Entropic graphs for registration

Huzefa Neemuchwala and Alfred Hero

Abstract

In many applications, fusion of images acquired via two or more sensors requires image alignment
to an identical pose, a process called image registration. Image registration methods select a sequence
of transformations to maximize an image similarity measure. Recently a new class of entropic-graph
similarity measures was introduced for image registration, feature clustering and classification. This
chapter provides an overview of entropic graphs in image registration and demonstrates their performance
advantages relative to conventional similarity measures. In this chapter we introduce : techniques to extend
image registration to higher dimension feature spaces usingiR ‘generalized-entropy. Thex-entropy
is estimated directly through continuous quasi additive power weighted graphs such as the minimal
spanning tree (MST) and k-Nearest Neighbor graph (kNN). Entropic graph methods are further used to
approximate similarity measures like tle mutual information,a-Jensen divergence, Henze-Penrose
affinity and Geometric-Arithmetic mean affinity. These similarity measures offer robust registration
benefits in a multisensor environment. Higher dimensional features used for this work include basis
functions like multidimensional wavelets and independent component analysis (ICA). Registration is
performed on a database of multisensor satellite images. Lastly, we demonstrate the sensitivity of our

approach by matching local image regions in a multimodal medical imaging example.
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Entropic graphs for registration

. INTRODUCTION

Given 2D or 3D images gathered via multiple sensors located at different positions, the multi-sensor
image registration problem is to align the images so that have an identical pose in a common coordinate
system (Figure 1). Image registration is becoming a challenging multi-sensor fusion problem due to the
increased diversity of sensors capable of imaging objects and their intrinsic properties. In medical imaging,
cross sectional anatomic images are routinely acquired by magnetic induction (Magnetic Resonance
Imaging, MRI), absorption of accelerated energized photons (X-Ray Computed Tomography, CT) and
ultra high frequency sound (Ultrasound) waves. Artifacts such as motion, occlusion, specular refraction,
noise, inhomogeneities in the object and imperfections in the transducer compound the difficulty of image
registration. Cost and other physical considerations canm constrain the spatial or spectral resolution and
the signal to noise ratio (SNR). Despite these hindrances, image registration is now commonplace in
medical imaging, satellite imaging and stereo vision. Image registration also finds widespread usage in
other pattern recognition and computer vision applications such as image segmentation, tracking and
motion compensation. A comprehensive survey of the image registration problem, its applications, and
implementable algorithms can be found in [52], [51]. Image fusion is defined as task of extracting co-
occurring information from multisensor images. Image registration is hence a precursor to fusion. Image
fusion finds several applications in medical imaging where it is used to fuse anatomic and metabolic

information [72], [53], [24], and build global anatomical atlases [80].

The three chief components of an effective image registration system (Figure 2) are: (1) definition
of features that discriminate between different image poses; (2) adaptation of a matching criterion that
guantifies feature similarity, is capable of resolving important differences between images, yet is robust
to image artifacts; (3) implementation of optimization techniques which allow fast search over possible
transformations. In this chapter, we shall be principally concerned with the first two components of the
system. In a departure from conventional pixel-intensity features, we present techniques that use higher
dimensional features extracted from images. We adapt traditional pixel matching methods that rely on

entropy estimates to include higher dimensional features. We propose a general class of information
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Fig. 1. Image fusion: (left) Co-registered images of the face acquired via visible light and longwave senors. (right) Registered

brain images acquired by time-weighted responses . Face and brain images courtesy ([23]) and ([16]) respectively.

theoretic feature similarity measures that are based on entropy and divergence and can be empirically
estimated using entropic graphs, such as the minimal spanning tree (MST) or k-Nearest Neighbor (kNN)

graph, and do not require density estimation or histograms.

Traditional approaches to image registration have included single pixel gray level features and corre-
lation type matching functions. The correlation coefficient is a poor choice for the matching function in
multi-sensor fusion problems. Multi-sensor images typically have intensity maps that are unique to the
sensors used to acquire them and a direct linear correlation between intensity maps may not exist (Fig
3). Several other matching functions have been suggested in the literature [37], [42], [66]. Some of the
most widespread techniques are: histogram matching [39]; texture matching [2]; intensity cross correlation
[52]; optical flow matching [47]; kernel-based classification methods [17]; boosting classification methods
[19], [44]; information divergence minimization [81], [77], [76], [29]; and mutual information (MI)
maximization [84], [28], [53], [11]. The last two methods can be called "entropic methods” since both use

a matching criterion defined as a relative entropy between the feature distributions. The main advantage
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Fig. 2. Block diagram of an image registration system

of entropic methods is that they can capture non-linear relations between features in order to improve
discrimination between poor and good image matches. When combined with a highly discriminatory
feature set, and reliable prior information, entropic methods are very compelling and have been shown to
be virtually unbeatable for some multimodality image registration applications [48], [53], [37]. However,
due to the difficulty in estimating the relative entropy over high dimensional feature spaces, the application
of entropic methods have been limited to one or two feature dimensions. The independent successes of
relative entropy methods, e.g., Ml image registration, and the use of high dimensional features, e.g.,
SVM'’s for handwriting recognition, suggest that an extension of entropic methods to high dimensions
would be worthwhile. Encouraging initial studies on these methods have been conducted by these authors
and can be found in [60], [58].

Here we describe several new techniques to extend methods of image registration to high dimensional
feature spaces. Chief among the techniques is the introduction of entropic graphs to estimate a generalized
a-entropy: REnyi's a-entropy. These entropic graph estimates can be computed via a host of combinatorial
optimization methods including the MST and the k-Nearest neighbor graph (KNNG). The computation
and storage complexity of the MST and kNNG-based estimates increase linearly in feature dimension as

opposed to the exponential rates of histogram-based estimates of entropy. Furthermore, as will be shown,
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Fig. 3. MRI images of the brain, with additive noise. (left) T1 weighfled (center) T2 weighted». Images courtesy [16].
Although acquired by a single sensor, the time weighting renders different intensity maps to identical structures in the brain.

(right) Joint gray-level pixel coincidence histogram is clustered and does not exhibit a linear correlation between intensities.

entropic graphs can also be used to estimate more general similarity measures. Specific examples include
the a-mutual information ¢-Ml), a-Jensen difference divergence, the Henze-Penrose (HP) affinity, which

is a multidimensional approximation to the Wald-Wolfowitz test [85], anddfgeometric-arithmeticd-

GA) mean divergence [79]. To our knowledge, the last two divergence measures have never been utilized
in the context of image registration problems. We also explore variants of entropic graph methods that

allow estimation with faster asymptotic convergence properties and reduced computational complexity.

The a-entropy of a multivariate distribution is a generalization of the better known Shannon entropy.
Alfred Rényi introduced thex-entropy in a 1961 paper [71] and since then many important properties
of a-entropy have been established [4]. Frormnki's a-entropy the Rhyi a-divergence and the éRiyi
a-mutual information ¢-MI) can be defined in a straightforward manner. o= 1 these quantities
reduce to the standard (Shannon) entropy, (Kullback-Liebler) divergence, and (Shannon) MI, respectively.
Another useful quantity that can be derived from th@ntropy is thea-Jensen difference, which is a
generalization of the standard Jensen difference and has been used here in our extension of entropic
pattern matching methods to high feature dimension. As we will show, this generalization allows us to
define an image matching algorithm that benefits from a simple estimation procedure and an extra degree

of freedom ).

Some additional comments on relevant prior work by us and others is in order. Various forms of
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a-entropy have been exploited by others for applications including: reconstruction and registration of
interferometric synthetic aperture radar (ISAR) images [29], [26]; blind deconvolution [25]; and time-
frequency analysis [3], [86]. Again, our innovation with respect to these works is the extension to
high dimensional features via entropic graph estimation methods. On the other hand, the alpha-entropy
approaches described here should not be confused with entropy-alpha classification in SAR processing
[15] which has no relation whatsoever to our work. A tutorial introduction to the use of entropic graphs to
estimate multivariate--entropy and other entropy quantities was published by us in a recent survey article
[35]. As introduced in [36] and studied in [35], [34] an entropic graph is any graph whose normalized
total weight (sum of the edge lengths) is a consistent estimataresftropy. An example of an entropic

graph is the minimal spanning tree and due to its low computational complexity it is an attractive entropic
graph algorithm. This graph estimator can be viewed as a multidimensional generalization of the Vasicek

Shannon entropy estimator for one dimensional features [83], [7].

