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ABSTRACT

We consider the image reconstruction problem when the original image is assumed to be sparse and when partial
knowledge of the point spread function (PSF) is available. In particular, we are interested in recovering the
magnetization density given magnetic resonance force microscopy (MRFM) data, and we present an iterative
alternating minimization algorithm (AM) to solve this problem. A smoothing penalty is introduced on allowable
PSFs to improve the reconstruction. Simulations demonstrate its performance in reconstructing both the image
and unknown point spread function. In addition, we develop an optimization transfer approach to solving a
total variation (TV) blind deconvolution algorithm presented in a paper by Chan and Wong. We compare the
performance of the AM algorithm to the blind TV algorithm as well as to a TV based majorization-minimization
algorithm developed by Figueiredo et al.

Keywords: Image restoration, Blind deconvolution, Magnetic resonance force microscopy, Sparseness regular-
ization, Optimization transfer, Total variation

1. INTRODUCTION

Image restoration is an integral component of many image processing applications; the goal is to recover the
original image from a degraded observation. The topic of image deconvolution has been studied in detail.1

Ideally, the point spread function (PSF) is known a priori and linear image restoration algorithms attempt to
invert it. However, in most systems, the PSF is unknown, or we may have partial information about it. In
such cases, we try to estimate both the true PSF and the original image in a process referred to as blind image
reconstruction. Common techniques for reconstructing images include Maximum-Likelihood (ML) approaches
and the classical method of Least-Squares (LS), when the statistical properties of the noise are at hand. In both
cases, we are lead to ill-posed problems and must ensure that appropriate regularizing measures are taken.

This paper caters toward the application of Magnetic Resonance Force Microscopy (MRFM), which is a rela-
tively new imaging technology, capable of attometer (1 millionth of a nanometer) spatial resolution, and possibly
atomic-scale resolution in the future. MRFM has the potential to observe protein structures otherwise unob-
servable via other existing technologies, including X-ray crystallography and protein nuclear magnetic resonance
spectroscopy (also known as protein NMR).

Our consideration of sparse images in the problem statement lends itself well to molecular imaging appli-
cations, where most of the image space is empty, and only a few spatial locations are occupied by atoms. By
modeling sparsity, we hope to gain improvements in the reconstruction performance of our algorithm. We will
also assume that partial knowledge of the PSF of the MRFM system is available. From the physical nature of
the MRFM experiment, it is sensible to restrict our focus of attention to a space of PSFs which have certain
smooth characteristics to be defined more precisely later.

We consider a parametric model of the PSF,2, 3 h(θ), which includes parameters such as the externally applied
magnetic field, Bext, under appropriate setup conditions (See Table 1). We then linearize about a nominal PSF,
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i.e. h(θ) = h(θ0) + h′(θ)(θ − θ0) for a given choice of parameters, and are thus able to recast the norm of the
error as a non-isotropic quadratic criterion. We have developed an alternating minimization algorithm in a paper
submitted to ICASSP that addresses these issues.4

Table 1. MRFM Parameters used to illustrate the MRFM psf

Description Name Value

Amplitude of external magnetic field Bext 2 × 104 G
Value of Bmag in the resonant slice Bres 2.25 × 104 G
Radius of tip when modeled as a sphere R0 2 nm
Distance from tip to sample d 2 nm
Cantilever tip moment m 5.70 × 104 emu
Peak cantilever swing xpk 0.033 nm
Maximum magnetic field gradient Gmax 610 G/nm

Satisfactory image reconstruction results have been obtained by Chan and Wong5 by using a Total Variation
(TV) based method in an alternating minimization blind deconvolution algorithm. The authors make minimal
assumptions on the PSF, and state their motivation for using TV is due to the fact that PSFs can have edges.
We have developed an algorithm based on Chan and Wong’s algorithm using optimization transfer techniques,
and we compare its performance against the AM algorithm.

