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Moment Matrices for Recognition of Spatial Pattern
in Noisy Images

A. O. Hero, J. O'Neill and W.J. Williams

Abstract

We present a method for detection and classi�cation of a
spatial pattern in noise contaminated binary images which
is based on performing subspace decomposition on a non-
negative de�nite matrix of higher order moments of the
image. We introduce a method which uses normalized
power moments or ascending factorial moments as descrip-
tors. While the set of p-th order factorial moments are in
one-to-one correspondence with the set of p-th order power
moments, the computation of factorial moments is much more
numerically stable than the power moments. Indeed, using
factorial moments we are able to implement pattern classi-
�ers with over 30% more moment descriptors. We illustrate
these techniques for word classi�cation in binary document
images.

I. Introduction

The problem of classi�cation of patterns in noisy binary im-
ages has been a key component to many di�erent areas includ-
ing: automatic document processing, such as word spotting
[1], character recognition [2], database retrieval; automatic
target recognition (ATR); and astronomical cartography. We
present a pattern classi�cation method which is based on
an underlying spatial Poisson point process model and uses
higher order factorial moments of the intensity function as
pattern discriminants. This extends our work on standard
power moment methods presented at ICIP-96 [3]. Some jus-
ti�cations for moments are: 1) they provide a non-parametric
pattern description; 2) combinations of moments have been
identi�ed with important invariances such as rotation, scale,
and translation [4], [5]; 3) sample moments can usually be
treated as jointly Gaussian random variables. With our intro-
duction of non-negative de�nite moment matrices we provide
another justi�cation: they can be used to e�ectively sepa-
rate signal pattern from noise background via noise subspace
processing.

II. Spatial Point Process Representations

Let W = W (x; y) be a binary image indexed over (x; y) 2
A = f1; : : : ; ng� f1; : : : ;mg. De�ne the coordinate locations
(pixels) f(Xi; Yi)g

N
i=1 as those pixels at which W is active,

i.e., W not equal to zero. A general statistical model for
f(Xi; Yi)gNi=1 is a two-dimensional Bernoulli process speci�ed
by the probabilities �(x; y) 2 [0; 1] that pixel (x; y) is active.
For a large number of pixels (nm � N ), the Bernoulli pro-
cess is well approximated by a Poisson point process over the
continuous rectangle A = [1; n]� [1;m]. This Poisson point
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process is completely described by the normalized intensity
function �(x; y) and the rate constant �

�(x; y) = ��(x; y); (x; y) 2 A

where � = E[N ] is the average number of active pixels in the
image. The statistical expectation of any function g(Xi; Yi)
is

E[g(Xi; Yi)] =

Z
A

g(x; y)�(x; y) dxdy:

III. Spatial Moments

The spatial power moment (PM) �X;Y (k; l) of (integer)
order k and l of positive integer random variables X, Y is
de�ned as:

�X;Y (k; l) = E[XkY l]:

Since the bivariate monomials form a basis for the space of
all two-dimensional square integrable functions, the set of 2p
power moments f�X;Y (k; l)g

p
kl=1 completely characterizes the

image as p!1.
Fractional factorial moments come in two varieties: ascend-

ing and descending. In this work we use the spatial ascending
fractional factorial moment (AFFM) �X;Y (k; l; s) of (integer)
order k and l and (real) fraction parameter s which is de�ned
below

�kl;sX;Y = E[[X]ks [Y ]
l
s] (1)

where we use the Pochammer symbol [x]ks to denote the as-
cending fractional factorial

[x]ks = x(x+ s) � � � (x+ s(k � 1)):

By convention we de�ne [x]0s = 1. When s = 1 and X is

a positive integer [x]ks = (x+k�1)!
(x�1)! is the standard ascending

factorial moment [6].
In [7] we prove that the set of 2p PM's f�X;Y (k; l)g

p
kl=1

and the set of 2p AFFM's f�X;Y (k; l; s)g
p
kl=1 are theoretically

equivalent: any of the sets can be expressed mathematically
in terms of the other set. However, as will be seen, with
�nite precision arithmetic, the factorial moment computation
is more numerically stable.

A. Power Moment Matrix

We will �nd it useful to center and scale the variates X;Y
to improve numerical stability of the moment matrix com-
putations. Recall that in the present imaging application
X 2 f1; : : : ;mg and Y 2 f1; : : : ; ng. To improve the stabil-

ity of the PM we replace X and Y by ~X = x�(m+1)=2
�p

and

~Y = x�(n+1)=2
�p

where �p = (max(m;n) � 1)=2. De�ne the

(2p+ 1)� (2p + 1) power moment matrix:

P
2p =

��
� ~X;~Y (i + j)

��
ij=0;:::;p

(2)
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B. Factorial Moment Matrix