We have developed experiments that allows the user to examine and compare our methods with
other methods currently used for image fusion tasks. The applications presented in this chapter are
primarily selected to illustrate the flexibility of our method, in terms of selecting high dimensional
features. However, they help us compare and contrast multidimensional entropy estimation methods. In
the first example we perform registration on images obtained via multi-band satellite sensors. Images
acquired via these geostationary satellites serve in research related to heat dissipation from urban centers,
climactic changes and other ecological projects. Thermal and visible light images captured for the Urban
Heat Island [68] project form a part of the database used here. NASA's visible earth project [57] also
provides images captured via different satellite sensors, and such multi-band images have been used here
to provide a rich representative database of satellite images. Thermal and visible-light sensors image
different bands in the electromagnetic spectrum and thus have different intensity maps, removing any

possibility of using correlation-based registration methods.

As a second example we apply our methods to registering medical images of the human brain acquired
under dual modality (T1,T2 weighted) magnetic resonance imaging. Simulated images of the brain under
different time-echo responses to magnetic excitation are used. Different areas in the brain (neural tissue, fat
and water) have distinct magnetic excitation properties. Hence, they express different levels of excitation

when appropriately time-weighted. This example qualifies as a multisensor fusion example due to the
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disparate intensity maps generated by the imaging sequence, commonly referred to as the T1 and T2
time weighted MRI sequences. We demonstrate an image matching technique for MRI images sensitive

to local perturbations in the image.

Higher dimensional features used for this work include those based on independent component analysis
(ICA) and multidimensional wavelet image analysis. Local basis projection coefficients are implemented
by projecting local 8 by 8 sub-images of the image onto the ICA basis for the local image matching
example from medical imaging. Multi-resolution wavelet features are used for registration of satellite
imagery. Local feature extraction via basis projection is a commonly used technique for image represen-
tation [74], [82]. Wavelet bases are commonly used for image registration as is evidenced in [87], [78],
[43]. ICA features are somewhat less common but have been similarly applied by Olshausarinétyv”
and others [49], [41], [64]. The high dimensionality (= 64 for local basis projections) of these feature
spaces precludes the application of standard entropy-based pattern matching methods and provides a good
illustration of the power of our approach. The ability of the wavelet basis to capture spatial-frequency

information in a hierarchical setting makes them an attractive choice for use in registration.

The paper is organized as follows: Section Il introduces various entropy-&mdropy based similarity
measures such aseRyi entropy and divergence, mutual information andensen difference divergence.
Section Il describes continuous Euclidean functionals such as the MST and the KNNG that asymptotic
converge to the Biyi entropy. Section IV presents the Henze-Penrose test statistic as a divergence measure
for image registration. Next, Section VI describes, in detail, the feature based matching techniques used
in this work, different types of features used and the advantages of using such methods. Computational
considerations involved in constructing graphs are discussed in Section VII. Finally, Sections VIII and
IX present the experiments we conducted to compare and contrast our methods with other registration

algorithms.

Il. ENTROPIC FEATURE SIMILARITY /DISSIMILARITY MEASURES

In this section we review entropy, relative entropy, and divergence as measures of dissimilarity between
probability distributions. Ley” be ag-dimensional random vector and I¢ty) and g(y) denote two

possible densities fol”. Here Y will be a feature vector constructed from the reference image and
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the target image to be registered aficand g will be multidimensional feature densities. For example,
information divergence methods of image retrieval [76], [21], [82] spe¢ifgs the estimated density
of the reference image features agds the estimated density of the target image features. When the

features are discrete valued the densifieend g are interpreted as probability mass functions.

A. Renyi Entropy and Divergence

The basis for entropic methods of image fusion is a measure of dissimilarity between dehaititg.
A very general entropic dissimilarity measure is thenRi'a-divergence, also called theeRyi a-relative
entropy, betweerf andg of fractional ordera € (0, 1) [71], [18], [4] :

1 f(=)\*
D = 1
o(fll9) o Og/ 9(z) (g(z)> dz
1
= g [ 1 e ®

a—1

When the density is supported on a compact domain gnid uniform over this domain the-divergence
reduces to the &iyi a-entropy of f:

1
l—«o

Ho(f) = —— log / 1o (2)de. @)

When specialized to various values afthe a-divergence can be related to other well known di-
vergence and affinity measures. Two of the most important examples are the Hellinger dissimilarity
—2log [ \/f(z)g(z)dz obtained whernx = 1/2, which is related to the Hellinger-Battacharya distance

squared,

Dirainger(fl9) = [ (VI@) - Val@)) s ©
= 2(1—exp (D4 (/1)) @

and the Kullback-Liebler (KL) divergence [46], obtained in the limitas> 1,

i = z)lo M z
lim Da(flg) = [ o)1z S5 . ©)
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B. Mutual Information andch-Mutual Information

The mutual information (MI) can be interpreted as a similarity measure between the reference and target
pixel intensities or as a dissimilarity measure between the joint density and the product of the marginals
of these intensities. The MI was introduced for gray scale image registration [84] and has since been
applied to a variety of image matching problems [28], [48], [53], [69]. Kgtbe a reference image and
consider a transformation of the target imagdg ), defined asX; = T'(X;). We assume that the images
are sampled on a grid a¥f x N pixels. Let(zo, z7;) be the pair of (scalar) gray levels extracted from
the k-th pixel location in the reference and target images, respectively. The basic assumption underlying
MI image matching is thaf(zox, z7%) 1o} are independent identically distributed (i.i.d.) realizations of
apair(Zy, Zr), (Zr = T(Z,)) of random variables having joint densify ; (zo, zr). If the reference and
the target images were perfectly correlated, e.g., identical images/Zthand Z would be dependent
random variables. On the other hand, if the two images were statistically independent, the joint density of
Zp andZ7 would factor into the product of the marginais; (zo, z1) = fo(z0) f1(z7). This suggests using
the a-divergenceD,,( fo,1 (20, 21)|| fo(20) f1(21)) betweenfy 1 (20, 2zr) and fo(zo) f1(z7) as a similarity
measure. For € (0,1) we call this thea-mutual information (or-MI) betweenZ, and Zr and it has

the form

aMI = Dalfor(Zo, Zr) | fo(Zo) f1(Zr)) ©

1

= —tog [ 5 Gosen) ) 1 erdandar. )

Whena — 1 the a-MI converges to the standard (Shannon) Ml

MI = /fo,l(zo,ZT) log <%> dzodzr. (8)

For registering two discretd/ x N images, one searches over a set of transformations of the target
image to find the one that maximizes the Ml (8) between the reference and the transformed target. The
Ml is defined using feature&Z,, Z1) € {zOk,sz},]ﬂ‘ﬂ equal to the discrete-valued intensity levels at
common pixel locationgk, k) in the reference image and the rotated target image. We call this the

“single pixel MI”. In [84], the authors empirically approximated the single pixel Ml (8) by “histogram
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plug-in” estimates, which when extended to WM gives the estimate
255
—— def 1 fa ; ; I—a
oM ——1og > firnteo ) (o) filen) ©)

2052T =0

In (9) we assume 8-bit gray Ievefo,l denotes the joint intensity level “coincidence histogram”

. 1 MN
fo,1(20, 27) = UN ; Lo 2 (20, 27), (10)

and’

20k 2Tk

(20, 2z7) is the indicator function equal to one whésy, z7) = (20, zr) and equal to zero
otherwise. Other feature definitions have been proposed including gray level differences [11] and pixel

pairs [73].

Figure 4 illustrates the Ml alignment procedure through a multisensor remote sensing example. Aligned
images acquired by visible and thermally sensitive satellite sensors, generate a joint gray level pixel
coincidence histogranfy 1 (2o, 21). Note, that the joint gray-level pixel coincidence histogram is not
concentrated along the diagonal due to the multisensor acquisition of the images. When the thermal image
is rotationally transformed, the corresponding joint gray-level pixel coincidence histofyrae, zr) is

dispersed, thus yielding a lower mutual information than before.

