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Abstract

In emission tomographic modalities such as SPECT or
PET various regions of the detector space yield different
amounts of information about the emission source. This pa-
per develops a framework for exploring the tradeoffs be-
tween binning the detector space to reduce memory storage
(complexity) and the associated loss in performance for im-
age reconstruction tasks and detection tasks. We use high
rate vector quantization theory to establish just how much
relevant information can be preserved after compression of
the emission measurement data. We illustrate our results for
one dimensional deconvolution and two dimensional lesion
detection in PET.

1. Introduction

While the framework in this paper is more generally
applicable, the goal of this work is to quantify the funda-
mental tradeoff between performance and memory storage
for emission tomography scanners whose measurement do-
main, e.g., photon count positions on detectors, are binned
to a finite number of cells. Our motivation is to explore
measurement-space quantization strategies for accelerating
image reconstruction when the standard uniform detector
binning method, i.e. scalar quantization, is impractical. For
example, the Compton Scatter Single Photon Emission To-
mography (C-SPECT) scanner being developed at the Uni-
versity of Michigan has an 8-dimensional measurement
space generated by a pair of position, time and energy sen-
sitive detectors [8, 9]. For such high dimensional measure-
ment space, fine uniform quantization over each measure-
ment axis becomes impractical since the number of bins,
i.e. quantization cells, increases exponentially in the num-
ber of dimensions [2]. To perform image reconstruction
one must compute the transition probabilitiesp(y|x) for an
emission at positionx in the image-domain to be detected
with attributey, consisting of position, energy and other at-
tributes of the detected photons. In traditionally binned to-
mographic reconstruction, this enumeration ofp(y|x) over

N discrete image pixels andM detection bins results in an
M×N system matrix of discretized transition probabilities.

For PET or mechanically collimated SPECT systems,
the storage of the system matrix is feasible since the matrix
sparsity is high (above 95% in most cases). However, for
imaging modalities with non-sparse system matrices (such
as C-SPECT), this is a major problem. For a “typical”
2-dimensional C-SPECT problem involvingO(106) detec-
tions andO(1002) reconstructed image pixels, the storage
requirement for the system matrix can easily be in the range
of dozens of gigabytes and in the terabyte range for the in-
tended fully 3-dimensional implementation. An alternative
which circumvents this curse of dimensionality is to per-
form list-mode processing, where the transition probabil-
ity and associated likelihood function contribution are com-
puted individually for each photon count detected in the
continuous (unquantized) detector space [2,12]. While this
avoids the exponential complexity increase encountered by
uniform binning strategies, list-mode reconstruction suffers
from a linear complexity increase as a function of the num-
ber of counts, which is a major drawback for the new gen-
eration of highly sensitive scanners that will acquire many
millions of counts over the scan time interval.

In this paper we formulate the detector binning problem
in terms of rate constrained vector quantization (VQ). Here
the rate of the encoder corresponds to the number of de-
tector bins, i.e., the number of rows of the system matrix,
and the vectors correspond to the vector of attributes (po-
sitions, energy, etc.) of the measured counts. Using a high
rate analysis of VQ distortion, we derive asymptotic expres-
sions for the loss in image reconstruction performance and
the loss in detection performance for emission tomographic
systems as a function of complexity, as measured by the
number of cells in the optimal VQ. Using these expressions
we trace out tradeoff curves which are used to quantify the
loss in performance due to reducing the number of measure-
ment bins. Under some standard assumptions on asymptotic
cell shapes, our high rate analysis yields expressions for the
optimal point density specifying the concentration of cells
which minimizes performance loss. As the asymptotically
optimal rate constrained VQ may itself be difficult to im-



plement in high dimensions, we also give asymptotic ex-
pressions for lattice quantizers which can be used to specify
optimal binning in each of the measurement dimensions for
a given complexity constraint.

2 VQ for Emission Tomography

Let y
i
∈ Rk denote a vector of measured attributes, e.g.

position, of thei-th detected photon in an emission tomog-
raphy scanner. The sequence of attributes{y

i
}i detected

over a certain time period correspond to a spatial Poisson
process with intensityµ(y) =

∫
p(y|x)λ(x)dx wherex is

the emission position of the detected photon in the image-
domain,λ is the image intensity, andp(y|x) is the proba-
bility of detecting aty a photon emitted atx. The intensity
µ is assumed to be supported on a bounded setS ⊂ Rk.
As is customary we will use the voxelized approximation
µ(y) =

∑N
j=1 p(y|λj)λj whereλj is the integral ofλ over

thej-th voxel. The general objective is to make inferences
about the voxelized intensity{λj}j based on the set of de-
tected count attributes{y

i
}i. As explained in the introduc-

tion, practical implementations require binning each of the
measurementsy

i
into one of a finite number of cells. Our

aim is to capture the intrinsic loss incurred by binning by
formulating binning as a vector quantization problem.