Since ascending factorials moments are not de�ned for
negative variates, construction of an appropriately normal-
ized factorial moment matrix requires more care than for
the power moment matrix. First of all we must scale the
positive integer variates X and Y di�erently. De�ne the

variates ~X = x�(m+1)=2
�f

and ~Y = x�(n+1)=2
�f

where �f =h
[(max(m;n)� 1)=2]2p1

i1=(2p)
. Next, for any real number

T = T+ � T�, we de�ne T+ as the positive part and T�

as the absolute value of the negative part of T . De�ne the
(2p+ 1)� (2p+ 1) factorial moment matrix A2p:

A
2p =

��
� ~X+ ;~Y+ (i + j; 1=�f) (3)

+(�1)i+j� ~X�;~Y� (i + j; 1=�f)
��

ij=0;:::;p
:

IV. Denoising via Eigendecomposition

Here we show that any binary noise with moments that
are known or can be accurately estimated can be removed
from an image via eigendecomposition of the observed mo-
ment matrices. The following important properties of the
power moment matrix (2) and the factorial moment matrix
(3) are proven in [7]. Both are block Hankel matrices which
are symmetric non-negative de�nite. Both matrices have all
entries in the interval [�1; 1] and are sparse for any intensity
which is symmetric about the center point

�
m+1
2 ; n+12

�
of the

image (Fig. 1). Finally, by construction the (1; 1) entry of
these two matrices is equal to 1.
Let a signal-independent binary noise having intensity

�n(x; y) = �n�n(x; y) be added (modulo 2) to the im-
age. Denote the noiseless image (signal pattern) intensity
by �s(x; y) = �s�s(x; y). Then the overall image intensity
�(x; y) = ��(x; y) will be the sum

�(x; y) = �s(x; y) + �n(x; y)

= � [��s(x; y) + (1� �)�n(x; y)]

where � = �s=(�s + �n) 2 [0; 1] is a monotone function of
signal-to-noise ratio �s=�n. The above representation implies
that for any function g(X;Y ) of the coordinate process (X;Y )
we have the decomposition:

E[g(X;Y )] = �E[g(X;Y )jsignal alone]

+(1� �)E[g(X;Y )jnoise alone]

Let M, Ms, and Mn denote the signal plus noise, signal
alone, and noise alone moment matrices (M denotes either
power moment or factorial moment matrix). We have the
important result:

M = �Ms + (1� �)Mn

Now let K be the known Cholesky factor of Mn, i.e. Mn =
KK

T , and de�ne ~M = K
�1
MK

�T . Then we have:

~M = � ~Ms + (1� �)I (4)

where I is the (2p+ 1)� (2p+ 1) identity matrix, and ~Ms =
K
�1
MK

�T is the whitened moment matrix of the signal
pattern.

Except for the presence of the signal-to-noise ratio depen-
dent scalar �, (4) is the standard additive decomposition of
a \measurement covariance" matrix ~M into unknown \signal
covariance" ~Ms and \white noise covariance" I. While the
latter is full rank with 2p+1 constant eigenvalues f1; : : : ; 1g,
the eigenvalues of the signal matrix ~Ms are non-negative
and typically fall o� rapidly to zero. This permits exact
recovery of Ms via application of the eigendecomposition:
~M =

P2p+1
i=1 i�i�

T

i
where i and �

i
are eigenvalues (rank

ordered) and eigenvectors.
To wit, since the eigenvectors of ~M and ~Ms are identical,

from (4) we have

~M =

qX
i=1

[�si + (1 � �)] �
i
�T
i
+ (1� �)

2p+1X
i=q+1

�
i
�T
i

where fsi g
q
i=1 are the non-zero eigenvalues of

~Ms. Thus only

the q largest eigenvalues i = �si + (1� �) of ~M are related
to the signal pattern and the rest are pure noise eigenvalues
f(1 � �) : : : ; (1 � �)g. In particular, at least if we know � a

priori, then ~Ms can be exactly recovered from the eigende-
composition of ~M via

~Ms =
1

�

qX
i=1

[i � (1� �)] �
i
�T
i
:

However, (surprise!) it turns out that prior knowledge of � is
not required. Indeed, since the (1; 1) element of Ms is equal
to 1, and eT1K�

i
= eT1 �i = �i1, we can determine � from the

linear equation � =
Pq

i=1 [i � (1 � �)] j�i1j2:

� =

Pq
i=1

�
i � j�i1j

2
�

1�
Pq

i=1 j�i1j
2

:

V. A Wordspotting Example

We generated postscript versions of two words \van" and
\vax" in various font sizes, pitches, and font types. Varying
levels of spatially homogeneous salt and pepper noise were
added modulo-2 to the bitmaps of each word. Note that
modulo-2 addition produces noise which is not strictly addi-
tive or linear. Raw moments of various mixed orders were
computed empirically and sample power and sample factorial
moments matrices were constructed using Matlab 4.0. Note
that the number of pixels, or window size for each word de-
pends on the number and width of letters in the word. To
standardize the computation the bitmap coordinates for each
word were scaled to a square of length 1 on a side. The
Cholesky factor C of the spatially homogeneous noise mo-
ment matrix was applied to prewhiten the empirical word
moment matrix. An eigendecomposition was performed on
the prewhitened empirical moment matrix, with the signal
subspace dimension determined by a threshold rule, and the
original noiseless moment matrix was recovered by eliminat-
ing the noise subspace and renormalization, as discussed in
the previous section of this paper.
A representative example of the noiseless and noise de-

graded bitmaps and raw power moment matrices is shown
in Figs. 2 and 3 for \van" and \vax." Here SNR is equal
to 0dB (� = 0:5 the number of random bit ips equal to
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the number of active pixels for each word) using L = 18 mo-
ments (moment matrices of dimension 37 � 37). Note from
Fig. 3 that while the noiseless raw moment matrices provide
a small perceptible discrimination between words, addition of
noise completely masks the word di�erences. Contrast this
with the high discrimination power of the prewhitened mo-
ment domain evident from the clearly perceptible di�erences
between \van" and \vax" encoded in the noiseless and recov-
ered prewhitened matrices shown in Fig. 4.

We de�ned a simple discriminant based on computing the
mean square distances between noisy moment matrix to the
corresponding noiseless moment matrices for \van" or \vax."
The discrimination was implemented using a minimum dis-
tance decision rule. Three classes of discriminants were com-
pared: (D1) mean square distances between the raw empir-
ical moment matrix M and the noiseless moment matrices
Ms for the two words; (D2) mean square distances between
the recovered prewhitened signal moment matrices ~Ms and
noiseless prewhitened moment matrices C�TMsC

�1 for the
two words; (D3) the mean square distances between the re-

covered signal moment matrix M̂s = C
T ~MsC and the noise-

less moment matrices Ms for the two words. In each case a
mask was used to screen out elements of the momentmatrices
which were not substantially di�erent from \van" to \vax."

The probability of decision error for each of discrimina-
tors rules is shown in Figs. 5 and 6 as a function of SNR.
For unwhitened moment matrix discriminators D1 and D3
we compare probability of error using only lower order mo-
ments extracted from the noisy and recovered 37�37 moment
matrices, respectively. The number used range from 3 mo-
ments (�X;Y (1; 0); �X;Y (1; 1); �X;Y (0; 1)), denoted by L = 1
in the �gures, to 99 moments (�X;Y (i; j), i; j = 0; : : : ; 9, i; j
not simultaneously equal to zero), denoted by L = 9 in the
�gures. The performance of D1 is uniformly worse than that
of D3 for all L values. Note that the use of more moments
in the raw moment discriminant D1 actually degrades dis-
crimination performance. This is consistent with the well
known variance increase in estimation of higher order statis-
tics as the order increases [8]. Interestingly, the opposite
trend is observed in the whitened moment discriminant D3
where variance reduction has been acheived in the higher or-
der moments via the subspace eigendecomposition of the raw
37 � 37 moment matrix. Finally, as expected, note that D2
attains very low probability of error by using minimum dis-
tance discrimination directly in the whitened moment matrix
domain. We suspect that the reason that D3 is incapable
of matching the excellent performance of D2 is due to poor
condition number of the Cholesky factor C.

It was found that L = 23 could be used in the factorial
moment matrix without running into run time errors due to
numerical roundo�. This is to be compared to the upper
limit of L = 20 encountered for the power moment matrix
computations. Note that this 15% increase in L translates
into an over 30% increase in the number of distinct mixed raw
moments that can be used for discrimination (232 � 1 = 528
as compared to 202 � 1 = 399).
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Fig. 1. The noise alone power and factorial moment matrices and their
Cholesky factors have sparse structure which can be exploited to
reduce roundo� error and explore structure of moment invariants.
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Fig. 2. Top: words van and vax in Helvetica 48 font. Bottom: same
words corrupted by 0dB bit ip noise.
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Fig. 3. Top: Power momentmatrices for words van and vax in Helvetica
48 font for L = 18. Bottom: same moment matrices computed from
words corrupted by 0dB bit ip noise. Note absence of strongly
distinctive features between words even for noiseless case.
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Fig. 4. Top: Noiseless whitened power moment matrices for words van
and vax. Bottom: denoised empirical moment matrices from noise
corrupted words shown in Fig 2. Note that distinctive features of
noiseless whitened power moments are recovered after denoising.
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Fig. 5. Probability of error curves for D1 = minimum distance decision
rule based on raw moments. Here we are matching di�erentnumbers
of empirical moments to corresponding noiseless moments obtained
from in Fig. 3. SNR is the relative number of bit ip errors as
compared to active pixels in noiseless bitmap.
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Fig. 6. Bottom curve: probability of error for D2 = minimum distance
decision rule based on moment matching in denoised prewhitened
moment matrix domain. Here we are matching the empirical
whitened moment matrices to noiseless whitened moment matrices
shown in Fig. 4. Upper curves: same for D3 = minimum distance
decision rule based on moment matching in recovered moment ma-
trix domain.


