Divergence matching criteria for registration, indexing and retrieval

Alfred O. Hero

Dept. EECS, Dept Biomed. Eng., Dept. Statistics University of Michigan - Ann Arbor hero@eecs.umich.edu http://www.eecs.umich.edu/~hero

Collaborators: Olivier Michel, Bing Ma, John Gorman

Outline

- 1. Statistical framework: entropy measures, error exponents
- 2. Registration, indexing and retrieval
- 3. α -entropy and α -MI estimation
- 4. Graph theoretic entropy estimation methods

(a) Image I_1

(b) Image I_0 (c) Registration result

Figure 1: A multidate image registration example

Statistical Framework

- X: an image
- Z = Z(X): an image feature vector
- Θ: a parameter space
- $f(z|\theta)$: feature density (likelihood)
- X_R a reference image
- $\{X^{(i)}\}$ a database of *K* images

$$Z^R = Z(X^R) ~\sim f(z|\theta_R)$$

$$Z^i = Z(X^i) \quad \sim \quad f(z|\theta_i), \quad i = 1, \dots, K$$

 \Rightarrow Similarity btwn X^i , X^R lies in similarity btwn models

Divergence Measures

Refs: [Csiszár:67,Basseville:SP89]

Define densities

$$f_i = f(z|\theta_i), \quad f_R = f(z|\theta_R)$$

The Rényi α -divergence of fractional order $\alpha \in [0, 1]$ [Rényi:61,70]

$$D_{\alpha}(f_i \parallel f_R) = D(\theta_i \parallel \theta_R) = \frac{1}{\alpha - 1} \ln \int f_R \left(\frac{f_i}{f_R}\right)^{\alpha} dx$$
$$= \frac{1}{\alpha - 1} \ln \int f_i^{\alpha} f_R^{1 - \alpha} dx$$

Rényi α-Divergence: Special cases

• α -Divergence vs. Batthacharyya-Hellinger distance

$$D_{\frac{1}{2}}(f_i \parallel f_R) = \ln\left(\int \sqrt{f_i f_R} dx\right)^2$$

$$D_{BH}^2(f_i \parallel f_R) = \int \left(\sqrt{f_i} - \sqrt{f_R}\right)^2 dx = 2\left(1 - \int \sqrt{f_i f_R} dx\right)$$

• α -Divergence vs. Kullback-Liebler divergence

$$\lim_{\alpha \to 1} D_{\alpha}(f_i, f_R) = \int f_R \ln \frac{f_R}{f_i} dx.$$

Rényi α-divergence and Error Exponents

Observe i.i.d. sample $\underline{W} = [W_1, \ldots, W_n]$

$$H_0$$
 : $W_j \sim f(w|\theta_0)$
 H_1 : $W_j \sim f(w|\theta_1)$

Bayes probability of error

$$P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0)$$

LDP gives Chernoff bound [Dembo&Zeitouni:98]

$$\liminf_{n\to\infty}\frac{1}{n}\log P_e(n)=-\sup_{\alpha\in[0,1]}\left\{(1-\alpha)D_\alpha(\theta_1\|\theta_0)\right\}.$$

Indexing via α -divergence

Refs: Vasconcelos&Lippman:DCC98, Stoica&etal:ICASSP98, Do&Vetterli:ICIP00

$$H_0 : Z_i^R \sim f(z|\theta_0)$$

$$H_1 : Z_i^R \sim f(z|\theta_1)$$

Clairvoyant indexing rule:

$$X^{(i)} \prec X^{(j)} \Leftrightarrow D_{\alpha}(f_i || f_R) < D_{\alpha}(f_j || f_R)$$

Indexing problem: find θ_i attaining $\min_{\theta_i \neq \Theta_R} D_{\alpha}(\theta_i || \theta_R)$

- 1. Image classification: f_i index model classes [Stoica&etal:INRIA98]
- 2. Target detection: f_R is noise reference and f_i are target references. Declare detection if $\min_{\theta_i \neq \Theta_R} D_{\alpha}(\theta_i || \theta_R) > \text{threshold}$

Registration via α -Mutual-Information

Ref: Viola&Wells:ICCV95

- 1. Reference X^R and target X^T .
- 2. Set of rigid transformations $\{T^i\}$
- 3. Derived feature vectors

$$Z^{R} = Z(X^{R}), \qquad Z^{i} = Z(\mathbf{T}^{i}(X^{T}))$$

 H_0 : $\{Z_j^R, Z_j^i\}$ independent H_1 : $\{Z_j^R, Z_j^i\}$ dependent

Error exponent is α-MI (Pluim&etal:SPIE01, Neemuchwala&etal:ICIP01)

$$\mathrm{MI}_{\alpha}(Z^{R},Z^{i}) = \frac{1}{\alpha-1} \ln \int f^{\alpha}(Z^{R},Z^{i}) (f(Z^{R})f(Z^{i}))^{1-\alpha} dZ^{R} dZ^{i}.$$

Figure 2: Three ultrasound breast scans. From top to bottom are: case 151, case 142 and case 162.

tration

Figure 5: Resolution of α -Divergence as function of alpha

Figure 6: Part of feature tree data structure.