An M -point, k-dimensional vector quantizer (VQ) [4,
11] consists of a partition{S1, . . . , SM} of a subsetS ⊂ Rk

into M unique quantization cells, and a codebookC =
{y

1
, . . . , y

M
} consisting ofM quantizer values inRk. A k-

dimensional vectory with probability densityp(y) is quan-
tized to one ofM codebook values by a quantization rule
Q(y) = y

l
: y ∈ Sl, l = 1, . . . ,M .

The quantization rule is typically designed to minimize a
function of the average error ordistortionbetween a source
y and a quantized sourceQ(y). The optimal VQ minimizes
this distortion over all possible partitions and codebooks
overRk. This minimum distortion can be used to quantify
the fundamental tradeoff between performance (distortion)
and complexity (rate), giving the so-called rate-distortion
curve. For high but finite rate simple asymptotic expres-
sions for the minimum distortion and the asymptotically op-
timal VQ have been obtained for many different types of
distortion measures such as MSE [11], weighted MSE [10],
and various detection criteria [5]. A distinguishing feature
of the problem considered here is that the domain of the dis-
tortion measure is different from the domain of the measure-
ments to which the VQ is applied. In particular, in tomo-
graphic reconstruction one is interested in quantizing pho-
ton counts in the measurement domain in order to minimize
the distortion in an estimate of the image intensity.

2.1 Image Reconstruction

Here one is interested in estimating the intensity param-
etersθ = {λj}j . We can characterize the increase in
MSE of an estimator ofθ due to quantization by the trace
of the difference between the continuous- and quantized-
measurement Fisher information Matrix (FIM) of the spa-
tial Poisson process [14],

∆tr = trace(F )− trace(F̂ )

= T
N∑

j=1

M∑
l=1

[∫
Sl

a2
j (y)

µ(y)
dy −

a2
lj

µl

]
≥ 0 (1)

whereaj(y) is the probability density ofy given the emis-
sion occurred in voxelj, alj =

∫
Sl

aj(y)dy, and µl =∫
Sl

µ(y)dy. For a fixed numberM of VQ cells{Sl}M
l=1, the

search for the VQ which minimizes the loss in trace-FIM is
related to A-optimal design in the theory of optimal exper-
iment design [3]. The minimization of the trace difference
is also indirectly related to minimization of the Cramèr-Rao
Bound on the variance of an estimator ofθ.

When the number of cellsM is large and the correspond-
ing quantization cells are small, and assuming that the den-
sity p(y|λ) is smooth over the extent of each cell, the differ-
ence term in (1) can be developed in a Taylor series about
y

l
up to terms of ordero(‖y − y

l
‖2) [7],

∆tr ≈ m(H)
M2/k

∫
S

p(y|λ)

∑N
j=1

∥∥∥∇y
d

dλj
ln p(y|λ)

∥∥∥2

ζ(y)2/k
dy, (2)

whered/dλj ln p(y|λ) = aj(y)/p(y|λ), the gradient opera-

tor∇y = [∂/∂y1, . . . , ∂/∂yk]T is ak-dimensional column
vector,‖ • ‖ is the Euclidean norm, andζ(y) is the “point
density”

ζ(y) ∼=
1

MV (Sl)
if y ∈ Sl, (3)

which defines the average number of cells per unit volume
about thelth measurement space partitionSl. The deriva-
tion of the expression (2) applies to the restricted class of
VQ’s that have asymptotic cell shapes that are smooth de-
formations of a symmetric reference cellH, e.g. a hyper-
cube inRk, having normalized moment of inertia (NMI)
m(H) [7]. The asymptotic expression (2) generalizes to
weighted distortion criteria studied in [10] upon replacing
the norm‖z‖2 = zT z with ‖z‖2B = zT Bz, whereB is a
positive definite sensitivity matrix.