1) Relation ofa-MI to Chernoff Bound:The «-MI (7) can be motivated as an appropriate registration
function by large deviations theory through the Chernoff bound. Define the average probability of error
P.(n) associated with a decision rule for deciding whetierand Z, are independent (hypothesif))
or dependent (hypothesid;) random variables based on a set of i.i.d. samples, zr+}}_,, where

n = M N. For any decision rule, this error probability has the representation:
Pe(n) = B(n)P(Hy) + a(n)P(Ho), (11)

whereg(n) anda(n) are the probabilities of Type Il (salf, when H; true) and Type | (sayd; when

H, true) errors, respectively, of the decision rule aR@H,) = 1 — P(H,) is the prior probability of

H;. When the decision rule is the optimal minimum probability of error test the Chernoff bound implies
that [20]:

lim l1ogPe(n) = — sup {(1 —a)Dqa(fo,1(20,21) |l fo(20) f1(2r)}. 12)

n—-oo n OéE[O,l]
Thus the mutuah-information gives the asymptotically optimal rate of exponential decay of the error

probability for testingH, vs H; as a function of the number = M N of samples. In particular, this
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(&) I, : Urban Atlanta - visible (b) I,: Urban Atlanta, IR (c) Joint gray-level pixel coinci-
dence histogram of registereld

and I

(d) I, (e) T(I2) (f) Joint gray-level pixel coinci-
dence histogram of; andT'(I»)

Fig. 4. Mutual information based registration of multisensor, visible and thermal infrared, images of Atlanta acquired via satellite
[68]. Top row (in-registration): (a) Visible light imagB (b) Thermal imagel» (c) Joint gray-level pixel coincidence histogram
fo,l(zo, z1). Bottom row (out-of-registration): (d) Visible light image, unalterBd(e) Rotationally transformed thermal image

T(I») (f) Joint gray-level pixel coincidence histogram shows wider dispergior(zo, zr).
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implies that thex-MI can be used to select optimal transformatithat maximizes the right side of (12).

The appearance of the maximization oveimplies the existence of an optimal parameteensuring

the lowest possible registration error. When the optimal valtie not equal to 1 the MI criterion will

be suboptimal in the sense of minimizing the asymptotic probability of error. For more discussion of the

issue of optimal selection af we refer the reader to [33].

C. a-Jensen Dissimilarity Measure

An alternative entropic dissimilarity measure between two distributions iathensen difference. This
function was independently proposed by Ma [32] anddil@l [29] for image registration problems. It
was also used by Michadt al in [54] for characterizing complexity of time-frequency images. For two

densitiesf andg the a-Jensen difference is defined as [4]

AHu(p, f,9) = Ho(pf +q9) — [PHa(f) + qHu(g)], (13)

wherea € (0,1) andp € [0,1] andg = 1 —p. As thea-entropyH,(f) is strictly concave inf, Jensen’s
inequality implies thatAH,(p, f,g) > 0 when f # g and AH,(p, f,g) = 0 when f = g (a.e.). Thus

the a-Jensen difference is a bone fide measure of dissimilarity betyiesard g.

The «-Jensen difference can be applied as a surrogate optimization criterion in place af the
divergence. One identifieg = fi(zy) andg = fo(20) in (13). In this case an image match occurs
when thea-Jensen difference is minimized overThis is the approach taken by [29], [32] for image

registration applications and discussed in more detail below.

D. a-Geometric-Arithmetic Mean Divergence

The a-geometric-arithmeticq-GA) mean divergence [79] is another measure of dissimilarity between

probability distributions. Given continuous distributiofisand g, the a-GA

aDaga(f,9) = Da(pf +aqgllfPg) (14)

B ai 1 log/(pf(z) +a9(2)*(f7(2)g" (2))' " dz (15)

The o-GA divergence is a measure of the discrepancy between the arithmetic mean and the geometric

mean off andg, respectively, with respect to weightsandg = 1 —p, p € [0, 1]. The «-GA divergence
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can thus be interpreted as the dissimilarity between the weighted arithmeticpfeant qg(z) and the
weighted geometric meaf?(z)g?(x). Similarly to thea-Jensen difference (13), the-GA divergence

is equal to zero if and only if = ¢g (a.e.) and is otherwise greater than zero.

E. Henze-Penrose Affinity

While divergence measures dissimilarity between distributions, similarity between distributions can be

measured by affinity measures. One measure of affinity between probability distribfiteomdg is

Aupf,0) =2 [ LD i (16)

with respect to weightp andq =1 — p,p € [0, 1]. This affinity measure was introduced by Henze and
Penrose [30] as the limit of the Friedman-Rafsky statistic [27] and we shall call it the Henze-Penrose
(HP) affinity. The HP affinity can be related to the divergence measure:
P’f*(2) + ¢*¢*(2)

pf(2) +q9(2) a7

MwMle—hﬂﬂmz/

All of the above divergence measures can be obtained as special cases of the general class of f-
divergences, e.g., as defined in [18], [4]. In this article we focus on the cases for which we know how
to implement entropic graph methods to estimate the divergence. For motivation consideeritrepy
(2) which could be estimated by plugging in feature histogram estimates of the multivariate gensity
A deterrent to this approach is the curse of dimensionality, which imposes prohibitive computational
burden when attempting to construct histograms in large feature dimensions. For a fixed resolution per
coordinate dimension the number of histogram bins increases geometrically in feature vector dimension.
For example, for 882 dimensional feature space even a codecells per dimension would require
keeping track of103? bins in the histogram, an unworkable and impractically large burden for any
envisionable digital computer. As high dimensional feature spaces can be more discriminatory this creates
a barrier to performing robust high resolution histogram-based entropic registration. We circumvent this
barrier by estimating the~entropy via an entropic graph whose vertices are the locations of the feature

vectors in feature space.
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[II. CONTINUOUS QUASI ADDITIVE EUCLIDEAN FUNCTIONALS

A principal focus of this article is the use of minimal graphs over the feature vegtoss {z1, ..., z,},
and their associated minimal edge lengths, for estimation of entropy of the underlying feature fien)sity
For consistent estimates we require convergence of minimal graph length to a entropy related quantity.
Such convergence issues have been studied for many years, beginning with Beardwood, Halton and
Hammersley [6]. The monographs of Steele [75] and Yukich [88] cover the interesting developments in
this area. In the general unified framework of Redmond and Yukich [70] a widely applicable convergence
result can be invoked for graphs whose length functionals can be shown to Euclidean, continuous and
guasi additive. This result can often be applied to minimal graphs constructed by minimizing a graph
length functionL, of the form:

=min Y Jle(Z,)|I",
E€Q

eck
where(2 is a set of graphs with specified properties, e.g., the class of acyclic or spanning graphs,

an edge inQ, |le|| is the Euclidean length of, v is called the edge exponent or the power weighting

constant, and < v < d. The determination of., requires a combinatorial optimization over the Set

If 2, = {z1,...,2,} IS @ random i.i.d. sample of d-dimensional vectors drawn from a Lebesgue
multivariate densityf and the length functional., is continuous quasi additive then the following limit
holds [70]

lim L,(Z,)/n" :ﬁdﬁ/fo‘(z)dz, (a.s.) (18)

n=00
wherea = (d—+)/d andp, , is a constant independent ¢f Comparing this to the expression (2) for the
Rényi entropy it is obvious that an entropy estimator can be constructdd-as) ' log (L (Z,)/n%) =
H,(f)+c, wherec = (1—a)~! log 4, is @ removable bias. Furthermore, it is seen that one can estimate
entropy for different values oft € [0,1] by adjustingy. In many cases the topology of the minimal
graph is independent of and only a single combinatorial optimization is required to estinigtefor

all a.

A few words are in order concerning the sufficient conditions for the limit (18). Roughly speaking,
continuous quasi additive functionals can be approximated closely by the sum of the weight functionals

of minimal graphs constructed on a uniform partition [6f1]¢. Examples of graphs with continuous
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quasi additive length functionals are the Euclidean minimal spanning tree (MST), the traveling salesman
tour solving the traveling salesman problem (TSP), the steiner tree, the Delaunay triangulation, and the
k nearest neighbor graph (kKNNG). An example of a graph that does not have a continuous quasi additive
length functional is the k-point MST (KMST) discussed in [36].

Even though any continuous quasi additive functional could in principle be used to estimate entropy
via relation (18), only those that can be simply computed will be of interest to us here. An uninteresting
example is the TSP length functionalf ¥’ (Z,) = mince. Y. [lel|”, whereC is a cyclic graph that
spans the point&,, and visits each point exactly once. Construction of the TSP is NP hard and hence is
not attractive for practical image fusion applications. The following sections describe, in detail, the MST

and kNN graph functionals.

