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Geometric graphs

Outline

© Geometric graphs in imaging and computer vision
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Geometric graphs

Geometric graphs in imaging and computer vision

A geometric graph has nodes V that represent real valued features and edges £
that represent similarities between the features (Penrose 2003).

Some applications where geometric graphs arise

e Computer vision, video and image processing
Clustering and segmentation (GLap, kNNG, MST, graph cuts)
Dimensionality reduction (GLap, kNNG, GMST)
Denoising and anomaly detection (kMST, BP-kNNG)
Orthoregistration (MST, kNNG)
Frame-to-frame registration (TSP)
Multi-resolution image representation (MST-based pyramid)
Image inpainting interpolation (kNNG)

e Image/video indexing and retrieval

o Query-reference matching (NNG)
o Database partitioning (kNNG)
o Multi-criterion image retrieval (Non-dominated sorting)

Such geometric graphs are often modeled as random, having nodal feature
vectors {X4,...,X,} drawn from some probability distribution f.

M. Penrose, Random geometric graphs, Oxford University Press 2003
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Geometric graphs

Example: dictionary learning of grain networks in materials science

Bipartite indexing of polycrystaline materials (Park et al 2015) Grain-level fusion of polycrystaline materials (Chen et af 2015)

e Nodes: Bottom - spatial locations on slice. e Nodes: spatial locations on slice

Top - patterns in dictionar;
p-P Y e Features: spatial patch intensities (BSE) or

e Features: Possible Kikuchi diffraction Kikuchi patterns (EBSD)

patterns of crystal planes .
e Edges: feature correlations that exceed a

° Efiges: Th(_e top 4 pattern matches between high level
slice and dictionary
® S.U. Park et al, " A dictionary approach to the EBSD indexing problem,” Microscopy and Microanalysis, June 2015.
© Y.-H. Chen et al," Parameter estimation in spherical symmetry groups,” IEEE Signal Processing Letters, Jan. 2015.

® Y.-H. Chen et al, " Coercive region-level registration for multi-modal images,” to appear in IEEE Conf. on Image Processing, 2015.
6190



Geometric graphs

Continuum limits of random geometric graphs

Let L(X,) be a function of this graph, e.g., the sum of the edge weights.

Minimizing L(X,) over the edge set is a discrete optimization problem and
often combinatorial complexity.

Sometimes there is an « > 0 such that the continuum limit
limp— oo min L(X,)/n® exists or has a known probability distribution.

Some benefits of continuum limits

e Provides intuition about asymptotic sensitivity of graph topology to f,
e.g., k-point MST

o Reveals new graph-based statistical estimators of mean of continuum
limit, e.g. entropy estimation

e Permits setting significance level of hypothesis tests on P(X,), e.g.,
Friedman-Rafsky multivariate runs test

o Leads to scalable continuous relaxations of otherwise combinatorial graph
construction problem, e.g., pde solvers for non-dominated sorting problems
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Minimal graphs

Outline

e Minimal graphs

2190



Minimal graphs
Minimal geometric graphs

Define X, = {Xi,...,X,} a set of points (features)) in M C R,
A graph G = {V, &}
o {V} ={Xy,...,Xn}: vertices or nodes
o {&£} = {ej}: edges connecting distinct pairs {/,}
e |ej| = ||Xi — Xj||: edge length wrt to a distance metric on M
e A = ((aj)): adjacency matrix associated with G

2 — 1, e €&
Y710, ow.

o di =3, a;: degree of vertex i

Length functional

LYV, €)= el

e;EE

where v > 0.
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Minimal graphs

k-nearest neighbor (kNN) graph

e kNN graph is solution of the " .
optimization ) “
LYWy = min L,(V,€
5 (V) emin L(V,€) ] .
— H Y :
= min i 05~
£:A1=K1 Z e
T T egi€E 4 o
n - L i n
— Z Z ||Xl _ )(IH’Y k) E) 05 0 05 1 15
i=1 JEN(X;)
e Ni(X;) are the k-nearest neighbors of
X,‘ in Xn — {X,} N
e Vision applications: inpainting, feature 1 ‘
density estimation, 3 7?& =
clustering+classification, (Pl v %%:w )]
dimensionality reduction %Vz%\g,{
e Computational complexity is ! TN
O(knlogn) T 2
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Minimal graphs

kNNGs in spectral clustering and dimensionality reduction

k-NNG-based spectral algorithm
e Extract features X, = {Xi,..., X}

o Compute similarity matrix W btwn X;'s
e Use W to construct kNN graph over &,
e (V,N\) =Eigendecomp(W — D), D = diag(W1)

e Dimension reduction: Y, = A§<<22[V1,V2]TX,-, ‘ o0y
o Spectral clustering: K-means(vz)