1.1 A brief overview of MRFM

MRFM was proposed as a means to detect images at the single-spin level, with the hope of one day achieving
atomic scale resolution capabilities. The technology of MRFM combines scanning probe microscopy with mag-
netic resonance imaging (MRI), giving it the ability to visualize subsurface structures in three dimensions with
very high resolution.6

The basic apparatus of the MRFM experiment consists of a magnetic tip at the end of a vertically oriented
ultrasensitive silicon cantilever. Sample spins couple resonantly with an applied rf field if only if they are located
within a resonant slice. The resonant slice is created by the magnetic tip of the force microscope cantilever.
Magnetic resonance is detected by the magnetic force exerted between the magnetic spin and the sample. As
the cantilever scans over the surface of the sample recording the MRFM signal, the distribution of spins of the
sample can be reconstructed. In a landmark experiment in 2004, IBM researchers were able to detect a single
electron spin using the ‘interrupted OSCAR’ or iOSCAR protocol.7

Techniques from signal processing will prove to be vital in the realization of MRFM as a viable molecular
imaging technology. We hope that the image reconstruction formulations put forth in this paper will aid in this
effort.

2. PROBLEM STATEMENT

The problem we will be considering is a linear observation model of the form

y = Hx + n, (1)

where H ∈ R
m×n is the observation or blurring matrix, x ∈ R

n denotes the original image, and n ∈ R
m

represents the noise. In this paper, we consider the case where the noise is a sample of zero-mean Gaussian noise
with covariance σ2I, where I is the identity matrix. When H describes a convolution, it will possess a block
Toeplitz structure, and if we assume that we are zero-padding the image appropriately, the matrix H will be
circulant, and hence diagonalizable by the discrete Fourier transform (DFT) matrix. We will assume this nice
structural property on H, which will allow for simplified derivations later on.

For a detailed presentation of our sparse alternating minimization algorithm (AM), one should consult our
earlier work.4 For completeness, however, we will present the basic formulation of the algorithm. We start by



recalling that the maximum likelihood (ML) estimator of the image x, when n is a zero-mean white Gaussian
noise vector, is the minimizer of the cost function

J(x) = ‖Hx− y‖2. (2)

Note that we are using ‖ · ‖ to denote the standard l2 norm ‖ · ‖2, where ‖x‖2 ,
∑n

i=1 x2
i . Other norms such as

the l1 norm, defined as ‖x‖1 ,
∑n

i=1 |xi|, will be written explicitly using a subscript. Because we assume partial
knowledge of the MRFM PSF, we will express H as

H = H0 + ǫ∆, (3)

where H0 may be thought of as our nominal PSF, or the part of H that we know, while the unknown portion of
H is contained in the ǫ∆ term. Additionally, we assume that

‖∆‖W , ‖W∆‖ ≤ ǫ, (4)

where W is a non-identity smoothing matrix. The l2 norm of a matrix C will be defined as ‖C‖ , maxs 6=0
‖Cs‖
‖s‖ .

Equation (4) is where we impose the constraint that the true PSF is in some sense a “smooth” extension of the
nominal PSF, which is reasonably justified by the physical setup of the MRFM experiment. We will later make
use of this constraint in our objective function which AM solves.

We can now express the cost function in (2) as

J(x) = ‖(H0 + ǫ∆)x− y‖2. (5)

In order to remove the dependence of ∆, we study the minimax criterion. In other words, we seek the x which
minimizes Equation (5) for the worst case scenario on ∆. Thus, our new cost function becomes

J(x) = max
∆

‖(H0 + ǫ∆)x− y‖2 s.t. ‖∆‖W ≤ ǫ. (6)

A few notational comments should be mentioned. By the commutative property of convolution, and because
we view the linear operator H acting on x to be the convolution operator, we have that Hx = Xh, where X is
assumed to be circulant and thus diagonalizable by the DFT matrix, which we will denote as F. We will write

X = F diag(FHx)FH , (7)

where FH denotes the conjugate transpose of F. Similarly,

H = F diag(FHh)FH

∆ = F diag(FHδ)FH .

It should be noted that this treatment yields computational savings, as matrix multiplication is represented by
convolutions and may be efficiently implemented via the FFT.