A. Minimal Spanning Tree for Entropy Estimation

A spanning tree is a connected acyclic graph which passes throughfediture vectors inz,,. The

MST connect these points with— 1 edges, denotege; }, in such a way as to minimize the total length:
L.,(Z,) = mi i 19
+(2n) ggggllell : (19)

whereT denotes the class of acyclic graphs (trees) that sharSee Figures 5 and 6 for an illustration

when Z,, are points in the unit square. We adept= 1 for the following experiments.

The MST lengthL,, = L(Z,) is plotted as a function of in Figure 7 for the case of an i.i.d. uniform
sample (right panel) and non-uniform sample (left panelp ef 100 points in the plane. It is intuitive
that the length of the MST spanning the more concentrated non-uniform set of points increases at a slower
rate inn than does the MST spanning the uniformly distributed points. This observation has motivated
the MST as a way to test for randomness in the plane [38]. As shown in [88], the MST length is a
continuous quasi additive functional and satisfies the limit (18). More preciselya/vdl:t%f (d—+)/d the

log of the length function normalized by* converges (a.s.) within a constant factor to thentropy.

lim log (%) = H,(f)+cmusr, (@s.) (20)

n—oo

Thus we can identify the difference between the asymptotes shown on the left Figure 7 as the difference

between thex-entropies of the uniform and non-uniform densities=£ 1/2). Thus, if f is the underlying
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100 uniformly distributed points MST through 100 uniformly distributed points
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Fig. 5. A set ofn = 100 uniformly distributed points{Z;} in the unit square ifR? (left) and the corresponding Minimal
Spanning Tree (MST) (right).

100 normally distributed points MST through 100 normally distributed points
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Fig. 6. A set ofn = 100 normally distributed pointZ;} in the unit square irR? (left) and the corresponding Minimal
Spanning Tree (MST) (right).
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density of Z,,, the a-entropy estimator

~

Ha(2n) = 1/(1 = a) [log Ly(2,)/n® —1og fa,] , (21)

is an asymptotically unbiased and almost surely consistent estimator of-éméropy of f where 3, ,

is a constant which does not depend on the denfity

The constanty st = (1 — @) 'logB4,) in (20) is a bias term that can be estimated offline. The
constantfy,, ; is the limit of L,(Z,)/n® asn — oo for a uniform distributionf(z) = 1 on the unit
cubel0,1]%. This constant can be approximated by Monte Carlo simulation of mean MST length for a

large number of uniform d-dimensional random samples.

: : : : 0.65["
120F
: 0.6f

E 0.55?

gof 0.45F R e e e ]

Minimum Spanning Tree Length
Normalized MST Length
o
a1

: : : -6~ Gaussian | :

0 1 2 3 4 5 "o 1 2 3 4 5
Number of points % 10* Number of points % 10°

Fig. 7. Mean Length function&,, of MST implemented withy = 1 (left) and L,,//n (right) as a function ofx for uniform
and normal distributed points.

The MST approach to estimating theJensen difference between the feature densities of two images
can be implemented as follows. Assume two sets of feature vegipes {zéi) by and 2y = {zf)}?:ll
are extracted from imageX¥, and X; and are i.i.d. realizations from multivariate densitigsand f1,
respectively. In the applications explored in this papge n, but it is worthwhile to maintain this level
of generality. Define the set uniof = Z; U Z; containingn = ng + n, unordered feature vectors.
If ng, n1 iNncrease at constant rate as a functiomahen any consistent entropy estimator constructed

from the vectors{Z(")}?;{“”1 will converge toH,(pfo + qf1) asn — oo wherep = lim,, o, ng/n. This
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motivates the following finite sample entropic graph estimaton-densen difference
AHy(p, fo, /1) = Ho(Z0 U Z1) — [Pﬁa(zo) + qﬁa(zl)]a (22)

wherep = ngy/n, ﬁa(Zo U Z,) is the MST entropy estimator constructed on th@oint union of both

sets of feature vectors and the marginal entrople$2,), Ha(Z;) are constructed on the individual sets

of ny andn; feature vectors, respectively. We can similarly define a density-based estimataeofen
difference. Observe that for affine image registration problems the marginal ent{aﬁmeﬁ-)}fil over

the set of image transformations will be identical, obviating the need to compute estimates of the marginal

a-entropies.

As contrasted with histogram or density plug-in estimator of entropy or Jensen difference, the MST-
based estimator enjoys the following properties [33], [31], [36]: it can easily be implemented in high
dimensions; it completely bypasses the complication of choosing and fine tuning parameters such as
histogram bin size, density kernel width, complexity, and adaptation speed; as the topology of the MST
does not depend on the edge weight paramegtéihe MST a-entropy estimator can be generated for the
entire rangex € (0, 1) once the MST for any given is computed; the MST can be naturally robustified
to outliers by methods of graph pruning. On the other hand the need for combinatorial optimization
may be a bottleneck for a large number of feature samples for which accelerated MST algorithms are

necessary.

B. Nearest Neighbor Graph Entropy Estimator

The k-nearest neighbor graph is a continuous quasi additive power weighted graph is a computationally
attractive alternative to the MST. Given i.i.d vectafs in R?, the 1-nearest neighbor ef in Z, is

given by

argzegi\r{lZi} |z — 2|, (23)

where ||z — z]| is the usual Euclideali,) distance inR?. For general integek > 1, the k-nearest
neighbor of a point is defined in a similar way [8], [12], [62]. The kNN graph puts a single edge between
each point inZ, and its k-nearest neighbors. L&f, ; = N; ;(Z,) be the set of k-nearest neighbors of

z; in Z,. The KNN problem consists of finding the s&}, ; for each pointz; in the setz,, — {z}.
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Fig. 8. A set ofn = 100 uniformly distributed points{Z;} in the unit square irR? (left) and the corresponding k-Nearest

Neighbor graph’k = 4) (right).

This problem has exact solutions which run in linear-log-linear time and the total graph length is:

In general, the kNN graph will count edges at least once, but sometimes count edges more than once. If

N
Lyw(Za) =) Y llel™.

1=1 e€ENy ;

(24)

two points X; and X, are mutual k-nearest neighbors, then the same edge befifieand X, will be

doubly counted.

Analogously to the MST, the log length of the kNN graph has limit

lim log
n—00

(M) = Ho(f) + cknng,  (@.s.).
n

Once again this suggests an estimator of the Rargntropy

Ho(Z,) =1/(1 — &) [log Ly 4(Z) /n® — 1og Ba il

(25)

(26)

As in the MST estimate of entropy, the constaptyg = (1—a)~! log Ba,,k can be estimated off-line

by Monte Carlo simulation of the KNNG on random samples drawn from the unit cube. The complexity

of the KNNG algorithm is dominated by the nearest neighbor search, which can be doxe lisgn)

time for n sample points. This contrasts with the MST that requiré3(aZ logn) implementation.
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Fig. 9. A set ofn = 100 normally distributed pointdZ;} in the unit square ifR€ (left) and the corresponding k-Nearest
Neighbor graph(k = 4) (right).

A related k-NN graph is the graph where edges connecting two points are counted only once. Such
a graph eliminates one of the edges from each point pair that are mutual k-nearest neighbors. A kNN
graph can be built by pruning such that every unique edge contributes only once to the total length. The
resultant graph has the an identical appearance to the initial unpruned k-NN graph, when plotted on the
page. However, the cumulative length of the edges in the graphs differ, and so dog$ fhetior (See

Figure 11). We call this special pruned k-NN graph, the “Single-Count k-NN graph”.

IV. ENTROPIC GRAPH ESTIMATE OF HENZE-PENROSEAFFINITY

Friedman and Rafsky [27] presented a multivariate generalization of the Wald-Wolfowitz [85] runs
statistic for the two sample problem. The Wald-Wolfowitz test statistic is used to decide between the

following hypothesis based on a pair of samplesO € R¢ with densitiesf,, and f, respectively:

Hy: fz=fo (27)

Hi: fz # fos
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Fig. 10. Mean Length function,, of kNN graph implemented with = 1 (left) and L../\/n (right) as a function of. for
uniform and Gaussian distributed points.