KNNG clustering for image segementation (Felzenszwalb 2003)

-005 t o
E 008

2 T
(4) Toroidal heiix (B) Laphacian

orrooOR

mo o = o
moococor
o—ocoro
corrkroO
SOk O

Adjacency matrix kNNG

005

00

- 05 [
3D data 2D Graph Laplacian embeddings (Ting 2011)

@ Belkin, Mikhail, and Partha Niyogi. "Laplacian eigenmaps and spectral techniques for embedding and clustering.” NIPS. Vol. 14. 2001.

® Coifman, Ronald R., and Stphane Lafon. " Diffusion maps.” Applied and computational harmonic analysis 21.1 (2006): 5-30.

11190



Minimal graphs

Minimal spanning tree (MST)

100 samples.

.
e MST is solution of the optimization 0s-® 300 3¢ e
.
s

LETV) = min L,(V,€) :

min E leii|” "
E:A1>0
e;€EE

e MST spans all of the vertices V
without cycles 2

ST over 100 samples

e MST has exactly n — 1 edges e
e Vision applications: image '
segmentation, image registration, f’/)\f} ‘ r
2

clustering o A b 1
o Computational complexity is O(n*logn) % %i:%_’;ﬂ
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Minimal graphs

Minimal spanning tree (MST)

100 samples.

e MST is solution of the optimization

MST . ~
L V) = min L,(V.E | ‘e
v (V) £:A1>0 +(V,€) '“ LN
B e &0
. - @ ® Y
= min E le;|” . 2
E£:A1>0 ¢ o o
gjel B A I B T

e MST spans all of the vertices V
without cycles !

e MST has exactly n — 1 edges

e Vision applications: image
segmentation, image registration,
clustering

e Computational complexity is O(n*logn)

ST over 100 samples

13190



Minimal graphs

[llustration: MST for image segmentation, representation and r

Top Level B

Image to Graph _ Graph to MST

Image to Graph

MST for building image pyramid (Mathieu 1996)

MST for surface rendering (Hoppe 1992))

@ Zahn, Charles T. " Graph-theoretical methods for detecting and describing gestalt clusters.” IEEE Transactions on Computers, 1971

e P. Fel Ib and D. H locher, " Efficient graph-based image ion,” International Journal of Computer Vision, 2004

® H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, " Surface reconstruction from unorganized points,” SIGRAPH, 1992
® C. Mathieu and I. Magnin, " On the choice of the first level on graph pyramids”, Journal of Mathematical Imaging and Vision, 1996
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Minimal graphs

Friedman-Rafsky graph (FR)

100 fabeled nodes

e Two labeled samples X, Vm

e Start with MST over V = X, U YV
MST _ . i
L) = min L,(V,£)
= D> 1+ 1 + 18

e,-jeé*

e FR graph is the set of edges {e,i-(y

e The length of FR graph is .
Xy ‘
L:_R(V) — Z |eij |
eV eer

e This was proposed as a difference
measure (divergence) btwn
distributions of X, and YV (Friedman
and Rafsky, 1979)

J. Friedman, and L. Rafsky. "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests,” Annals of Statistics, 1979. 15 1 60



Minimal graphs

Friedman-Rafsky graph (FR)

MST over 100 labeled nodes

e Two labeled samples X, Vn
e Start with MST over V = X, U YV

LETV) = min L,(V,€)

= > 1+ e + eI
e;EE™

e FR graph is the set of edges {e,i-(y
e The length of FR graph is . Frantay on

LYY = > Il

XY cgx*
e €&

e This was proposed as a difference
measure (divergence) btwn
distributions of X, and YV (Friedman
and Rafsky, 1979)

16 1 90



Minimal graphs

Friedman-Rafsky graph (FR)