2.1 The sparsity and smoothness constraints

A critical notion in this paper is that of sparsity. Recall that the sparseness of an image x is the number of
nonzero elements of x. More precisely, the sparsity may be defined in terms of the l0 norm as

‖x‖0 ,

n∑

i=1

I(xi 6= 0), (8)

where I(·) is the indicator function. As mentioned in the introduction, the AM algorithm is tailored to the
situation where one expects sparse images; i.e. the images MRFM acquires are inherently sparse by nature. We
might therefore be interested in solving the following minimization problem for a given H̃ function

min
x

‖H̃x − y‖2 s.t. ‖x‖0 ≤ p. (9)



This problem is highly combinatorial, with a total of
∑p

i=0

(
n
i

)
possible solutions, and in fact, it can be shown to

be NP-hard.8, 9 By convexifying the sparsity constraint, we can employ a well-known method for solving problems
of this type known as convex relaxation. This amounts to replacing the l0 constraint with an l1 constraint, and
under certain conditions on H̃, identical solutions may be obtained. Using the method of Lagrange multipliers,
we arrive at the minimization problem

x̂ = arg min
x

‖H̃x − y‖2 + λ‖x‖1. (10)

We consider approaching the solution of (10) by utilizing optimization transfer techniques described in an earlier
paper.10 If we denote our optimality criterion by F (x), the idea is to find a non-negative function Q(x,x′), i.e.,
Q(x,x′) ≥ 0, and such that Q(x,x′) = 0 if and only if x = x′. Then the iterations

x̂(n+1) = argmin
x

F (x) + Q(x, x̂(n)), (11)

are such that F (x̂(n)) is a non-increasing function of n. Let

F (x) = ‖H̃x − y‖2 + λ‖x‖1, (12)

as in (10). We introduce a surrogate function for the l1 norm in the spirit of work by Figueiredo and Nowak.11

Observe that for all x, x′ in R, where x′ 6= 0,

|x| ≤ x2

2|x′| +
|x′|
2

. (13)

Thus, for all x′ whose components are nonzero,

F (x) ≤ ‖H̃x − y‖2 +
λ

2

(
xT diag(

1

|x′| )x + ‖x′‖1

)
. (14)

Additional care must be taken when one or more of the components of x′ is zero. Therefore, we set

x̂(n+1) = arg min
x

‖H̃x − y‖2 +
λ

2

(
xT diag(

1

|x̂(n)| )x
)
. (15)

By differentiating with respect to x, it can be shown that

x̂(n+1) =

(

H̃T H̃ + λ · diag(
1

|x̂(n)| )
)−1

H̃Ty. (16)

Assuming the inverse above exists, we compute it via a series of Landweber iterations. As the sparsity increases,
the computation time of the iterates in Equation (16) decreases rapidly.

As mentioned before, the other constraint we are enforcing is through a smoothness penalty on allowable
PSFs. Combining the smoothness and sparsity constraints and appealing to the notational conventions set out
in Section 2 leads to the regularized cost function4

J(x; δ) = ‖X(h0 + ǫδ) − y‖2 s.t. ‖x‖1 ≤ p̃ and ‖Wδ‖2 ≤ ǫ. (17)

2.2 AM algorithm

We propose an alternating algorithm (AM) to solve the regularized cost function (17). It proceeds as follows4

AM algorithm

1. Initialize x(0) to a suitable first estimate (e.g. via thresholding), y(0) = y, and H(0) = H0.



2. Update x(n) by solving
x(n+1) = argmin

x
‖H(n)x − y(n)‖2 s.t. ‖x‖1 ≤ p.

3. Update H(n) and y(n) by solving

arg max
H

‖y − Hx(n)‖2 s.t. ‖W∆‖2 ≤ ǫ.

This leads to the updates

H(n+1) =
(

I + ǫ2X(n)
(
γWTW − ǫ2X(n)T

X(n)
)−1

X(n)T
)

H0,

y(n+1) =
(

I + ǫ2X(n)
(
γWTW − ǫ2X(n)T

X(n)
)−1

X(n)T
)

y.

4. When the stopping criterion is met, output the estimated image x(n) and the estimated PSF H(n).

2.3 Reconstructing the PSF

An alternative approach is to set the smoothing penalty γ sufficiently high in AM. After the completion of the
algorithm, with the reconstructed image x̂ fixed, we solve the minimization problem as before to recover H.

argmin
δ

‖X̂h − y‖2 + γ̃‖Wδ‖2, (18)

where γ̃ is the smoothing penalty we enforce. It should be emphasized that while we reconstruct H this way, we
do not substitute the reconstructed H back into the algorithm.