The test statistic is applied to an i.i.d. random sanle}” ,, {O;}, from f, andf,. In the univariate

Wald Wolfowitz test § = 1), then+m scalar observationsZ;}; = {X;}:, {O;}; are ranked in ascending
order. Each observation is then replaced by a class [&bet O depending upon the sample to which it
originally belonged, resulting in a rank ordered sequence. The Wald-Wolfowitz test statistic is the total
number of runs (run-lengthlk, of X’s or O’s in the label sequence. As in run-length codify, is the

length of consecutive sequences of lengthf identical labels.

In Friedman and Rafsky’'s paper [27], the MST was used to obtain a multivariate generalization of the
Wald-Wolfowitz test. This procedure is called the Friedman-Rafsky (FR) test and is similar to the MST
for estimating the thex-Jensen difference. It is constructed as follows:

1. construct the MST on the pooled multivariate sample pdits; (J{O;}.

2. retain only those edges that connect an X labeled vertex to an O labeled vertex.

3. The FR test statistidy, is defined as the number of edges retained.

The hypothesisH; is accepted for smaller values of the FR test statistic. As shown in [30], the FR
test statisticN converges to the Henze-Penrose affinity (16) between the distribufioasd f,. The

limit can be converted to the HP divergence by replacivigby the multivariate run length statistic
RfR:n+m—1—N.
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Fig. 12. lllustration of MST for Gaussian case. Two bivariate normal distributigitg:, 1) and A (u1, X1) are used. The
X' labeled points are samples froth () = A (u1, £1), whereas the "0’ labeled points are samples fif(o) = N (2, Z2).
(left) 1 = p2 andXy = X» and (right) 1 = p2 — 3 while £; = .
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fz(O) = N(Mz, 22). (Ieft) H1 = 2 and Y =3 and (I’ight)/j,l = U2 — 3 while Y1 = Yo,

June 1, 2004

DRAFT



23

For illustration of these graph constructions we consider two bivariate normal distributions with density
functions f; and f, parametrized by their mean and covariaripe, 1), (42, 22). Graphs of thea-
Jensen divergence calculated using MST (Figure 12), KNNG (Figure 13), and the Henze-Penrose affinity
(Figure 14) are shown for the case where= u9, 31 = ¥5. The X’ labeled points are samples from
fi(z) = N(p1,%1), whereas the ‘o’ labeled points are samples frésto) = N (ug, X2). 1 is then

decreased so that; = ps — 3.

V. ENTROPIC GRAPH ESTIMATORS OFa-GA MEAN AND «a-MI

Assume for simplicity that the target and reference feature Gets {o,;}; and X = {z;}, have the
same cardinalityn = n. Here: denotes thé’” pixel location in target and reference images. An entropic
graph approximation te-GA mean divergence (15) between target and reference is:

— v/d 21 , 2 . /2
aDGA:ﬁlogZ—anin{<€Z(o)> ’(el(x)> }, (28)
i=1

ei(x) ei(o)

wheree;(0) ande;(z) are the distances from a poiat € {{o0;}?, {z;}'} € R to its nearest neighbor in

{0,}i; and{X;};, respectively. Here, as above= (d —v)/d.

Likewise, an entropic graph approximation to #eMl (7) between the target and the reference is:
1 1 n 2y
aMT = ——log— 3 _eiloxz) ) (29)
o =150 =\ elo)ei(x)
wheree; (o x ) is the distance from the point = [0;, z;] € R?? to its nearest neighbor ifiZ;}; ., and

ei(0) (e;(z)) is the distance from the poinf € R?, (z; € R?) to its nearest neighbor 0 };.2 ({X;}.4)-

The estimators (28) and (29) are derived from making a nearest neighbor approximation to the volume
of the Voronoi cells constituting the kNN density estimator after plug-in to formulas (15) and (7),
respectively. The details are given in the appendix. The theoretical convergence properties of these

estimators are at present unknown.

Natural generalizations of (28) and (29) to multipte %) images exist. The computational complexity
of the a-MI estimator (29) grows only linearly in the number of images to be registered while that of the
«-GA estimator (28) grows as linear log linear. Therefore, there is a significant complexity advantage to

implementinga-MI via (29) for simultaneous registration of a large number of images.
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VI. FEATURE-BASED MATCHING

While scalar single pixel intensity level is the most popular feature for Ml registration, it is not the
only possible feature. As pointed out by Leventon and Grimson [48], single pixel MI does not take
into account joint spatial behavior of the coincidences and this can cause poor registration, especially
in multi-modality situations. Alternative scalar valued features [11] and vector valued features [61], [73]
have been investigated for mutual information based image registration. We will focus on local basis

projection feature vectors which generalize pixel intensity levels.

Basis projection features are extracted from an image by projecting local sub-images onto a basis of
linearly independent sub-images of the same size. Such an approach is widely adopted in image matching
applications, in particular with DCT or more general 2D wavelet bases [82], [21], [74], [50], [22]. Others
have extracted a basis set adapted to image database using principal components (PCA) or independent

components analysis (ICA) [49], [41].

A. ICA Basis Projection Features

The ICA basis is especially well suited for our purposes since it aims to obtain vector features which
have statistically independent elements that can facilitate estimatiorMifand other entropic measures.
Specifically, in ICA an optimal basis is found which decomposes the indgg@ato a small number of

approximately statistically independent components (sub-imaggs)
p
X = ai;S;. (30)
j=1

We select basis elemenits; } from an over-complete linearly dependent basis using randomized selection
over the database. For imagéhe feature vector&; are defined as the coefficieris;; } in (30) obtained

by projecting the image onto the basis.

In Figure 15 we illustrate the ICA basis selected for the MRI image database. ICA was implemented
using Hyvarinen and Oja’s [41FastiICA  code (available from [40]) which uses a fixed-point algorithm
to perform maximum likelihood estimation of the basis elements in the ICA data model (30). Figure 15
shows a set of 646 x 16 basis vectors which were estimated from over 100,000< 16 training

sub-images randomly selected from 5 consecutive image slices each from two MRI volumes scan of the
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brain, one of the scans was T1 weighted whereas the other is T2 weighted. Given this ICA basis and
a pair of to-be-registered’ x N images, coefficient vectors are extracted by projecting déch 16
neighborhood in the images onto the basis set. For the 64 dimensional ICA basis shown in Figure 15

this yields a set of/ N vectors in a 64 dimensional vector space which will be used to define features.

Fig. 15. 16 x 16 ICA basis set obtained from training on randomly selectédx 16 blocks in 10 T1 and T2 time weighted
MRI images. Features extracted from an image are the 64-dimensional vectors obtained by prdjécting sub-images of

the image on the ICA basis.

B. Multiresolution Wavelet basis features

Coarse-to-fine hierarchical wavelet basis functions describe a linear synthesis model for the image.
The coarser basis functions have larger support than the finer basis; together they incorporate global and
local spatial frequency information in the image. The multiresolution properties of the wavelet basis offer
an alternative to the ICA basis, which is restricted to a single window size. Wavelet basis are commonly

used for image registration [87], [78], [43] and we briefly review them here.

A multiresolution analysis of the space of Lebesgue measurable functid(iR), is a set of closed,
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nested subspacé$, j € Z. A wavelet expansion uses translations and dilations of one fixed function, the
waveletyy € L?(R). ¢ is a wavelet if the collection of functiong)(xz —1)|l € Z} is a Riesz basis of)
and its orthogonal compleme#lty. the The continuous wavelet transform of a functipx) € £?(R)

is given by:

1 Tz —>b
—
Vlal "

Wf(a‘7 b) =< fa 7/’a,b >3 /l/)a,b = )7 (31)

wherea,b € R, a # 0.

For discrete wavelets, the dilation and translation paraméieasda, are restricted to a discrete set,

a=27,b=k wherej andk are integers. The dyadic discrete wavelet transform is then given as:

WF(, k) =< f,bjx > bjx =292 7z — k) (32)

wherej, k € Z. Thus the wavelet coefficient of at scalej and translatiort is the inner product of

f with the appropriate basis vector at scdland translationk. The 2D discrete wavelet analysis is
obtained by a tensor product of two multiresolution analysi®fR). At each scalej, we have one

scaling function subspace and three wavelet subspaces. The discrete wavelet transform of an image is
the projection of the image onto the scaling functignsubspaces and the wavelet subspd€gsThe
corresponding coefficients are called the approximate and detail coefficients, implying the low and high
pass characteristics of the basis filters. The process of projecting the image onto the successively coarser
spaces continues to achieve the approximation desired. The difference information sensitive to vertical,
horizontal and diagonal edges are treated as the three dimensions of each feature vector. Several members

of the discrete Meyer basis used in this work are plotted below in Figure (16)

VIl. COMPUTATIONAL CONSIDERATIONS

A popular sentiment about graph methods, such as the MST and the kNN graph, is that they could
be computationally taxing. However, since the early days, graph theory algorithms have evolved and
several variants with low time-memory complexity have been found. Henze-Penrose anGhenean
divergence metrics are based directly on the MST and KNNG and first require the solution of these
combinatorial optimization problems. This section is devoted to providing insight into the formulation of

these algorithms and the assumptions that lead to faster, lower complexity variants of these algorithms.
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(a) Basis 1 (b) Basis 2

(c) Basis 3 (d) Basis 4

Fig. 16. 2D Discrete Meyer Wavelet basis from coarse (a) to fine (d).