Using Hölder’s inequality, the optimal point density
function ζ∗(y) which minimizes the distortion in (2) takes
the form

ζ∗(y) =

p(y|λ)
N∑

j=1

∥∥∥∥∇y
d

dλj
ln p(y|λ)

∥∥∥∥2


k
k+2

1
ck,N

(4)



whereck,N is a unit normalization factor (the integral over
S of the term in{•}). Substituting (4) into (2) gives an ex-
pression for least-possible loss in the FIM-trace of anyM -
point quantizer inRk whose cells are a scaled version of a
symmetric reference cellH. In addition if the reference cell
is the minimum NMI tessellating polytope inRk, then sub-
stitutingm(H) = m∗

k into (2) as well gives an expression
for the least-possible trace-FIM distortion of anyM -point
quantizer inRk.

3 VQ for Minimum Discrimination Loss

A frequently more relevant metric in medical imaging is
performance for a diagnostic task such as lesion detection
[1, 6]. In this setting the objective is to decide between one
of the following hypotheses

H0 : p(y) = p0(y) = p(y)
H1 : p(y) = pε(y) = (1− ε)p(y) + εp∆(y),

wherep∆(y) is a perturbation density reflecting how a le-
sion or other anomaly manifests changes in the measure-
ments. For simplicity we have omitted the explicit depen-
dence of these densities onλ. Here we will focus on the
challenging case whereε � 1 using the asymptotic analy-
sis technique of Gupta [5] which we summarize below.

The performance of any detection algorithm is charac-
terized by the probabilities of decision error. Forn i.i.d.
measurements{y

i
}n

i=1 Sanov’s theorem specifies the false
alarm probabilityαn and the miss probabilityβn for large
n:

α ∼= e−nD(pλ‖p0) (5)

β ∼= e−nD(pλ‖p1), (6)

whereD(q‖p) is the relative entropy (RE) between densities
q andp, also known as discrimination and Kullback-Liebler
divergence,pλ is thetilted density, which is the geometric
mixture ofp0(y) andp1(y),

pλ(y) =
p1−λ
0 (y)pλ

1 (y)∫
S

p1−λ
0 (y)pλ

1 (y)dy

andλ ∈ [0, 1] is implicitly defined by the Neyman-Pearson
thresholdT = D(pλ‖p1)−D(pλ‖p0).

The RE between two continuous densitiesq, p is
D(q‖p) =

∫
S

q(y) ln q(y)/p(y) dy while the RE be-
tween the quantized versions of these two densities
P = {P1, ..., PM}, Q = {Q1, ..., QM} is D(Q‖P ) =∑M

i=1 Qi lnQi/Pi. Using these representations, for small
ε andm = 0, 1 we have the losses in RE due to quantiza-
tion

∆D(pλ‖pm) = D(pλ‖pm)−D(Pλ‖Pm)
= qm(λ)ε2∆D + o(ε3) (7)

whereqm(λ) = λ2, (1− λ)2 if m = 0, 1, respectively, and

∆D =
1
2

[∫
S

p2
∆(y)
p(y)

dy −
M∑
i=1

P 2
∆i

Pi

]
. (8)

Clearly the two losses (m=0,1) both increase in∆D and
thus choosing a VQ to minimize∆D guarantees (for small
ε) that the Sanov error exponents (5) and (6) will undergo
minimum loss. Analogously to our study of the trace of the
FIM, a similar asymptotic high rate analysis of∆D results
in the following expression for the loss in discrimination

∆D ≈ m(H)
2M2/k

∫
S

p(y)

∥∥∥∇y
d
dε ln pε(y)|ε=0

∥∥∥2

ζ(y)2/k
dy. (9)

Again, we can solve for the discrimination-optimal point
density by applying Ḧolder’s inequality to (9)

ζ∗(y) =

{
p(y)

∥∥∥∥∇y
d

dε
ln pε(y)|ε=0

∥∥∥∥2
} k

k+2 1
dk

(10)

wheredk is a unit normalization constant. This expression
can be substituted into (9) to obtain the minimum high rate
loss in discrimination∆D.

3.1 Discrimination Loss for Lattice Quantizer

A lattice quantizer is a sub-optimal VQ that has com-
plexity advantages with respect to non-lattice VQ. For a lat-
tice quantizer, theM codevectors are uniformly spaced over
the lattice support domainSL ⊇ S, resulting in a constant
point densityζ(y) = 1/V (SL). Substituting this constant
point density into (9) results in an asymptotic high rate dis-
crimination loss of

∆D ≈ m(H)
2

(
V (SL)

M

)2/k

∫
S

p(y)
∥∥∥∥∇y

d

dε
ln pε(y)|ε=0

∥∥∥∥2

dy. (11)