3. A TOTAL VARIATION APPROACH

We formulate the blind deconvolution problem using total variation as in the paper by Chan and Wong,5 as

min
x,h

f(x,h) =
1

2
min
x,h

‖h ∗ x− y‖2 + λ1

∫

Ω

|∇x| + λ2

∫

Ω

|∇h|, (19)

where x is the image, h is the PSF, y is the noisy and blurred image, and λ1 and λ2 are the regularization
parameters which measure the trade off between a good fit and the regularity of the solutions x and h. Chan
and Wong implement a fixed point (FP) algorithm to solve (19). The authors first linearize the nonlinear PDEs
arising from the first order optimality conditions by lagging the diffusive coefficients 1

|∇hn+1| and 1
|∇xn+1| by one

iteration and then applying FP methods to solve linear problems for hn+1 and xn+1 in an alternating algorithm.
Unfortunately, we were not able to implement the same version of the algorithm in Chan and Wong’s paper.
Therefore, we decided to try a different approach and solve (19) by using optimization transfer techniques similar
to the ones we have developed in our original problem formulation and to those in a paper by Figueiredo et al .12

One advantage this technique yields is a monotonically decreasing objective function, which cannot be guaranteed
by Chan and Wong’s method.

Letting v :=
[

∂x

∂x
∂x

∂y

]T

, we have

∫∫

|∇x| dxdy =

∫∫ √
vT v dxdy,

and
√

vT v =
√

(v′ + ∆v)T (v′ + ∆v) (20)

=
√

v′T v′ + 2(∆v)T v′ + ∆vT ∆v (21)

≤
√

v′T v′ +
1

2
· 2(∆v)T v′ + ∆vT ∆v√

v′T v′
(22)

=
vT v′

‖v′‖2
+

1

2
· (v − v′)T (v − v′)

‖v′‖2
(23)

=
1

2

[
vT v

‖v′‖2
+

v′T v′

‖v′‖2

]

=
1

2

[
vT v

‖v′‖2
+ ‖v′‖2

]

, (24)



where ∆v := v − v′. Thus,
∫∫

|∇x| dxdy ≤ 1

2

∫∫ (
vT v

‖v′‖2
+ ‖v′‖2

)

dxdy.

Similarly, if we let r :=
[

∂h

∂x
∂h

∂y

]T

, then

∫∫

|∇h| dxdy ≤ 1

2

∫∫ (
rT r

‖r′‖2
+ ‖r′‖2

)

dxdy.

So,

f(x,h) ≤ 1

2
‖h ∗ x − y‖2 +

λ1

2

∫∫ (
vT v

‖v′‖2
+ ‖v′‖2

)

dxdy +
λ2

2

∫∫ (
rT r

‖r′‖2
+ ‖r′‖2

)

dxdy.

We therefore want to find x̂, and ĥ such that

x̂, ĥ = argmin
x,h

‖h ∗ x− y‖2 + λ1

∫∫
x2

x + x2
y

√

x′2
x + x′2

y

dxdy + λ2

∫∫
h2

x + h2
y

√

h′2
x + h′2

y

dxdy.

Discretizing the above discussion, and using a first order difference approximation of the derivative, (where we
denote Dxx as the derivative of the image with respect to x). For ease of notation, if we let

wx
ij :=

1
√

[Dxx′]2ij + [Dyx′]2ij

,

then we can write

f(x,h) ≤ ‖Hx− y‖2 + (x − x′)T (shI − HTH)(x − x′)

+ λ1

∑

i

∑

j

wx
ij

(
[Dxx]2ij + [Dyx]2ij

)

+ λ2

∑

i

∑

j

wh
ij

(
[Dxh]2ij + [Dyh]2ij

)
, (25)

where sh > λmax(H), and Hx is the matrix-vector representation for the convolution h ∗ x. Observing that we
can express

∑

i

∑

j

wx
ij

(
[Dxx]2ij + [Dyx]2ij

)
= xTA(x)x,

where A(x) is defined as

A(x) :=
[
(M − I)T ⊗ I

]
diag(W(x)) [(M − I) ⊗ I] +

[
I ⊗ (M − I)T

]
diag(W(x)) [I ⊗ (M − I)] ,

where the elements of diag(W(x)) are the wx
ij defined earlier (we can define A(h) and W(h) analogously), M is

the matrix with ones on its superdiagonal and zeros everywhere else, and ⊗ is the Kronecker product. We then
arrive at

f(x,h) ≤ ‖Hx− y‖2 + (x − x′)T (shI − HTH)(x − x′) + λ1x
T A(x)x + λ2h

TA(h)h.

