors: the selection of a highly discriminating image feature space and the choice of
similarity measure to match these image features. These factors are especially important when some of the intensity
differences are due to the sensor itself, as arises in registration with different types of imaging sensors or registration
of speckle-limited images. In such cases, it is well known that the standard linear cross correlation is a poor similarity
measure. This has motivated the development of other measures that are robust to intensity distortions caused by the
sensor modality including: optical flow matching1; level set matching2; Jensen difference minimization3; and mutual
information (MI) maximization.4

The last two aforementioned methods can be called “entropic methods” since they use a matching criterion based
on different similarity measures defined as relative entropies between the feature densities. Entropic methods have
been shown to be virtually unbeatable for some medical imaging image registration applications.5, 6 Several properties
of entropic methods have contributed to their popularity for image registration: 1) because they are statistically based
measures they easily accommodate combinations of texture based and edge based registration features; 2) relative
entropies are easily defined that are invariant to invertible intensity transformations on the feature space; 3) they
are simple to compute and the number of local maxima can be controlled by suitably constraining the set of image
transformations.

Entropic methods for registration have been largely based on density estimation techniques which are exceedingly
difficult as feature dimension becomes high. Thus entropic registration methods have been limited to low dimensional
feature spaces, such as pixel intensity levels, for which an estimate of feature density is feasible. This paper gives an
overview of a recent class of extensions of entropic similarity measures that break this computational bottleneck for
high dimensional features. We also present a comprehensive comparison between these extended entropic measures
and the standard density estimation based methods for speckle limited ultrasound breast image registration.
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Figure 1. Block diagram of an image registration system

The guiding principle behind our extensions is the use of continuous quasi-additive power weighted graphs, such
as the minimal spanning tree (MST) and k-Nearest Neighbor graph (kNNG), to estimate entropic similarity measures.
These are discussed in Section 3. Different graph length functionals will allow us to approximate a wide variety of
entropic matching criteria without the need to explicitly estimate densities or histograms. Building on our previous
work,7, 8 in Sections 4 and 5 we will show how a kNNG can be used to approximate entropic similarity measures like
theα-mutual information,α-Jensen divergence, and Geometric-Arithmetic mean affinity. Finally, in Section 6 will
demonstrate how the combination of high dimensional wavelet features and kNNG similarity measures can lead to
significant registration benefits in ultrasound breast imaging. More details on the methods presented here, along with
other imaging applications, e.g., geo-registration and tracking, can be found in our recent book chapter.9

2. BACKGROUND

The three chief components of an image registration system (Figure 1) are: (1) definition and extraction of features
that discriminate between different image posesIref andItar; (2) adaptation of a matching criterion that quantifies
feature similarity, is capable of resolving important differences between images, yet is robust to image artifacts; (3)
implementation of optimization techniques which allow fast search over possible transformationsT . In this paper we
shall be principally concerned with the second component of the system: the choice of matching criterion, also called
a similarity or dissimilarity measure.

2.1. Mutual Information Image Registration

The mutual information (MI) can be interpreted as a similarity measure between the reference and target pixel in-
tensities or as a dissimilarity measure between the joint density and the product of the marginals of these intensities.
The MI was originally introduced for gray scale image registration.4 Let X0 be a reference image and consider a
transformation of the target imageX1, defined asXT = T (X1). We assume that the images are sampled on a grid of
M ×N pixels. Let(z0k, zTk) be the pair of (scalar) gray levels extracted from identical (k-th) pixel locations in the
reference and target images, respectively.

The basic assumption underlying MI image matching is that{(z0k, zTk)}MN
k=1 are independent identically dis-

tributed (i.i.d.) realizations of a pair(Z0, ZT ), ZT = T (Z1), of random variables having joint densityf0,1(z0, zT ).



If the reference and the target images were perfectly correlated, e.g., identical images, thenZ0 andZT would be
dependent random variables. On the other hand, if the two images were statistically independent, the joint density of
Z0 andZT would factor into the product of the marginalsf0,1(z0, zT ) = f0(z0)f1(zT ). The (Shannon) MI measures
the dissimilarity between the joint density and the product of the marginals

MI =
∫

f0,1(z0, zT ) log
(

f0,1(z0, zT )
f0(z0)f1(zT )

)
dz0dzT = H(f0) + H(f1)−H(f0,1), (1)

whereH(g) = − ∫
g ln g denotes the Shannon entropy of densityg.