Friedman Rafsky graph

e Two labeled samples X, Vn Tt gt e,
o Start with MST over V = X, U Y R A
@@60 [ ©
MST _ . o 5 ..
L= V) = a0 L,(v,€) teas gt
XX |y XY (v YY 1y ) /.’°..:°
= D 1+l + e et
e EE* .
e FR graph is the set of edges {ej;
e The length of FR graph is N e ety o
FR XY " .
LEV) = > g
eI;(yEE* '
e Vision applications: image registration, , 3

pattern matching, meta-learning

e Computational complexity is
O((n + m)?log(n + m))
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Minimal graphs

Application: multimodality image registration using Ml

Find transformation T that best aligns
images / and k Mutual information (MI) based registration

Feature vector at location z; € R2:

X(i) = [h(z), T(k(z))]

Joint intensity histogram
px(x1,%2) = n71 3010 Al o1 (X(i))

Maximize mutual information (MI)

@ Fis Urban Atlanta ) 12: Ushan Attanta, Thermal (@ Joint gray-level pixel cainci-
255 e s 1 1
px(x1, x2)
max E px(x1,x2)In | ———"———
T x1,x0=0 PXx, (XI)PT(X2)(X2)

= max H(h, T(R)) — H(h) — H(T(k))

Where have defined entropy of V

H(V)=n"1"In

1 @n (o T(5) () Joint gray-evel pixel coinci-

pv(v)

o W. Wells, P. Viola, P., H. Atsumi, S. Nakajima, and R. Kikinis, " Multi-modal volume registration by maximization of mutual
information,” Medical image analysis, 1996.

® E. Oubel, M. De Craene, A. Hero, A. Pourmorteza, M. Huguet, G. Avegliano, B. Bijnens, A. Frangi, " Cardiac motion estimation by
joint alignment of tagged MRI sequences,” Med. Image Anal. 2012.
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Minimal graphs

Comparison: multimodality image registration using FR

Find transformation T that best aligns
images 1 and b

Feature vectors of /1 and T(h) at
location z; € R2:

X1(i) = [W(z),zi], X2(i) = [W(z;), 2]
Wi (z;) and W3(z;) are localized Meyer
wavelet coefficients of /; and T (k)
Maximize FR statistic

max LER(X1,X2)

FR registration uses higher dimensional
(6) features that capture images’ local
spatial patterns

-6 o-Jensen kNN graph
=¥ g-Jensen MST

8 5| 5 @-Jensen kNN (alternate)

£,5 4~ GA mean divergence

3 Friedman Rafsky divergence

= | == shannon

5 4

5

c

§

2 I

2

]

g

B ‘ "

3 o -

H -
b —————2

2 o 2 a ] 1

Standard Deviation (o) of added noise

® H. Neemwuchwala and A. Hero, "Entropic Graphs for Registration,” in Multi-Sensor Image Fusion and its Applications, Eds. R. S.

Blum and Z. Liu, Marcel Dekker, Inc., 2005.
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Minimal graphs

k-Minimal spanning tree (kMST)

100 samples.

o Let Vi CV and Vi =k o
o Let & be edges over Vi

e kMST is solution of the optimization

J [}
°
kMST . MST
L3N (VY) = min L7727 (Vi) s
Vi:| Vi =k ,
= min . min E leii|” S
Vit Vi |=k Ex:Af1>0 D S
ki Vil kAL =)
e kMST is the smallest MST that spans , ST e 10030 9

any k of the vertices V

e Vision applications: Denoising and o
outlier detection, robust image
registration, robust clustering

e Computational complexity is NP hard

o Greedy approximations are available
(Ravi 1994)

R. Ravi, M. Marathe, D. Rosenkrantz and S. Ravi " Spanning trees short and small,” Proc of ACM-SIAM Symp on Discrete Algorithms, 1994. 50100



Minimal graphs

Denoising illustration of kMST

Ring pdf fi

k-MST (k=83]: 1 cutlier rejection (k=98 2 outlier rejection

22

Uniform pdf fy

@ A. Hero and O. Michel, " Asymptotic theory of greedy approximations to minimal K-point random graphs,” |IEEE Information Theory
1999.

21 | 90



Minimal graphs

[llustration: kMST for WSN intruder detection

xR LA §

0 S0 1@ 150 200 20 00 30 70 8 950 100 15060 80 1(DB0 1M 12060 70 80
e sampal0 Seec

LIOK\Nsoores. ro-0.86751, F1-0.0046217 , cHiecton rete-QCB01ES

leration 1, peie 002 iteraiion2, pelue 002 iteraion3, pelte 000
ES Eg Ed .