If ρx > λmax(A(x)), then
(x − x′)T (ρxI − A(x))(x − x′) ∀ (x − x′) 6= 0.

From now on, we will simply write A(x) or A(h) as A, where it will be clear from the context which A we mean.
Thus,

xT Ax < ρh‖x − x′‖2 + 2x′TAx − x′T Ax′

︸ ︷︷ ︸

:=G(x,x′)

.



So we have

f(x,h) < ‖Hx− y‖2 + (x − x′)T (shI− HTH)(x − x′) + λ1G(x,x′) + λ2G(h,h′). (26)

If we denote R(x,h,x′,h′) as the right-hand-side of (26), and treat h, x′ and h′ as constants, differentiating
with respect to x yields

∂

∂x
R =

∂

∂x

[
‖Hx− y‖2 + sh‖x − x′‖2 − (xT HTHx− 2xT HTHx′ + x′T HTHx′)

]
+ λ1

∂

∂x
G(x,x′) (27)

= 2HT (Hx− y) + 2sh(x − x′) − 2HTHx + 2HTHx′ + λ1
∂

∂x
G(x,x′). (28)

But
∂

∂x
G(x,x′) = 2ρx(x − x′) + 2Ax′.

Thus Equation (28) becomes

∂

∂x
R = 2(sh + λ1ρx)(x − x′) + 2(λ1A + HTH)x′ − 2HTy. (29)

Setting Equation (29) to zero and solving for x gives us our update term.

x = x′ − 1

sh + λ1ρx

(λ1A + HTH)x′ +
1

sh + λ1ρx

HTy (30)

= x′ +
1

sh + λ1ρx

HT (y − Hx′)

︸ ︷︷ ︸

“Landweber term”

− λ1

sh + λ1ρx

Ax′

︸ ︷︷ ︸

“TV term”

. (31)

Because this is an alternating minimization algorithm, we would repeat the above analysis in the same way for
h, arriving at the update for h as

h = h′ +
1

sx + λ1ρh

XT (y − Xh′) − λ1

sx + λ1ρh

Ah′,

where sx > λmax(X) and ρh > λmax(A(h)).

4. SIMULATIONS

In this section, we make performance comparisons between the AM algorithm, the TV algorithm derived in
Section 3, and the TV majorization-minimization (MM) approach by Figuerido et al .12 The images we used for
comparison include a real-world image, which we took to be the classical cameraman image, a sparse image in
the shape of a benzylbenzene molecule, and the Shepp-Logan phantom, which has smooth piecewise constant
regions. In our simulations, we ran the AM and TV algorithms on each of the three noisy and blurred images,
with σ = 0.2. In the blind TV algorithm, we initialized the estimate of the image using a Wiener filter as in the
TV-MM algorithm.

Because we have motivated this paper based on MRFM, when we run the algorithms on the benzylbenzene
image, we assumed the PSF, which we denote by HMRFM, to be an idealized two-dimensional realization of an
MRFM PSF. HMRFM and HMRFM

0 are depicted in Figure 3. We also considered the cylindrical out-of-focus blur
shown in Figure 3(c), along with a Gaussian approximation of it in Figure 3(d), which we denote as HTV and
HTV

0 , respectively. Because the out-of-focus blur function is piecewise constant with discontinuities, it is well
suited for the TV based algorithms.

In a simulation where we reconstructed the benzylbenzene molecule, we initialized each algorithm with
the partially known PSF, HMRFM

0 . We chose λ1 = 0.01 using the same method as the TV-MM algorithm
implementation. For now, we empirically set λ2 = 0.1. The parameters we used in the AM algorithm were also
empirically chosen, with γ = 1000, and λ = 0.02. We ran the TV-MM algorithm for 50 iterations, the blind TV



algorithm for 5000 iterations, and the AM algorithm for 1000 iterations. The reconstruction results are shown in
Figure 4. It is clear from these figures that AM performs a much better job. This is not surprising because the
AM algorithm is specifically designed for this scenario by modeling sparsity in the image domain. We also depict
each algorithm’s estimate of the true PSF. In the generation of Figure 4(e), we imposed a smoothing penalty
of γ̃ = 0.5 after the completion of AM algorithm, using the ideas in Section 2.3. The AM algorithm is able to
reconstruct a more accurate PSF than the blind TV algorithm. We stress that TV-MM is not a blind algorithm,
and thus it does not recover a PSF.