For registering two discreteM ×N images, one searches over a set of transformations of the target image to find
the one that maximizes the MI (1) between the reference and the transformed target. We call this the “single pixel MI”.
In Viola and Wells4 the authors empirically approximated the single pixel MI (1) by “histogram plug-in” estimates,
which when extended to theαMI gives the estimate (neglecting unimportant normalization constants)

M̂I def=
1

α− 1
log

255∑
z0,zT =0

f̂0,1(z0, zT ) log

(
f̂0,1(z0, zT )

f̂0(z0)f̂1(zT )

)
. (2)

In (2) we assume 8-bit gray level,̂f0,1 denotes the joint intensity level “coincidence histogram”

f̂0,1(z0, zT ) =
1

MN

MN∑

k=1

Iz0k,zT k
(z0, zT ), (3)

andIz0k,zT k
(z0, zT ) is the indicator function equal to one when(z0k, zTk) = (z0, zT ) and equal to zero otherwise.

Variants of this basic procedure have been applied to image registration by many authors.5, 10 Other feature definitions
have been proposed including gray level differences11 and pixel pairs.12

To illustrate the MI registration procedure, the coincidence histogram is shown in Fig. 2 for the case of two
ultrasound breast imagesX0, X1 (Fig. 3). Fig. 2 shows two cases. At top left is the coincidence histogram when
the reference and secondary images are taken from the same two-dimensional slice of the US breast volume and are
in perfect alignment (X0 = X1). At bottom left is the same histogram when the secondary image is rotated by 8◦.
The top right and bottom right panels in Fig. 2 are analogous except that the secondary images is extracted from a
different two-dimensional slice separated from the reference by 2mm. In both cases the entropyH(f̂0,1) (dispersion)
of the histogram is greater for the bottom panels (out of alignment) than for the top panels (in alignment) of the figure.
Therefore, the MI can discriminate between the degrees of alignment.

3. GENERAL ENTROPIC DISSIMILARITY MEASURES

Let Z be ad-dimensional random vector and letf(z) andg(z) denote two possible densities forZ. HereZ will be
a feature vector constructed from the reference image and the target image to be registered andf andg will be the
feature densities. When the features are discrete valued the densitiesf andg should be interpreted as probability mass
functions.

3.1. Measures Related to the Ŕenyi Divergence

The Ŕenyiα-divergence, also called the Rényiα-relative entropy, betweenf andg of fractional orderα ∈ (0, 1)13 :

Dα(f‖g) =
1

α− 1
log

∫
g(z)

(
f(z)
g(z)

)α

dz =
1

α− 1
log

∫
fα(z)g1−α(z)dz. (4)
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Figure 2. Joint coincidence histograms for single-pixel gray level features. Both horizontal and vertical axes of each panel are
indexed over the gray level range of 0 to 255. (a): joint histogram scatter plot for the case that reference image (Xi) and secondary
image (Xj) are the same slice of the US image volume (Case 142) at perfect0◦ alignment (Xj = Xi). (c): same as (a) except that
reference and secondary are misaligned by8◦ relative rotation as in Fig. 3. (b): same as (a) except that the reference and secondary
images are from adjacent (2mm separation) slices of the image volume. (d): same as (c) except that images are misaligned by8◦

relative rotation.
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Figure 3. Single-pixel gray level coincidences are recorded by counting number of co-occurrences of a pair of gray level in the
reference (a) and in the secondary (b) images at a pair of homologous pixel locations. Here the secondary image (b) is rotated by
15◦ relative to the reference image (a).



When the densityf is supported on[0, 1]d andg is uniform over this domain the (negative)α-divergence reduces to
the Ŕenyiα-entropy off :

Hα(f) =
1

1− α
log

∫
fα(z)dz. (5)

When specialized to various values ofα theα-divergence can be related to other well known divergence and affinity
measures. Two of the most important examples are the Hellinger dissimilarity−2 log

∫ √
f(z)g(z)dz obtained when

α = 1/2, which is related to the Hellinger-Battacharya distance squared,

DHellinger(f‖g) =
∫ (√

f(z)−
√

g(z)
)2

dz = 2
(
1− exp

(
1
2
D 1

2
(f‖g)

))
, (6)

and the Kullback-Liebler (KL) divergence obtained in the limit asα → 1 of (4),

lim
α→1

Dα(f‖g) =
∫

g(z) log
g(z)
f(z)

dz. (7)

Another divergence measure arises as a special cases of the Rényi α-divergence: theα-geometric-arithmetic mean
divergence (α-GA)14

αDGA(f, g) = Dα(pf + qg‖fpgq) =
1

α− 1
log

∫
(pf(z) + qg(z))α(fp(z)gq(z))1−αdz, (8)

where the weightsp andq = 1 − p are selected in the interval(0, 1). To our knowledge this measure has never been
applied to image registration.