Figure 7: Leaves of feature tree data structure.

variance white Gaussian while bar is uniform intensity.

Figure 10: Upper curves are single pixel based MI trajectories while lower curves are 4×4 tag based MI trajectories for bar images.

US Registration Comparisons

	151	142	162	151/8	151/16	151/32
pixel	0.6/0.9	0.6/0.3	0.6/0.3			
tag	0.5/3.6	0.5/3.8	0.4/1.4			
spatial-tag	0.99/14.6	0.99/8.4	0.6/8.3			
ICA				0.7/4.1	0.7/3.9	0.99/7.7

Table 1: Numerator =optimal values of α and Denominator = maximum resolution of mutual α -information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8, 151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis elements run on case 151.

Methods of Divergence Estimation

- Z = Z(X): a statistic (MI, reduced rank feature, etc)
- { Z_i }: *n* i.i.d. realizations from $f(Z; \theta)$

Objective: Estimate $\hat{D}_{\alpha}(f_i || f_R)$ from Z_i 's

- 1. Parametric density estimation methods
- 2. Non-parametric density estimation methods
- 3. Non-parametric minimal-graph estimation methods

Non-parametric estimation methods

Given i.i.d. sample
$$X = \{X_1, \ldots, X_n\}$$

Density "plug-in" estimator

$$H_{\alpha}(\hat{f}_n) = \frac{1}{1-\alpha} \ln \int_{\mathbf{R}^d} \hat{f}^{\alpha}(x) dx$$

Previous work limited to Shannon entropy $H(f) = -\int f(x) \ln f(x) dx$

- Histogram plug-in [Gyorfi&VanDerMeulen:CSDA87]
- Kernel density plug-in [Ahmad&Lin:IT76]
- Sample-spacing plug-in [Hall:JMS86] (d = 1)
 - Performance degrades as density f becomes non smooth
 - Unclear how to robustify \hat{f} against outliers
 - *d*-dimensional integration might be difficult
 - \Rightarrow function { $f(x) : x \in \mathbb{R}^d$ } over-parameterizes entropy functional

Direct α -entropy estimation

• MST estimator of α -entropy [Hero&Michel:IT99]:

$$\hat{H}_{\alpha} = \frac{1}{1-\alpha} \ln L_{\gamma}(X_n) / n^{-\alpha}$$

- Direct entropy estimator: faster convergence for nonsmooth densities
- Parameter α is varied by varying interpoint distance measure
- Optimally pruned k-MST graphs robustify \hat{f} against outliers
- Greedy multi-scale MST approximations reduce combinatorial complexity

Minimal Graphs: Minimal Spanning Tree (MST)

Let $M_n = M(X_n)$ denote the possible sets of edges in the class of acyclic graphs spanning X_n (spanning trees).

The Euclidean Power Weighted MST achieves

$$L_{\text{MST}}(X_n) = \min_{M_n} \sum_{e \in M_n} ||e||^{\gamma}.$$

Figure 11: A sample data set and the MST

Minimal Graphs: Pruned MST

Fix $k, 1 \le k \le n$. Let $M_{n,k} = M(x_{i_1}, \dots, x_{i_k})$ be a minimal graph connecting k distinct vertices x_{i_1}, \dots, x_{i_k} . The k-MST $T_{n,k}^* = T^*(x_{i_1^*}, \dots, x_{i_k^*})$ is minimum of all k-point MST's $L_{n,k}^* = L^*(X_{n,k}) = \min \min \sum ||e||^{\gamma}$

$$L_{n,k}^{*} = L^{*}(X_{n,k}) = \min_{i_{1},...,i_{k}} \min_{M_{n,k}} \sum_{e \in M_{n,k}} ||e||^{2}$$

Figure 12: *k-MST for 2D torus density with and without the addition of uniform "outliers"*.

Figure 13: 2D Triangular vs. Uniform sample study for MST.

Figure 14: *MST and log MST weights as function of number of samples for 2D uniform vs. triangular study.*

Figure 15: Continuous quasi-additive euclidean functional satisfies "self-similarity" property on any scale.