A. Reducing time-memory complexity of the MST

The MST problem has been studied since the early part of this century. Due to its widespread
applicability in other computer science, optimization theory and pattern recognition related problems
there have been and continue to be sporadic improvements in the time-memory complexity of the MST
problem. Two principal algorithms exist for computing the MST, the Prim algorithm [67] and the Kruskal

algorithm [45]. For sparse graphs the Kruskal algorithm is the fastest general purpose MST computation
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algorithm. Kruskal’s algorithm maintains a list of edges sorted by their weights and grows the tree
one edge at a time. Cycles are avoided within the tree by discarding edges that connect two sub-trees
already joined through a prior established path. The time complexity of the Kruskal algorithm is of order
O(Flog E) and the the memory requirement(¥ E'), where E is the initial number of edges in the

graph. Recent algorithms have been proposed that offer advantages over these older algorithms at the

expense of increased complexity. A review can be found in [5]

An initial approach may be to construct the MST by including all the possible edges within the feature
set. This results inV? edges forN points; a time requirement aP(N?) and a memory requirement
of O(N%log N). The number of points in the graph is the total numberdafimensional features
participating in the registration from the two images. If each imageMas N features (for eg. pixels),
the total number of points in the graphds< M x N ~ 150,000 for images of size 256 256 pixels.
The time and memory requirements of the MST is beyond the capabilities of even the fastest available

desktop processors.

The earliest solution can be attributed to Bentley and Friedman [10]. Using a method to quickly
find nearest neighbors in high dimensions they proposed building a minimum spanning tree using the
assumption that local neighbors are more likely to be included in the MST than distant neighbors.
Several improvements have been made on this technique, and have been proposed in [14] and [56].
For our experiments we have been motivated by the adapted the original Bentley method, as explained
below. This method achieves significant acceleration by sparsification of the initial graph before tree

construction.

We have implemented a method for sparsification that allows MST to be constructed for several hundred
thousand points in a few minutes of desktop computing time. This implementation uses a disc windowing
method for constructing the edge list. Specifically, we center disc’s at each point under consideration
and pick only those neighbors whose distance from the point is less than the radius of the disc (See
Figure 17 for illustration). A list intersection approach similar to [62] is adopted to prune unnecessary
edges within the disc. Through a combination of list intersection and disc radius criterion we reduce the
number of edges that must be sorted and simultaneously ensure that the MST thus built is valid. We

have empirically found that for uniform distributions, a constant disc radius is best. For non uniform
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distributions, the disc radius is better selected as the distance tdétimearest neighbor (kNN). Figure
18 shows the bias of modified MST algorithm as a function of the radius parameter and the number of

nearest neighbors for a uniform density on the plane.

Selection of nearest neighbors for MST using disc Linearization of Kruskals MST Algorithm for N ? edges
1 - - 200
* % —¥— Standard Kruskal Algorithm O(N 2
-©- Intermediate: Disc imposed, no rank ordering
: : : D% —A— Modified algorithm: Disc imposed, rank ordered
: ; . X%, 8150} |
: : 5 )
: : : . * * s
£
- ©100f
) : i i , £
Qo
d - § 50}
0.2 : 5 7
* :
0 M 0 T v e
0 1 0 50000 100000

Number of points, N

Fig. 17. Disc-based acceleration of Kruskal's MST algorithm frefriog n to nlog n (left) and comparison of computation

time for Kruskal's standard MST algorithm with respect to our accelerated algorithm (right).

It is straightforward to prove that, if the radius is suitably specified, our MST construction yields a
valid minimum spanning tree. Recall that the Kruskal algorithm ensures construction of the exact MST
[45]. Consider a poinp; in the graph.

(1) If point p; is included in the tree, then the path of its connection to the tree has the lowest weight
amongst all possible non-cyclic connections. To prove this is trivial. The disc criterion includes lower
weight edge before considering an edge with a higher weight. Hence, if a path is found by imposing the
disc, that path is the smallest possible non-cyclic path. The non-cyclicity of the path is ensured in the
Kruskal algorithm through a standard Union-Find data set.

(2) If a point p; is not in the tree, it is because all the edges betwgesnd its neighbors considered
using the disc criterion of edge inclusion have total edge weight greater than disc radius or have led
to a cyclic path. Expanding the disc radius would then provide the path which is lowest in weight and

non-cyclic.
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Fig. 18. Bias of thexlogn MST algorithm as a function of radius parameter (left) and as a function of the number of nearest

neighbors (right) for uniform points in the unit square.

B. Reducing time-memory complexity of the KNN Graph

Time memory considerations in the nearest neighbor graph have prompted researchers to come up
with various exact and approximate graph algorithms. With its wide-spread usage, it is not surprising
that several fast methods exist for nearest neighbor graph constructions. Most of them are expandable to
construct k-NN graphs. One of the first fast algorithms for constructing NNG was proposed by Bentley
[9], [8]. A comprehensive survey of the latest methods for nearest neighbor searches in vector spaces
is presented in [12]. A simple and intuitive method for nearest neighbor search in high dimensions is

presented in [62].

Though compelling, the methods presented above focus on retrieving the exact nearest neighbors. One
could hypothesize that for applications where the accuracy of the nearest neighbors is not critical, we
could achieve significant speed-up by accepting a small bias in the nearest neighbors retrieved. This is
the principal argument presented in [1]. We conducted our own experiments on the approximate NN
method using the code provided in [55] (Figure 19). We conducted benchmarks on uniformly points
distributed in 8 dimensional space. If the error incurred in picking the incofrdiot nearest neighbor

< ¢, the cumulative error in the length of the KNNG is plotted in Figure 19. Compared to an exact kNN
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search using k-d trees a significant reduction86%) in time can be obtained, through approximate NN

methods, incurring a 15% cumulative graph length error.
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Fig. 19. Approximate k-NNG: (left) Decrease in computation time to build approximate KNNG for differeapressed
as a percentage of time spent computing the exact KNNG over a uniformly distributed pojotd]fh An 85% reduction in
computation time can be obtained by incurring a 15% error in cumulative graph length. (right) Corresponding error incurred in

cumulative graph length.

VIIl. A PPLICATIONS. MULTISENSOR SATELLITE IMAGE FUSION

In this section, we shall illustrate entropic graph based image registration for a remote sensing example.
Images of sites on the earth are gathered by a variety of geostationary satellites. Numerous sensors gather
information in distinct frequency bands in the electromagnetic spectrum. These images help predict
daily weather patterns, environmental parameters influencing crop cycles such as soil composition, water
and mineral levels deeper in the Earth’'s crust, and may also serve as surveillance sensors meant to
monitor activity over hostile regions. A satellite may carry more than one sensor and may acquire images
throughout a period of time. Changing weather conditions may interfere with the signal. Images captured
in a multisensor satellite imaging environment show linear deformations due to the position of the sensors
relative to the object. This transformation is often linear in nature and may manifest itself as relative

translational, rotational or scaling between images. This provides a good setting to observe different
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divergence measures as a function of the relative deformation between images. We simulated linear

rotational deformation in order to reliably test the image registration algorithms presented above.

Figure 20 shows two images of downtown Atlanta, captured with visible and thermal sensors, as a
part of the ‘Urban Heat Island’ project [68] that studies the creation of high heat spots in metropolitan
areas across the USA. Pairs of visible light and thermal satellite images were also obtained from NASA's
Visible Earth website [57]. The variability in imagery arises due to the different specialized satellites
used for imaging. These include weather satellites wherein the imagery shows heavy occlusion due to
clouds and other atmospheric disturbances. Other satellites focus on urban areas with roads, bridges and
high rise buildings. Still other images show entire countries or continents, oceans and large geographic
landmarks such as volcanoes and active geologic features. Lastly, images contain different landscapes

such as deserts, mountains and valleys with dense foliage.