Finally, when the dissimilarity between a joint densityf(x, y) and the product of its marginalsg(x, y) = f(x)f(y)
is of interest, theα-mutual information (αMI) can be defined from theα-divergence:

αMI = Dα(f‖g) =
1

α− 1
log

∫
fα(x, y)f1−α(x)f1−α(y)dxdy. (9)

In the limit asα → 1 this measure converges to the Shannon mutual information (MI).

3.2. Other Entropic Similarity Measures

Another divergence measure was introduced by Henze and Penrose15 as the limit of the Friedman-Rafsky multivariate
run-length statistic16 and we shall call it the Henze-Penrose (HP) divergence

DHP (f‖g) =
∫

p2f2(z) + q2g2(z)
pf(z) + qg(z)

dz, (10)

with respect to weightsp andq = 1 − p, p ∈ [0, 1]. To our knowledge this measure has not been applied to image
registration.

An alternative entropic dissimilarity measure between two distributions is theα-Jensen difference13:

∆Hα(p, f, g) = Hα(pf + qg)− [pHα(f) + qHα(g)], , (11)

with respect to weightsp andq = 1−p, p ∈ [0, 1]. Theα-Jensen difference has been applied to image registration.3, 17

All of the above divergence measures can be obtained as special cases of the general class of f-divergences.13 The
α-Jensen difference shares the following properties withf -divergences: it depends on the features only through the
feature density functions; it is a non-negative function and equal zero only whenf = g; it is convex inf andg. On the
other hand, unlike the divergences, theα-Jensen difference is not invariant to invertible transformations of the feature
spaceZ. This means that theα-Jensen difference could depend on the feature parameterization, which is not desirable.
We will see that this translates into reduced discrimination capability in image registration applications.



4. ENTROPIC GRAPH ESTIMATORS OF FEATURE SIMILARITY MEASURES

All of the similarity measures introduced in the previous section could be estimated by plugging in feature histogram
or density estimates of the multivariate densityf . This is the approach taken in virtually all previous image registra-
tion work. A deterrent to these approaches is the curse of dimensionality, which imposes prohibitive computational
burden when attempting to construct histograms in large feature dimensions. An alternative approach, taken here, is to
attempt to estimate the divergence directly without recourse to difficult density estimation. Such approaches have been
developed for entropy estimation using the gap Vasicek estimator for one dimensional feature spaces18 and entropic
graph estimators have been developed for higher dimensions.7, 19 As our previous work in entropic graph estimators
forms the basis for approximating more general feature similarity metrics we will review it here.

4.1. Entropic Graphs for Entropy Estimation

Assume that an i.i.d. set of continuously valued feature vectorsZn = {z1, . . . , zn}, z ∈ IRd, have been collected
from an image and that it is desired to estimate the entropy of the underlying feature densityf(z). An entropic graph
estimator of entropy is constructed as follows. Considering then points inZn as vertices, construct a a certain kind
of minimal graph that spans these vertices. Assume that the total edge length of the graph satisfies the continuous and
quasi additive property,20 which is satisfied by graph constructions such as the minimal spanning tree, the traveling
salesman tour solving the traveling salesman problem (TSP), the steiner tree, the Delaunay triangulation, and the k
nearest neighbor graph† Then the total edge length function converges (a.s.) to a monotone function of the Rényi
α-entropy off asn →∞.

More specifically, define the length functional of such a minimal graph as

Lγ(Zn) = min
E∈Ω

∑

e∈E

eγ(Zn) =
∑

i

eγ
i ,

whereΩ is a set of graphs with specified properties, e.g., the class of acyclic or spanning graphs (leading to the MST),e
is the euclidean length of an edge inΩ, γ is called the edge exponent or the power weighting constant, and0 < γ < d.
The sum

∑
i eγ

i is an equivalent notation this length functional, where the{ei}i are the lengths of the edges in the
minimal graph. The determination ofLγ usually requires a combinatorial optimization over the setΩ but in some
cases, e.g., the kNNG, this can be done inO(n log n) time.

The celebrated Beardwood, Halton and Hammersley (BHH) Theorem asserts that20

lim
n→∞

Lγ(Zn)/nα = βd,γ

∫
fα(z)dz, (a.s.) (12)

whereα = (d − γ)/d andβd,γ is a constant independent off - it only depends on the type of graph construction
(MST, kNNG, etc). Comparing this to the expression (5) for the Rényi entropy it is obvious that an entropy estimator
can be constructed from the relation(1 − α)−1 log (Lγ(Zn)/nα) = Ĥα(f) + c, wherec = (1 − α)−1 log βd,γ is a
removable bias. Furthermore, it is seen that one can estimate entropy for different values ofα ∈ [0, 1] by adjusting
γ. For many minimal graph constructions the topology of the minimal graph is independent ofγ and only a single
combinatorial optimization is required to estimateHα for all α.