4 Discussion

The expressions (2) and (9) for the high rate loss in
FIM and in discrimination, respectively, are similar to the
Bennett’s integral formula for the high rate MSE distor-
tion [4, 11] for recovery of the continuous measurements
from their quantized values. In particular, asymptotically
the loss falls off at a rate ofM−2/k with a constant term
that depends on the measurement distributions, the quan-
tizer cell shapem(H), and point densityζ(y). It is im-
portant to observe that for the trace-FIM and discrimination
distortion measures, the rate constant is proportional to the



integral of the gradient of the score function associated with
estimatingθ in the case of image reconstruction, and for
estimatingε in the case of detection of an epsilon perturba-
tion. The score function contains the information necessary
to discriminate between values ofθ. If this function is zero
for some regionSo of the measurement spaceS then quanti-
zation overSo is of no value for estimatingθ. On the other
hand, if the score function is a non-zero constant overSo

then it suffices to know thaty came fromSo and quantiza-
tion overSo is again of no value. Thus the asymptotic ex-
pressions are consistent with intuition that one should only
refine the quantization over those regions where the score
function is not constant.

5 Numerical Examples

5.1 Loss in FIM for 1D Deconvolution

Let µ(y) = h(y) ∗ λ(y) be a continuous measurement
intensity, whereλ is the unknown image intensity,h is a
blurring or point spread function, and∗ denotes convolu-
tion. The task is to estimate theN components of a dis-
cretized version ofλ from M quantized measurements. A
plot of the observed measurement densityp(y), the point-
density functionζ(y), as well as the quantizer cell locations
for a M = 32 level quantizer is shown in figure 1, and nu-
merical values for aM = 150 level quantizer are given in
table 1. Note that the trace-FIM quantizer places cells near
regions ofchangein the measurement density rather than in
proportion to the density as for the standard MSE-optimal
quantizer.

Figure 1.Comparison of optimal point densities and bin
locations for a 32-bin, MSE-optimal and trace-FIM-optimal
1D quantizer.

Quantizer 1
N tr(F̂ ) 1

N tr(F̂−1) condF̂

uniform 28.5283 3.350× 106 3.00× 1010

mse 27.1602 ∞ 3.25× 1017

trace-FIM 28.6227 6.128× 106 1.02× 1012

Table 1.Numerical values for the trace of the Fisher infor-
mation and inverse Fisher information matrices, for three
different quantizer point densities, for anM = 150 level
quantizer. Third column is the condition number which in-
dicates a virtually singular FIM for the standard MSE opti-
mal quantizer.

5.2 Discrimination Loss Calculation for 2D PET

Let the unknown parameters under hypothesesH0, H1

be θ and θ + ∆θ, whereθ ∈ RN is some non-random
parameter vector and∆θ is a perturbation ofθ. We will
model the emission source densityλ(x) as an100 × 100-
pixel, 2-dimensional (planar) image over a50× 50cm field
of view. The associated parameter vectorθ corresponds to
a tomographic slice through a simulated anthropomorphic
phantom [13] while the perturbation parameter∆θ corre-
sponds to a3cm circular lesion in the bottom of the left
lung, as shown in Figure 2.
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Figure 2.Simulated 2D PET emission source (left), emis-
sion source with 3cm circular lesion (right)

The total detected counts was set to106, with 103 counts
from the lesion, for a perturbation parameter ofε = 10−3.
Figure 3 shows the calculated discrimination for lattice
quantized sinogram measurements along with the limiting
case for continuous measurements. Figure 4 shows the cal-
culated discrimination loss for lattice quantized sinogram
measurements as well as the asymptotic discrimination loss
(11). The best-possible discrimination loss for an optimal
point-density VQ (10) is also shown for comparison.

6 Conclusions

This paper has presented a framework for studying the
fundamental tradeoff between memory storage complexity
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Figure 3.Discrimination versus number of sinogram cells
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Figure 4.Calculated discrimination loss versus number of
sinogram cells for a Lattice VQ, along with the asymptotic
discrimination loss for both a Lattice and Optimal VQ.

and performance for emission tomography. This framework
relies on the tools developed in high rate vector quantization
theory. There are several open problems that are worthy
of study. One such problem is the implementation of op-
timal vector quantization strategies for unknown image in-
tensities. A proposed approach using adaptive VQ and the
LBG algorithm is discussed in [7]. Another issue is how
close one may come to attaining predicted distortion lim-
its with a fixed rate lattice quantizer. Finally, the FIM and
the Sanov error exponents are largen approximants to re-
construction and detection performance. It would be worth-
while to explore other tractable but non-asymptotic distor-
tion measures.
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