Asymptotics: the BHH Theorem and entropy estimation

Theorem 1

Beardwood&etal:Camb59,Steele:95,Redmond&Yukich:SPA96 Let L

be a continuous quasi-additive Euclidean functional with power-exponent γ , and let $X_n = \{X_1, \ldots, X_n\}$ be an i.i.d. sample drawn from a distribution on $[0,1]^d$ with an absolutely continuous component having (Lebesgue) density f(x). Then

$$\lim_{n \to \infty} L_{\gamma}(X_n) / n^{(d-\gamma)/d} = \beta_{L_{\gamma},d} \int f(x)^{(d-\gamma)/d} dx, \qquad (a.s.)$$

Or, letting $\alpha = (d - \gamma)/d$

$$\lim_{n\to\infty} L_{\gamma}(X_n)/n^{\alpha} = \beta_{L_{\gamma},d} \exp\left((1-\alpha)H_{\alpha}(f)\right), \qquad (a.s.)$$

Extension to Pruned Graphs

Fix $\alpha \in [0, 1]$ and let $k = \lfloor \alpha n \rfloor$. Then as $n \to \infty$ (Hero&Michel:IT99)

$$L(X_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\nu} \to \beta_{L_{\gamma},d} \min_{A:P(A) \ge \alpha} \int f^{\nu}(x|x \in A) dx \qquad (a.s.)$$

or, alternatively, with

$$H_{\nu}(f|x \in A) = \frac{1}{1-\nu} \ln \int f^{\nu}(x|x \in A) dx$$

$$L(X_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\nu} \to \beta_{L,\gamma} \exp\left((1-\nu)\min_{A:P(A) \ge \alpha} H_{\nu}(f|x \in A)\right) \qquad (a.s.)$$

Asymptotics: Plug-in estimation of $H_{\alpha}(f)$

Class of Hölder continuous functions over $[0, 1]^d$

$$\Sigma_d(\kappa, c) = \left\{ f(x) : |f(x) - p_x^{\lfloor \kappa \rfloor}(z)| \le c \, \|x - z\|^{\kappa} \right\}$$

Class of functions of Bounded Variation (BV) over $[0,1]^d$

$$\mathbf{BV}_{d}(c) = \left\{ f(x) : \sup_{\{x_i\}} \sum_{i} |f(x_i) - f(x_{i-1})| \le c \right\}$$

Proposition 1 (Hero&Ma:IT01) Assume that $f^{\alpha} \in \Sigma_d(\kappa, c)$. Then, if \hat{f}^{α} is a minimax estimator

$$\sup_{f^{\alpha} \in \Sigma_{d}(\kappa,c)} E^{1/p} \left[\left| \int \widehat{f}^{\alpha}(x) dx - \int f^{\alpha}(x) dx \right|^{p} \right] = O\left(n^{-\kappa/(2\kappa+d)} \right)$$

Asymptotics: Minimal-graph estimation of $H_{\alpha}(f)$

Proposition 2 (Hero&Ma:IT01) Let $d \ge 2$ and

 $\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$. Assume that $f^{\alpha} \in \Sigma_d(\kappa, c)$ where $\kappa \ge 1$ and $c < \infty$. Then for any continuous quasi-additive Euclidean functional L_{γ}

$$\sup_{f^{\alpha}\in\Sigma_{d}(\kappa,c)}E^{1/p}\left[\left|\frac{L_{\gamma}(X_{1},\ldots,X_{n})}{n^{\alpha}}-\beta_{L_{\gamma},d}\int f^{\alpha}(x)dx\right|^{p}\right]\leq O\left(n^{-1/(d+1)}\right)$$

Conclude: minimal-graph estimator converges faster for

$$\kappa < \frac{d}{d-1}$$

As $\Sigma_d(1,c) \subset BV_d(c)$, we have

Corollary 1 (Hero&Ma:IT01) Let $d \ge 2$ and $\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$. Assume that f^{α} is of bounded variation over $[0, 1]^d$. Then

$$\sup_{f^{\alpha} \in \mathrm{BV}_{d}(c)} E^{1/p} \left[\left| \int \widehat{f}^{\alpha}(x) dx - \beta_{L_{\gamma},d} \int f^{\alpha}(x) dx \right|^{p} \right] \geq O\left(n^{-1/(d+2)}\right)$$
$$\sup_{f^{\alpha} \in \mathrm{BV}_{d}(c)} E^{1/p} \left[\left| \frac{L_{\gamma}(X_{1},\ldots,X_{n})}{n^{\alpha}} - \beta_{L_{\gamma},d} \int f^{\alpha}(x) dx \right|^{p} \right] \leq O\left(n^{-1/(d+1)}\right)$$