4.2. Entropic Graph Estimate ofα-Jensen Difference

The results of the last section can be applied to estimating theα-Jensen difference between feature densities of two
images. Assume two sets of feature vectorsOn0 = {oi}n0

i=1 andXn1 = {xi}n1
i=1 are extracted from imagesX0 and

X1 and are i.i.d. realizations of random variablesO andX having multivariate densitiesfo andfx, respectively. The

†Roughly speaking, continuous quasi additive functionals can be approximated closely by the sum of the weight functionals of
minimal graphs constructed on a uniform partition of[0, 1]d.



case of equal numbersn0 = n1 of features fromX0 andX1 is the typical case in image registration when features are
extracted at each pixel location. Define the set unionZm = On0 ∪ Xn1 containingm = n0 + n1 unordered feature
vectorszi. If n0, n1 increase at constant rate as a function ofn then any consistent entropy estimator constructed from
the vectors{zi}n0+n1

i=1 will converge toHα(pf0 + qf1) asn0, n1 → ∞ wherep = limn0,n1→∞ n0/(n0 + n1) and
q = 1− p. This motivates the following finite sample entropic graph estimator ofα-Jensen difference

∆Ĥα(p, f0, f1) = Ĥα(On0 ∪ Xn1)−
[
pĤα(On0) + qĤα(Xn1)

]
, (13)

whereĤα(Z0 ∪ Z1) is the entropy estimator obtained from a MST or kNNG length functional constructed on then

point union of both sets of feature vectors, and the marginal entropy estimatesĤα(On0), Ĥα(Xn1) are constructed on
the individual sets ofn0 andn1 feature vectors, respectively. We can similarly define a density-based estimator ofα-
Jensen difference. Observe that for rigid image registration problems (without cropping errors) the marginal entropies
{Hα(fi)}K

i=1 over the set of image transformations will be identical, obviating the need to compute estimates of the
marginalα-entropies.

For illustration we show how the entropic graphαJensen difference estimator applies to a synthetic sample from
two 2D feature distributions. The two densities are Gaussian bivariate densities with different means but identical
(spherical) covariances. A sample from these two densities and the MST are shown in Fig. 4 for two different values
of the mean parameter. Figure 5 shows the kNNG for the same realization. Note that the discriminating power of the
kNN and MST reside in the sensitivity of the total edge length of these graphs to the difference in the means of the
densities.

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
,Σ

1
): µ

1
=3,Σ

1
=1 × I 

N(µ
2
,Σ

2
): µ

1
=3,Σ

1
=1 × I

(a) MSTµ1 = µ2 andΣ1 = Σ2

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N( µ
1
, Σ

1
) : µ

1
=0, Σ

1
=1 × I

N( µ
2
, Σ

2
) : µ

2
=3, Σ

2
=1 × I

(b) MSTµ1 = µ2 − 3 andΣ1 = Σ2

Figure 4. Illustration of MST estimate ofα-Jensen difference for Gaussian case. Two bivariate normal distributionsN (µ1, Σ1) and
N (µ1, Σ1) are used. The ’x’ labeled points aren1 samples fromfx = N (µ1, Σ1), whereas the ’o’ labeled points aren0 samples
from fo = N (µ2, Σ2). (left) µ1 = µ2 andΣ1 = Σ2 and (right)µ1 = µ2 − 3 while Σ1 = Σ2. When normalized by(n0 + n1)

α

the sum of all edge lengths converges to∆Hα(p, fx, fo) (within a constant factor).

4.3. Entropic Graph Estimate of Henze-Penrose Affinity

Friedman and Rafsky16 presented a multivariate generalization of the Wald-Wolfowitz runs statistic for the two sample
problem. The Wald-Wolfowitz test statistic is used to decide between the following hypotheses on a pair of scalar
random variablesX,O ∈ IRd with densitiesfx, fo respectively:

H0: fx = fo, H1: fx 6= fo, (14)

The test statistic is applied to an i.i.d. random sample{xi}n1
i=1, {oi}n0

i=1 from fx and fo. In the univariate Wald
Wolfowitz test (d = 1), then0 + n1 scalar observations{zi}i = {xi}i, {oi}i are ranked in ascending order. Each
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Figure 5. Illustration of kNN estimate ofα-Jensen difference for Gaussian case illustrated in Fig. 4. When normalized by(n0 +
n1)

α the sum of all edge lengths converges to∆Hα(p, fo, fx) (within a constant factor).

observation is then replaced by a class labelX or O depending upon the sample to which it originally belonged,
resulting in a rank ordered sequence. The Wald-Wolfowitz test statistic is the total number of runs (run-length)R` of
X’s or O’s in the label sequence. As in run-length coding,R`, is the length of consecutive sequences of length` of
identical labels.