For the reconstruction of the cameraman image, we downsampled the original image by a factor of four to
a size of 64 × 64 pixels in order to speed up computations. We also used total knowledge of the PSF, HTV,
for this experiment. For the blind TV algorithm, we again set λ1 = 0.27 based on the final value of λ in the
TV-MM algorithm. We also fixed the PSF to be the true PSF in the blind TV algorithm to try to match the
performance of TV-MM. We allowed the TV algorithm to run for 10, 000 iterations, while TV-MM ran for 50
iterations. It should be noted, however, that each iteration of the TV-MM algorithm may contain up to 200
congugate gradient sub-iterations. We see from Figure 5, that both TV based algorithms perform similarly.
TV-MM appears to have smoother regions than our TV algorithm, but some of the details in the background
look sharper in Figure 5(b). The results shown for the AM algorithm are for 500 iterations. As expected, it
performs poorly for this image.

Similarly, in reconstructing the Shepp-Logan phantom image with total knowledge of the PSF, HTV, both
TV algorithms performed almost identically, with the blind TV algorithm running for 10, 000 iterations, and
TV-MM running for 50 iterations. We chose λ1 = 0.22 based on the final value of λ in the TV-MM algorithm.
Reconstruction results are shown in Figure 6. The results for the TV algorithms are impressive, which makes
sense since they are designed to deal with piecewise constant functions with discontinuities. Again, the AM
algorithm ran for 500 iterations, and did not do well in recovering the image.

In another experiment, we tested our hypothesis that the blind TV algorithm should perform better for blind
deconvolution problem versus the TV-MM algorithm. We used the Shepp-Logan phantom image, with HTV

0 in
Figure 3(d), running the TV-MM algorithm for 50 iterations, and running the blind TV algorithm for 100, 000
iterations. We chose λ1 = 0.22, as before, and empirically set λ2 = 0.4. We tested on a 64 × 64 image to speed
up computations. Reconstruction results are shown in Figure 7. Visually, the results appear to be quite similar.
On closer inspection, however, it appears the blind TV algorithm is able to clean up some ringing effects that
appear around the reconstruction in 7(a), as well as creating smoother regions. The reconstruction results for
the blind deconvolution are still rather dissatisfying, but we expect that further improvements can be made
after exploring certain computational issues in the implementation of the algorithm. One explanation for the
suboptimal reconstruction in Figure 7(c) is due to the fact that the piecewise constant image makes it difficult
to estimate the PSF.
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(a) Benzylbenzene molecule (33×33).
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Figure 1. The three original images used.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper compares the performance of the AM algorithm, which models sparsity, versus a total variation
alternating minimization algorithm. We demonstrated that better reconstruction results may be obtained with
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Figure 2. The noisy and blurred images.
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Figure 3. The true PSFs used and their approximations.

the AM algorithm when the image is sparse, and when we use an appropriate partially known point spread
function. For real world images, and in particular, for piecewise constant images, the TV based algorithms
perform better than AM, as expected.

We observed that the blind TV deconvolution algorithm requires a large number of iterations in order to
enjoy convergence, and when running on larger sized images, convergence rates become overwhelmingly slow. For
example, for a 128× 128 image, the current implementation’s utility becomes impractical. Further investigation
into ways of speeding up the algorithm need to be explored. Also, we need to study efficient ways to select the
regularization parameter values for λ1 and λ2 for a given image and initial PSF. Once these issues are resolved,
it would be nice to extend these algorithms to handle three-dimensional images.

One possibility to explore would be to combine these optimization-transfer-based algorithms into a third
algorithm by coupling the surrogate functions together. The disadvantage of such an approach, however, would
be the added difficulty of a more complex parametrization for the regularization terms. Some other issues that
still need to be explored include a more detailed analysis of each algorithm’s convergence properties, as well as
how to select the parameters in the AM algorithm to obtain the most satisfactory results.
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(b) TV reconstruction.
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Figure 4. TV and AM reconstructions.
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Figure 5. TV and AM reconstructions (with H
TV).
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(a) TV-MM reconstruction.
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(b) TV reconstruction.
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Figure 6. TV, TV-MM, and AM reconstructions (with H
TV).
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