Observations

- Minimal graph rates valid for MST, *k*-NN graph, TSP, Steiner Tree, etc
- Analogous rate bound holds for progressive-resolution algorithm

$$L^G_{\gamma}(X_n) = \sum_{i=1}^{m^d} L_{\gamma}(X_n \cap Q_i)$$

 $\{Q_i\}$ is uniform partition of $[0,1]^d$ into cell volumes $1/m^d$

• Optimal sequence of cell volumes is:

$$m^{-d} = n^{-1/(d+1)}$$

• These results also apply to greedy multi-resolution *k*-MST

Application: Image Registration

Two independent data samples from unknown distributions

- $X = [X_1, \ldots, X_m] \sim f(x)$
- $Y = [Y_1, \ldots, Y_n] \sim g(x)$

Suppose: $g(x) = f(Ax+b), A^TA = I$

Objective: find rigid transformation A, b

- Two methods:
- 1. α -MI of $\{(X_i, Y_i)\}_{i=1}^n$
- 2. α -Entropy of $\{X_i\}_{i=1}^m + \{Y_i\}_{i=1}^n$

 $O(n^{-1/(2d+1)})$ algorithm for α -MI estimation

$$\mathrm{MI}_{\alpha}(X,Y) = \frac{1}{\alpha - 1} \ln \int f_{X,Y}^{\alpha}(x,y) (f_X(x)f_Y(y))^{1 - \alpha} dx dy.$$

Algorithm:

- 1. Kernel estimates \hat{f}_X, \hat{f}_Y ($O(n^{-1/(d+2)})$)
- 2. Uniformizing probability transformations: $ilde{X} = F_X(X), \ ilde{Y} = F_Y(Y)$
- 3. Graph entropy estimate of $\mathrm{MI}_{lpha}(X,Y)$ ($O(n^{-1/(2d+1)})$)

$$\frac{L_{\gamma}(\{(\tilde{X}_{1},\tilde{Y}_{1}),\ldots,(\tilde{X}_{n},\tilde{Y}_{n})\})}{n^{\alpha}} \rightarrow \beta_{L_{\gamma},d} \int f_{\tilde{X},\tilde{Y}}^{\alpha}(x,y)dxdy$$

$$= \beta_{L_{\gamma},d} \int f_{X,Y}^{\alpha}(x,y)(f_{X}(x)f_{Y}(y))^{1-\alpha}dxdy \quad (w.p)^{\alpha}$$

 $O(n^{-1/(d+1)})$ criterion: α -Jensen difference

• Jensen's difference btwn f_0, f_1 :

 $\Delta J_{\alpha} = H_{\alpha}(\varepsilon f_1 + (1 - \varepsilon)f_0) - \varepsilon H_{\alpha}(f_1) - (1 - \varepsilon)H_{\alpha}(f_0) \ge 0$

- f_0, f_1 are two densities, ε satisfies $0 \le \varepsilon \le 1$
- Let X, Y be i.i.d. features extracted from two images

$$X = \{X_1, \ldots, X_m\}, \quad Y = \{Y_1, \ldots, Y_n\}$$

• Each realization in *unordered* sample $Z = \{X, Y\}$ has marginal

$$f_Z(z) = \varepsilon f_X(z) + (1 - \varepsilon) f_Y(z), \quad \varepsilon = \frac{m}{n+m}$$

• α -Jensen difference for rigid transformation T

$$\Delta J_{\alpha}(\mathbf{T}) = H_{\alpha}(\varepsilon f_X + (1 - \varepsilon)f_Y) - \underbrace{\varepsilon H_{\alpha}(f_X) - (1 - \varepsilon)H_{\alpha}(f_Y)}_{constant}$$

Figure 17: Reference and target SAR/DEM images

Figure 18: MST demonstration for misaligned images

Figure 19: MST demonstration for aligned images

Conclusions

- 1. α -divergence for indexing can be justified via decision theory
- 2. Non-parametric estimation of Jensen's difference is low complexity alternative to α -divergence estimation
- 3. Non-parametric estimation of Jensen's difference is possible without density estimation
- 4. Minimal-graph estimation outperforms plug-in estimation for non-smooth densities

Divergence vs. Jensen: Asymptotic Comparison

For $\varepsilon \in [0, 1]$ and *g* a p.d.f. define

$$f_{\varepsilon} = \varepsilon f_1 + (1 - \varepsilon) f_0, \quad E_g[Z] = \int Z(x)g(x)dx, \quad \tilde{f}_{\frac{1}{2}}^{\alpha} = \frac{f_{\frac{1}{2}}^{\alpha}}{\int f_{\frac{1}{2}}^{\alpha}dx}$$

Then

$$\Delta J_{\alpha} = \frac{\alpha \varepsilon (1 - \varepsilon)}{2} \left[E_{\tilde{f}_{\frac{1}{2}}^{\alpha}} \left(\left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right]^2 \right) + \frac{\alpha}{1 - \alpha} E_{\tilde{f}_{\frac{1}{2}}^{\alpha}} \left(\left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right] \right)^2 \right] + O(\Delta)$$
$$D_{\alpha}(f_1 || f_0) = \frac{\alpha}{4} \int f_{\frac{1}{2}} \left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right]^2 dx + O(\Delta)$$