The Friedman-Rafsky (FR) test16 generalizes the Wald-Wolfowitz test tod dimensions by clever use of the MST.
The FR test proceeds as follows: 1) construct the MST on the pooled multivariate sample points{xi}

⋃{oi}; 2) retain
only those edges that connect an X labeled vertex to an O labeled vertex; 3) The FR test statistic,N , is defined as the
number of edges retained. The hypothesisH1 in (14) is accepted for smaller values of the FR test statistic. As shown
by Henze and Penrose,15 when normalized by the total numbern0 + n1 of points, the FR test statisticN converges
to 1 minus the Henze-Penrose divergence (10) between the distributionsfx andfo. The FR test is illustrated in Fig. 6.
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Figure 6. Illustration of Friedman and Rafsky’s (FR) MST estimate of the Henze-Penrose divergence for Gaussian case illustrated in
Fig. 4. The proportion of MST edges that connect feature vectors from different classes is a consistent estimate of1−DHP (fo‖fx).



5. ENTROPIC GRAPH ESTIMATORS OF α-GA AND αMI

Assume for simplicity that the target and reference feature setsOn0 = {oi}i andXn1 = {xi}i have the same cardi-
nality n0 = n1 = n. The estimators ofα-GA andαMI are based on a kNNG-Voronoi partitioning heuristic, described
below. While Voronoi and nearest neighbor approaches to entropy estimation have been proposed by Miller21 and
Kozachenko and Leonenko,22 respectively, to our knowledge the heuristic below is new and is applicable to both
entropy and divergence estimation.

5.1. kNNG-Voronoi Partitioning Heuristic

First consider the general problem of estimating a functionalψ = E[ψ(f)] =
∫

ψ(f(z))f(z)dz of a multivariate
densityf(z), z ∈ [0, 1]d, based on a set of i.i.d. samplesZn = {z1, . . . , zn} from f . If we had a consistent estimator
f̂n of the densityf , obtained independently from another set of samplesZ ′

n, then a consistent estimator,ψ̂, of ψ would
be the ”plug-in”

ψ̂ =
1
n

n∑

i=1

ψ(f̂(zi)). (15)

Of course, actual implementation of a plug-in estimator is exactly what we are trying to avoid due to the inherent high
complexity of density estimation in high dimensions. However, by judicious choice of an ”unimplementable” plug-in
density estimator followed by an approximation we will obtain an implementable estimator ofψ.

Divide the total numbern of samples into a disjoint training sampleZtrain, containingntrain points, and a test
sampleZtest, containingntest points,n = ntrain + ntest. We consider a partition density estimator off(z) built
from the training sample using data dependent Voronoi tesselation of the domain off . First, using the sampleZtrain

generate a K cell Voronoi partitionΠ using a Linde-Buzo-Gray (LBG) or K-means algorithm23 on [0, 1]d. Then, in
the notation of,24 define the Voronoi partition density estimator

f̂(z) =
µ(Π(z))
λ(Π(z))

(16)

whereΠ(z) is the cell of the data-dependent Voronoi partition in[0, 1]d containing the pointz, µ is the empirical
distribution ofZtrain andλ is the Lebesgue measure. More specifically, for any setΠ ∈ [0, 1]d, µ(Π) is the number of
points ofZtrain falling into Π divided by the total numberntrain of points, andλ(Π) is the volume ofΠ. The Voronoi
partition density estimator (16) will be asymptotically consistent as long asntrain,K → ∞ andK/ntrain → 0.24

Therefore, as long as we chose the numberK of cells in such a way that these conditions are satisfied, the following
estimator of the functional (15):

ψ̂ =
1

ntest

∑

zi∈Ztest

ψ(f̂(zi)) (17)

will be asymptotically unbiased with variance going to zero.