1 o

= - e

% 0 0™ o a2 a
U taation 4, pelue 0GR eraion'5, pieue 0002 erafion 6, pele 0.0C
= =

Wi |l it

£ TN “M“"MU\ CF °

LT L TR AT oty
T Ulild i iteration 7, pvelue Q002 itgralion 9, pveue 0002 iteration 13 paiue 0.0

o

® A. Hero, " Geometric entropy minimization (GEM) for anomaly detection and localization,” NIPS 2006

o K. Sricharan and A. Hero, " Efficient anomaly detection using bipartite k-NN graphs,” NIPS 2011.
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Minimal graphs

Shortest path (SP)

e Let G be a graph with m = |£| edges on n
vertices V

e 7(X;, XF) a path over G btwn points X;
and X,':

71-()</’ XF) = (XUXI'

19

'7Xf/7XF)

X, is neighbor on G of predecessor Xj;
and X[ = Aig» XF = )(,'/Jrl
® The shortest path is the solution to ’
SP _ H . — X
Lrwv) = Tr()r?'IQF) Z Xy — Xi|”
VU Xiem (X1, XF)

e Typical choices of G:

e kNN graph
e MST
e Vision applications: dimensionality
reduction, manifold learning, image
retrieval

e Computational complexity is O(m+ nlogn)

23 | 90



Minimal graphs

[llustration: kNN and shortest paths ISOMAP dimensionality reduction

——— - >
Fig. 3. The “Swiss roll” data set, illustrating how Isemap exploits geodesic 1000 data points) allows an approximation (red segments) to the true
paths for nenlinear dimensionality reduction. (A) For two arbitrary points geodesic path to be computed efficiently in step two, as the shortest
(circled) on a nonlinear manifold, their Euclidean distance in the high- path in G. {€) The two-dimensional embedding recovered by lsomap in

dimensional input space (length of dashed line) may not accurately step three, which best preserves the shortest path distances in the
reflect their intrinsic similarity, as measured by geodesic distance along neighberhood graph (overlaid). Straight lines in the embedding (blue)
the low-dimensional manifold (length of selid curve). (B) The neighber now represent simpler and cleaner approximations to the true geodesic
hood graph G constructed in step one of Isomap (with £ = 7 and N paths than do the corresponding graph paths (red).

EEEE
EEEE

® Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction.”

Science 290.5500 (2000): 2319-2323.
24 | 90



Continuum limits

© Continuum limits
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Continuum limits

MST continuum limit: MST length functional captures “spread” of

distribution

128 random samples MST

ne

06

04

0.z

26 | 90



Continuum limits

Large n behavior of MST length functional

length(MST)
MST length, Unif. dist. {red}, Triang. dist {blue}
20
£ 15
o]
5
=
%]
2 10
5
n \ \ \
] 500 1000
M

(log length(MST))/v/n

MST normalized compensated length

0.8

0.4 . . .
0 500 1000
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Continuum limits

Continuum limit of kNN and MST length functionals

Theorem (Beardwood, Halton&Hammersley 1959)

Let X, = {X1,...,Xs} be an i.i.d. realization from a Lebesgue density f
supported on compact subset of R?. If0 < v < d

lim LMSTAW () inl@=/d — g / Fx) @/ (a.5.)

n— oo

Alternatively, letting o = (d — «)/d and defining the entropy function

Ha(F) = ﬁ/f“(x)dx,

InL,(X,)/n® — Ha(f)+c (a.s.)