Fig. 20. Images of downtown Atlanta obtained from Urban Heat Island project [68]. (a) Thermal image (b) Visible-light image

under artificial rotational transformation
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A. Deformation and feature definition

Images are rotated throu@h to 32°, with a step size adjusted to allow a finer sampling of the objective
function near0°. The images are projected onto a Meyer wavelet basis, and the coefficients are used
as features for registration. A feature sample from an imhAge the database is represented as tuple
consisting of the coefficient vector, and a two dimensional vector identifying the spatial coordinates of

the origin of the image region it represents. For exampi®; ;), z(; ;), y¢i,;)} represents the a tuple from

1,j)°
" N : _ ¢ Low—Low , Low—High High—Low _ High—High
position {i,j} in the image. NowW(; ; = {w(i,j) Wi 9 ,w(m.g) ,w(m% 9"1, where

the super-script identifies the frequency band in the wavelet spectrum. Features from both the images
{Z,, Z,} are pooled together to form a joint sample pddl |J Z,}. The MST and k-NN graph are

individually constructed on this sample pool.

Figure 21 shows the rotational mean-squared registration error for the images in our database, in the
presence of additive noise. Best performance under the presence of noise can be seen through the use of
the a-MI estimated using wavelet features and KNN graph. Comparable performances are seen through
the use of Henze-Penrose anGeometric-Arithmetic mean divergences, both estimated using wavelet
features. Interestingly, the single pixel Shannon Ml has the poorest performance which may be attributed
to its use of poorly discriminating scalar intensity features. Notice thattt®\, Henze-Penrose affinity,
and a-MI(Wavelet-kNN estimate), all implemented with wavelet features, have significantly lower MSE

compared to the other methods.

Further insight into the performance of these wavelet-based divergence measures may be gained by
considering the mean objective function over 750 independent trials. Figure 22.a showdilhedP
affinity and thea-GA affinity and Fig. 22.b shows the-Jensen difference divergence calculated using the
kNN graph and the MST. The sensitivity and robustness of the dissimilarity measures can be evaluated

by observing the divergence function near zero rotational deformation (Figure 22).

IX. APPLICATIONS. LOCAL FEATURE MATCHING

The ability to discriminate differences between images with sensitivity to local differences is pivotal
to any image matching algorithm. Previous work in these techniques has been limited to simple pixel

based mutual information (MI) and pixel correlation techniques. In [65], local measures of MI outperform

June 1, 2004 DRAFT



34

-5 U-Jensen divergence (kNM graph)
5| =¥ C-Jensen divergence (MST) T T
==~ U-Jensen KNM (Single Count KNKN)
== 0L GA mean affinity -
+ Henze-Penrose affinity

== & Ml (Wavelet-kMM estimate)

= (L Ml [pixelkMM estimate)

= Shannon M| (Pixel-histogram estimate)

.
in

.

-
in

RMS error (registration error), degrees
- [
[ %5] Pl L]
] L] L]
i

=k
L]

=
in
L]

Standard Deviation () of added noise

Fig. 21. Rotational root mean squared error obtained from rotational registration of multisensor satellite imagery using six
different image similarity/dissimilarity criteria. Standard error bars are as indicated. These plots were obtained from Monte Carlo

trials consisting of adding i.i.d. Gaussian distributed noise to the images prior to registration.

global Ml in the context of adaptive grid refinement for automatic control point placement. However,
the sensitivity of local MI deteriorates rapidly as the size of the image window decreases4felod)

pixels in 2D.

The main constraints on these algorithms, when localizing differences, are (1) limited feature resolution
of single pixel intensity based features, and (2) histogram estima{afsY’) of joint probability density

f(X,Y) are noisy when computed with a small number of pixel features and are thus poor estimators of
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Fig. 22. Average affinity and divergence, over all images, in the vicinity of zero rotation error: ¢ldgnsen (kNN) and

a-Jensen (MST), (righti«-GA mean affinity, HP affinity andv-MI estimated using wavelet features and kNN graph.

f(X,Y) used by the algorithm to derive joint entrog¥(X,Y"). Reliable identification of subtle local
differences within images, is key to improving registration sensitivity and accuracy [59]. Stable unbiased
estimates of local entropy are required to identify sites of local mismatch between images. These estimates

play a vital role in successfully implementing local transformations.

A. Deformation localization

Iterative registration algorithms apply transformations to a sequence of images while minimizing
some objective function. We demonstrate the sensitivity of our technique by tracking deformations that
correspond to small perturbations of the image. These perturbations are recorded by the change in the

mismatch metric.

Global deformations reflect a change in imaging geometry and are modeled as global transformations on

the images. However, global similarity metrics are ineffective in capturing local deformations in medical
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images that occur due to physiological or pathological changes in the specimen. Typical examples are:
change in brain tumor size, appearance of micro-calcifications in breast, non-linear displacement of
soft tissue due to disease and modality induced inhomogeneities such as in MRI and nonlinear breast
compression in XRay mammograms. Most registration algorithms will not be reliable when the size of
the mismatch site is insufficiently small, typicallyn x n) < 40 x 40 [65]. With a combination of ICA

and a-entropy we match sites having as few8&s 8 pixels. Due to the limited number samples in the
feature space, the faster convergence properties of the MST are better suited to this problem. Although
we do not estimate other divergence measutedgnsen calculated using the MST provides a benchmark

for their performance.

In Figure 23, multimodal synthesized scan of T1 and T2 weighted brain MRI each ditgize 256
pixels [16] are seen. The original target images shall be deformed locally (see below) to generate a

deformed target image.

1) Locally deforming original image using B-SplineB:spline deformations are cubic mapping func-

tions that have local control and injective properties [13]. The 2D uniform tensor B-spline furiction
is defined with a4 x 4 control latticeg in R? as:

3 3

F(u,0) =) > Bi(u)Bj(v)¢ij, (33)

i=0 j=0
where0 < u,v < 1, ¢;; is the spatial coordinates of the lattice aiyl are the standard B-Spline
basis functions. The uniform B-Spline basis functions used here are quite common in computer graphics

literature and may be found in [13] are defined as:

By(u) = %a

Biw = M0 (34
Bo(u) = —3u3+31§+3u+1’

Bs(u) = %3

Given that the original images ha286 x 256 pixels, we impose a grid() of 10 x 10 control points on
I,,-. Since the aim is to deform,, locally, not globally, we select a sub-grig)(of 4 x 4 control points

in the center ofl;,,.. We then diagonally displace, ly= 10 mm, only one of the control points if, to
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generate deformed grid,.s. I;4r iS then reconstructed according ¢Q.;. The induced deformation is
measured aoq.r — ¢||. Figure 23 shows the resultant warped image and difference imgge,T" (14, ).
For smaller deformationsp is a finer grid of20 x 20 points, from which¢ is picked. A control point in
¢ is then displaced diagonally b= 1,2,...10 to generatep,.;. When/ < 3, noticeable deformation

spans only8 x 8 pixels.

mxn

2) Feature discrimination algorithmWe generate @-dimensional feature s€tZ;}" 1", m x n > d

MxN

by sequentially projecting sub-image block (windoy); iz1 of sizem x n onto ad-dimensional

basis function se{S;} extracted from the MRI image, as discussed in Section VI-A. Raster scanning
throughl,.; we select sub-image blocl{ﬂef}f‘g]v. For this simulation exercise, we pick only the sub-
image blockl™*" from T(I;,-) corresponding to the particular pixel locatién= (128,128). T'{%; g

corresponds to the area i, where the B-Spline deformation has been applied.

The size of the ICA basis featuresls 8, i.e. the feature dimension i¢,= 64. The MST is constructed
over the joint feature se{tZi’"ef, Z%*r}. When suitably normalized witf/n®, a = 0.5, the length of the
MST becomes an estimate (Ha(Z{ef,Z;“’"). We score all the sub-image block&"*/ }MxN with
respect to the sub-image blo€KSj ;.. Let Oy be the resultand/ x N matrix of scores, at deformation
£. The objective function surfac@, is a similarity map betweel{ll“’"ef}f‘ifN andI'**", When two sites
are compared, the resulting joint probability distribution depends on the degree of mismatch. The best
match is detected by searching for the regiod,iry that corresponds t6"*" as determined by the MST
length. As opposed to the one-to-all block matching approach adopted here, one could also perform a

block-by-block matching, where each bloﬁgef is compared with its corresponding bloEk*".