Now, for the heuristic. Note that the density estimator (16) depends on the Voronoi partition only through the
volume of the cell and its number of ”counts” fromZtrain. Consider the form of the estimator (17) when we set
ntrain = ntest = n, Ztrain = Ztest = Zn, andK = n. Note that this case violates the conditions for convergence
stated above. Then each of then points will be at the center of its own Voronoi cell and thereforeµ(Π(z)) = 1/n. If
each cell is approximately spherical (similar assumption as Gersho’s conjecture for asymptotic VQ) we can make the
following kNN approximation of the cell volume:

λ(Π(zi)) ≈ ced
i , (18)



whereei(Zn) = minj ‖zi − zj‖ is the distance from the pointzi to its nearest neighbor in the setZn andc is a
constant. Substitution of this heuristic approximation into (15) gives the estimator

ψ̂ =
1
n

n∑

i=1

ψ((nced
i )
−1), (19)

andei = ei(Zn).

Observe that in the special case ofα-entropyψ(u) = uα−1, α = (d− γ)/γ and the above estimator (19) reduces
to

ψ̂ =
cα−1

nα

n∑

i=1

eγ
i ,

which, up to a constant factorcα−1 is identical to the kNNG estimator of entropy introduced in Section 4. By the
BHH Theorem we know that this estimator converges (a.s.) to the integralcα−1β

∫
fα(z)dz which is identical, up to

a scale factor, toE[ψ]. Thus, even though the heuristic was derived under some very questionable assumptions, which
certainly invalidate consistency of the density estimator, we nonetheless preserved consistency of the entropy estimate.

5.2. kNNG Estimator of αGA

Assume an equal number of feature vectorsOn = {oi}n
i=1 andXn = {xi}n

i=1 are acquired from images 1 and 2, where
oi andxi are i.i.d. random variables distributed with densitiesfo andfx, respectively. Here we apply the heuristic
approximation (19) to estimateαDGA(fo, fx) = (α− 1)−1 log IGA(fo, fx), whereIGA(fo, fx) is the integral in (8):

IGA(fo, fx) =
∫

hα(z)(fp
o (z)fq

x(z))1−αdz =
∫ (

fp
o (z)fq

x(z)
h(z)

)1−α

h(z)dz, (20)

andh(z) = pfo(z) + qfx(z). To convert this expression into an empirical estimate of the form (15) observe thath is
the density function of the pooled sampleZn = {oi, xi}n

i=1 with p = q = 1/2. Re-index (in no particular order) these
2n samples as{zi}2n

i=1. If the consistent partition density estimation procedure, discussed in the previous subsection,
is used to estimatefo, fx andh fromOn, Xn andZn, respectively, we know that

ÎGA =
1
2n

2n∑

i=1

(
f̂p

o (zi)f̂q
x(zi)

ĥ(zi)

)1−α

, (21)

is a consistent estimator ofαGA divergence. We assume for simplicity that the support sets offo andfx are contained
in [0, 1]d. There is no loss of generality if actual support sets are bounded regionsS ⊂ IRd as they can be mapped
inside the unit cube through coordinate transformation.

Next invoke the kNN-Voronoi heuristic and make the partition density estimator approximations

ĥ(zi) =
µ(Πz(zi))
λ(Πz(zi))

≈ c/n

min{ed
i (On), ed

i (Xn)} , f̂o(zi) =
µ(Πo(zi))
λ(Πo(zi))

≈ c/n

ed
i (On)

, f̂x(zi) =
µ(Πx(zi))
λ(Πx(zi))

≈ c/n

ed
i (Xn)

.

Substitution of these approximations into (21) yields the entropic graph approximation to theα-GA mean divergence
(8):

̂αDGA =
1

α− 1
log

1
2n

2n∑

i=1

min

{(
ei(On)
ei(Xn)

)γ/2

,

(
ei(Xn)
ei(On)

)γ/2
}

, (22)

where unimportant constants have been omitted.



5.3. kNNG Estimator of αMI

Similar to Section 2.1 we assume thatn vectors of paired featureszi = (oi, xi) ∈ IR2d are acquired from the two
images, i.e.,Zn = {zi}n

i=1 is the coincidence scatterplot of these features. Definefox(z) the joint feature density and
fo andfx the marginal densities ofoi ∈ IRd andxi ∈ IRd, respectively, and define the integral expressionIMI

IMI =
∫

fα(ox)(u, v)f1−α
o (u)f1−α

x (v)dudv

appearing in the expression for theαMI (9), i.e., αMI = 1
α−1 log IMI . If a consistent partition density estimate of

procedure, discussed in the previous subsection, is used to estimatefox, fo andfx, then it is easily seen that

ÎMI =
1
n

n∑

i=1

(
f̂o(oi)f̂x(xi)

f̂ox(oi, xi)

)1−α

, (23)

is a consistent estimator ofIMI.

Application of the heuristic (18) yields

f̂ox(zi) ≈ c/n

e2d
i (Zn)

, f̂o(ui) ≈ c/n

ed
i (On)

, f̂x(vi) ≈ c/n

ed
i (Xn)

.

which when substituted into (23) gives the entropic graph approximation to theαMI

α̂MI =
1

α− 1
log

1
nα

n∑

i=1

(
ei(Zn)√

ei(On)ei(Xn)

)2γ

, (24)

whereei(Zn) is the distance from the pointzi = (oi, xi) ∈ IR2d to its nearest neighbor in{Zj} andei(On) (ei(Xn))
is the distance from the pointoi ∈ IRd, (xi ∈ IRd) to its nearest neighbor inOn (Xn). Again, unimportant constant
factors have been omitted from (24).

6. APPLICATION TO ULTRASOUND BREAST IMAGING

Ultrasound (US) imaging is an important medical imaging modality for whole breast imaging that can aid discrimina-
tion of malignant from benign lesions, can be used to detect multi-focal secondary masses, and can quantify response
to chemotherapy or radiation therapy. In Fig. 7 a set of twenty 2D slices extracted from a 3D volumetric US breast
scanner is shown for twenty different patients (cases) receiving chemotherapy. The women were imaged on their backs
with the transducer placed so as to image through the breast toward the chest wall. Some of the cases clearly exhibit
tumors (delineated masses with shadows), others exhibit significant connective tissue structure (bright thin lines or
edges), and all have significant speckle noise and distortions.

In registering ultrasound images of the breast, the reference and secondary images have genuine differences from
each other due to biological changes and differences in imaging, such as positioning of the tissues during compression
and angle dependence of scattering from tissue boundaries. The tissues are distorted out of a given image plane as well
as within it. Speckle noise, elastic deformations and shadows further complicate the registration process thus making
ultrasound breast images notoriously difficult to register. It is for this reason that conventional registration methods
tend to have problems with US breast images. Here we will illustrate the advantages of matching on high dimensional
feature spaces implemented with entropic similarity metrics.

6.1. Ultrasound Breast Database

To benchmark the various registration methods studied we evaluated the mean squared registration error for registering
a slice of US breast image volume to an adjacent slice in the same image volume (case). For each case we added



Figure 7. Ultrasound (US) breast scans from twenty volume scans of patients undergoing chemotherapy.

differing amounts of spatially homogeneous and independent random noise to both slices in order evaluate algorithm
robustness. A training database of volumetric scans of 6 patients and a test database of 15 patient scans were created.
Feature selection was performed using the training database and registration performance was evaluated over the test
database. These databases were drawn from a larger database of 3D scans of the left or right breast of female subjects,
aged 21-49 years, undergoing chemotherapy or going to biopsy for possible breast cancer. Each volumetric scan has a
field of view of about4cm3 (voxel dimensions0.1mm2 × 0.5mm) and encompasses the tumor, cyst or other structure
of interest. The scans were acquired at 1cm depth resolution yielding 90 cross-sectional images at 0.4cm horizontal
resolution. The patient data was collected with the intention to monitor therapy progress in the patients. Tumor/Cyst
dimensions vary and can range from5mm3 to 1cm3 or higher. As the aim of this study is to quantitatively compare
different feature selection and registration methods we restricted our investigation to rotation transformations over
±16◦.

6.2. Feature Space

We have experimented with a large number of vector valued features including, Meyer 2D wavelet coefficents, grey
level tag features, and curvelet features. Here we present results for vector valued features constructed by projecting
image patches onto a basis for the patch derived from independent component analysis (ICA). The ICA basis is
especially well suited for our purposes since it aims to obtain vector features which have statistically independent
elements and can therefore facilitate estimation ofαMI and other entropic measures.

Specifically, in ICA an optimal basis is found from a training set which decomposes imagesXi in the training set
into a small number of approximately statistically independent components{Sj} each supported on an8 × 8 pixel
block (we choose an 8 by 8 block only for concreteness):

Xi =
p∑

j=1

aijSj . (25)

We select basis elements{Sj} from an over-complete linearly dependent basis using randomized selection over the
database. For imagei the feature vectorszi are defined as the coefficients{aij} in (25) obtained by projecting each of
its 8× 8 sub-image blocks onto the basis.