B. Local Feature matching Results

Figure 23 shows)yy for m x n = 8 x 8, 16 x 16 and 32 x 32. Similar maps can be generated for
¢ =11,0y,...¢L, The gradienV (0) = O,, — Oy, reflects the change iff,,, the objective function, when
I, experiences an incremental change in deformation, ffom ¢; — /5. This gradient, at various
sub-image block size is seen in Figure 23, whére= 0 and/, = 10. For demonstration purposes in
Figure 23, we imposed a large deformation/tg.. Smaller deformations generated using a control grid

spanning only40 x 40 pixels are used to generate Figure 24. It shows the ratio of the gradient of the

June 1, 2004 DRAFT



38

objective function:

ey o [V (0(@)]
L N g(0G)|

(MxN—mxn)

over the deformation site v/s background in the presence of additive Gaussian noise.

R= (35)

Figure 25 shows the similarity map, when constructed using a histogram estimate of joint entropy
calculated over sub-image sizex n (8). At lower sub-image sizes, the estimate displays bias and several

local minima even under noise free conditions. It is thus unsuitable for detection of local deformation of

Itar-

The framework presented here could be extended to (1) enhance registration performance by sensitizing
it to local mismatch, (2) automatically track features of interest, such as tumors in brain or micro-
calcifications in breast across temporal image sequences, (3) reliably match or register small images or
image regions so as to improve disease diagnosis by locating and identifying small pathological changes

in medical image volumes and (4) automate control point placement to initiate registration.

X. CONCLUSION

In this paper we presented several techniques to extend the multisensor image fusion problem to high
dimensional feature spacesem®/i's a-entropy is estimated directly in high dimensions through the use
of entropic graph methods. These include the use of Euclidean functionals suchcadehsen, the HP
divergence and GA mean divergence. Graph theory methods such as the MST and the kNN graph are
central to our approach due to their quasi additive properties in estimating Euclidean functionals. These
methods provide a robust and viable alternative to traditional pixel intensity histograms used for estimating
MI. Higher dimensional features used for this work are the Wavelet basis and ICA, where features are 64
dimensional. Our methods are validated through a demonstration of registration of multisensor satellite

and medical imagery.
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Reference Image, Brain MRI T1-weighted Warped Target Image, Brain MRI T2-weighted
Effect of B-Spline warping on target image

@) Ires (b) T(Itar) (c) Difference Image (Itar —
T(Itar))

(d) O10 = Ho(X,Y): 32 x 32 (e) O10 = Ho(X,Y): 16 x 16 (f) O10 = Ho(X,Y): 8 x 8 win-
window window dow
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Fig. 23. B-Spline deformation on MRI images of the brain. (a) Reference image, (b) Warped target (c) True Deformation, (d)
O10 = H,, as seen with 82 x 32 window, (e)16 x 16 window and (f)8 x 8 window. (g) V(O) = V(Hy) = O10 — O as
seen with @32 x 32, (h) 16 x 16 and (i) 8 x 8 window.
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Fig. 24. Ratio ofV(H,) = VO calculated over deformation site v/s background image for smaller deformation spanning

mXxmn>8Xx8.

XI. APPENDIX

Here we give a derivation of the entropic graph estimatora-@8A (28) anda-MI (29) estimators.
The derivation is based on the heuristic equivalences (44) and (45) and the convergence properties are,

at present, unknown.

First consider estimatingDaa(f,g9) = (o — 1) 'log Iga(f,g), whereIg4(f,g) is the integral in
(15), by aDga = (o — 1)~ !log I;a where:

B N T I
Iga=—— ; ( 2 . (36)

Here h(z) is an estimate of the common pgff(z) + gg(z) of the i.i.d. pooled unordered sample
{Zyrr = (o™, {, Xi}» .}, p = m/(m +mn),qg =1-p, and f, g are estimates of the common
densitiesf, ¢ of the i.i.d. sampledO;}™, and{X;}?_,, respectively. We assume that the support set of
f, g, his contained in a bounded regishof R? and thatm = pn for some fixedo > 0 (p = p/(1 +p)).

If £, g, h are consistent, i.e., they converge (a.s.has oo to f, g, h then by the strong law of large
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Fig. 25. Performance of Shannon MI, computed using pixel intensity histograms, on deformed MRI imadisx (82

window, (b)16 x 16 window and (c)8 x 8 window.

numbersi;4 converges (a.s) to

s - 5[ (Z0)
= A(%)lah(z)dm (38)

Taking the log of expression (38) and dividing by— 1, we obtainaDgA(f,g) in (15) so tha@

is asymptotically unbiased and its variance goes to zero.

Next divide the sample$Zi}?j” into two disjoint sets of sample&;,;, and test sample&;qs:,
where we have preserved the relative number m /n of labels in each of these sets. Using the training

sample construct the Voronoi partition density estimators

(L)

"2 = N ()

o al(2)

SYINE) )
N(Ha:(z))

wherellz(z), p(z), I1x(z) are the cells of the Voronoi partition &f € R? containing the point € R?

and constructed from training sampl&s.q.in = {Owrain, Xtrain}» Otrain @Nd Xirqin respectively using
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K-means or other algorithm. Hegeand A are the (normalized) counting measure and Lebesgue measure
respectively, i.eu(II) is the number of points in the sél divided by the total number of points and
A(IT) is the volume of the sdil. Let {K,, K,, K, } be the number of cells in the partitiof$l,, IT,, I1, }
respectively and let,..;, be the number of training samples. The Voronoi partition density estimators

are asymptotically consistent &sn,qi, — 0o andk/nyqin — 0, for k € {K,, K,, K, } [63].

Therefore, under these conditions and definifig= Zest(1),

Miest NN 11—«
oDas= ——log | —— > (f(()g)()> , (40)

- Ntest i—1

is an asymptotically consistent estimator.

We next consider a similar plug-in estimator @MI. Assume that the concatenated pair of feature
vectorsZ; = [0;, X;] € R?? are collectedj = 1,...,n. The plug-in estimaton M1 = (a—1) logI/\M]
is constructed, where
-ty (fo(oz)fm(m) o 1)
=\ for(0i,75)
and f,, is an estimate of the joint density &;, X;] € R?, f, and f, are estimates of the marginal
densities of0; and X;, respectively. Again, iff,, f, and f,, are consistent then it is easily shown that

Tvt converges to the integral in the expression (7) del:

[oof (B0 ™ it @

whereS is a bounded set containing the support of densjtieand f,.. Similarly, separating[O;, X;]}7-,
into training and test samples, we obtain an asymptotically consistent estimator:

Niost ~ ~ -«
a/]\J\I: 1 log 1 (fo(oz)f( )) ) (43)

a—1 Ntest ) fox (0~ C, )

The entropic graplaMI estimator (29) is obtained by specializing to the casg;, = 0, Ngest = n

in which caseu(Ilp(z)) = pu(Ilx(z)) = u(lloxx(z)) = 1/n, and using the Voronoi cell volume
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approximations
MLy (z)) = ()
Ay (%)) = el(o)
Mdoxx(z)) = €20 x x) (44)

where < denotes “proportional to.” The quantitf(o x ) is the distance of the closest point X =
[0;, X;] € R? in the cartesian product spafex X ande; (o), e;(z) are the componentwise NN distances

mln]# ||Oz — O]H andmmﬁgl ||Xz — XJH

The entropic grapl:GA divergence estimator (28) can be similarly obtained. Again specializing to the
Casenyrain = 0, Nyest = n+m we haveu(Tlz(z)) = (m+n) L, u(Mlp(z)) = 1/m andu(Tlx (2)) = 1/n.

Making the following Voronoi cell volume approximations
My (z) = ef(a)
Ay (z)) = ef(o)
Az (z)) = ef(2) = min{ef (o), ¢f (z)} (45)

wheree;(0), e;(x) denote the distances of the poifit € R? to the nearest “O” and “X” labeled points,

respectively, in the pooled sampfeZ; };+; Substitution of these relations into (40) gives

Tt ({8 ()Y e

wherec = ((m + n)/(mPn9)): = = ((1 + p)/p?)”’? which reduces to the expression (28) upon special-

izing to the casen =n (p = 1).
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