Figure 6.2 illustrates the estimated 64 dimensional (8× 8) ICA basis for the training database. The basis was ex-



tracted by training on over 100,000 randomly sampled8×8 sub-images taken from the 6 volumetric breast ultrasound
scans. The algorithm used for extraction was Hyvarinen and Oja’s25 FastICA ICA code (available from26) which
uses a fixed-point algorithm to perform maximum likelihood estimation of the basis elements in the ICA data model
(25). Given this ICA basis and a pair of to-be-registered image slices, coefficient vectors are extracted by projecting
each8 × 8 neighborhood in the images onto the basis set. Thus forαMI the coincidence scatter plot is in 128 di-
mensions; the number of dimensions of a coincidence feature extracted at a particular row-column coordinate in the
pair of images. The feature space for theαJensen,αGA and Henze-Penrose registration criteria was constructed by
pooling the two labeled sets of 64D feature vectors. Thus, the dimensionality of the feature space was 64D. MST
or kNNG were constructed on the 64D feature spaces of the pooled sample. In either case these feature dimensions
(128D or 64D) are too large for a histogram binning algorithm to be feasible, which prevented comparison to the full
dimensional classical density plug-in MI registration criterion.

Figure 8. 8× 8 ICA basis set obtained from training on randomly selected8× 8 blocks in the training database of breast scans.

6.3. Experimental Results

For each of the 15 scans in the test set 2 image slices were extracted in the depth direction perpendicular to the skin,
such that they showed the cross-section of the tumor. These two slices have a seperation distance of about 5mm.
At this distance, the speckle deccorelates but the underlying anatomy remains approximately unchanged. The first
cross sectional slice was picked such that it intersected with the ellipsoidal-shaped tumor through its center. The
second slice was picked closer to the edge of the tumor. These images thus show a natural decline in tumor size,
as would be expected in time sampled scans of tumors responding to therapy. Since view direction changes from
one image scan to the next for the same patient over time, rotational deformation is often deployed to correct these
changes during registration. We simulated this effect by registering a rotationally deformed image with its unrotated
slice-seperated counterpart, for each patient in the 15 test cases. Rotational deformation was in steps of 2 degrees
such that the sequence of deformations was [-16 -8 -4 -2 0 (unchanged) 2 4 8 16 ] degrees. Further, the images were
offset (relatively translated) by 0.5mm (5 pixels) laterally to remove any residual noise correlation since it can bias the
registration results. Since some displacement can be expected from the handheld UL imaging process and the relative
tissue motion of the compressible breast tissue, this is not unreasonable. For each deformation angle, divergence
measures were calculated, where the ‘registered state’ is the one with 0 degrees of relative deformation.

For each extracted image slice we created 250 noisy replicates by adding truncated Gaussian noise.8×8 neighbor-
hoods of the ultrasound image replicates were projected onto the 64 dimensional ICA basis. The rms registration error
is illustrated for six different algorithms in Fig. 9 as a function of the rms (truncated) Gaussian noise. Registration
error was determined as the rms difference between the location of the peak in the matching criterion and the true
rotation angle. Note from the figure that, except for theα-Jensen difference, the standard single pixel MI underper-
formes relative to the other methods. This is due to the superiority of the high dimensional ICA features used by these
other methods. Theα Jensen difference implemented with kNN vs MST give identical performance. Unlike the other



metrics, theα Jensen difference is not invariant to reparameterization, which explains its relatively poor performance
for large rms noise. Finally, we remark that the runtime complexity of the kNN-based methods (off-the-shelf kdb-tree
implemention) is lower than the MST-based methods (off-the-shelf Kruskal algorithm).
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Figure 9. Rotational root mean squared error obtained from registration of ultrasound breast images using six different image
similarity/dissimilarity criteria. Standard error bars are as indicated. These plots were obtained by averaging 15 cases, each with
250 Monte Carlo trials adding noise to the images prior to registration, corresponding to a total of 3750 registration experiments.

7. CONCLUSION

In this paper we have presented several extensions of our previous work on entropy estimation for image registration.
These extensions include new kNN estimators of the mutual information (αMI) and geometric-arithmetic mean diver-
gence (αGA). As compared to previous work in which estimated Jensen differences were used for registration, these
divergence measures have the advantage of invariance to reparameterization of the feature space. While we do not
yet have any convergence results for the kNN divergence estimators, there is circumstantial theoretical evidence that
they do converge. Furthermore, our numerical evaluations show that these divergence estimators outperform previous
approaches to image registration. We also introduced the Friedman-Rafsky (FR) multivariate run test, which is an
estimator of Henze-Penrose divergence, as a new matching criterion for image registration. Our numerical experi-
ments showed that the FR,αGA, andαMI significantly outperform previous approaches in terms of registration mean
squared error. Of course, as compared to our kNNG divergence estimators, the FR method has the advantage of proven
theoretical convergence but has the disadvantage of higher runtime complexity.
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