—

e RMS rate of convergence (Costa & Hero 2003)

Q-

sup E

2 1/2 5
> cn BH
fE’H[g)K

J. Beardwood and J. H. Halton and J. M. Hammersley, " The shortest path through many points,” Proc. Cambridge Philosophical Society

By / £ g — LMST () nld=)/4
S

1959. (BHH proved the limit for the TSP, f(x) uniform, and v = 1. )
28 |1 90



Continuum limits

Continuum limit for Euclidean length functionals (Yukich 1998)

e BHH theorem holds generally for any quasi-additive continuous Euclidean
length functional L, (F) (Yukich 1998) - kNN, Steiner tree, TSP
e Translation invariant and homogeneous
VxeRY L,(F4+x) = L,(F), (translation invariance)
Ve>0, L,(cF) = c"Ly(F), (homogeneity)
e Null condition: L,(¢) =0, where ¢ is the null set
o Subadditivity: There exists a constant C; with the following property: For

any uniform resolution 1/m-partition Q™

md

L(F) <m " S Ly(ml(FN Q) — ) + Gm® 7
i=1
e Superadditivity: For same conditions as above, there exists a constant G,

md

L(F) = m™" 3 L(ml(FN @) - ql) - G
i=1
o Continuity: There exists a constant C; such that for all finite subsets F
and G of [0,1]¢
IL,(FUG) = Ly(F)| < G (card(G))“~ /"

J. Yukich, "Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998. 29100



Continuum limits

Main ideas behind proof of BHH (Yukich 1998)

Start with f(x) uniform over [0, 1]¢ Next a;-)ply partltlodn.lng hel:nStlc .
e Avg distance between n points in e Dissect [0,1]? into m? cubes {Q;} each with
[0 1]d center q;.

—1/d e From translation invariance, homogeneity,
quasi-additivity of MST

d

|eilavg = n
e Avg length of MST should therefore be

m
n—1 MST - MST
MST _ N —y/d o (d=y)d Ly (Xn) mmTY Y LT (m(Xa 0 Q1))
LMST — z; |ei|3vg ~cnn—/9d = cnld=)/ ¥ n ; Y n i
P

e From the [0,1]9 result

LMST (m(x, N Q) = c(ny)d=1/4

® The constant c in front is 34,

1—e
09) e ° e From smoothness of f
°© e ol | o} © Fry d
0 ® ni/n~m~9f(q;)
0.7r® o] ] g
06l—8 @: 1) ® % o Therefore
65— S 5
ok 00 B b LMST(m(XaN Q) & enld=/d(m=df)(d=1/d
0.4 [o] @ %p ° &
P e @qg ® ® ® since
03 o P (mfdf)(d*w)/d — m“/mfl/df(dfv)/d(q,)
0.2 ) B
01 m
o o 22 ] LyST(Xn) ay n(d*“’)/d‘cz f(df’Y)/d(qi)m*l/d
0 0.2 04 0.6 08 1

i=1
20190



Continuum limits
Comments on BHH continuum limit

Yukich's proof technique applies to TSP, kNNG, Steiner tree, etc.

Each of these quasi-additive continuous length functionals will have its own
characteristic constant c.

Extensions beyond BHH
e A CLT for kNN and MST graphs has also been established (Avram and
Bertsimas 1993)
e BHH established when S is smooth Riemannian manifold in RY (Costa
2006)

The BHH motivated approximate combinatorial optimization algorithms
e A polynomial nearly optimal approximation to the TSP (Borovkov 1962)
o A partitioning approximations to the the TSP (Karp 1976)
o Partitioning approximations to the k-point MST (Ravi 1994)

The BHH motivated applications of combinatorial optimization algorithms
e MST and kNN graphs for entropy estimation (Hero 1999)
e MST and kNN graphs for pattern matching and image registration
(Neemuchwala 2004)
e GMST and kNN graphs for intrinsic dimension estimation (Costa 2003)
J. Costa and A. Hero, " Learning intrinsic dimension and entropy of shapes,” in Statistics and analysis of shapes, Eds. H. Krim and T.

Yezzi, Birkhauser, 2005.
21 | 90



Continuum limits
BHH theorem Riemannian extension

Theorem (Costa 2004, 2005 )

Let (S,g) be a compact smooth Riemannian d-dimensional manifold in RP.
Suppose X, = {X1,...,Xn} is a random sample on S with density f relative to
pg andd >2,1<~y<d. Then

LMST(Xn

lim — ):ﬁdw/ £ (x)dpg
S

n— oo ne

where o = (d —v)/d.

Alternative representation For finite n
logLﬂA:IST(X,,) = alogn + (1 — a)Ha(X) + logBq4,. + €(n)

where
Ho(X)=(1—a)! |n/5 F(x)d g

is a-entropy of X and £(n) — 0 w.p.1.

Key observation: can use representation of logLQ/’ST to estimate intrinsic
dimension d of S in addition to entropy of f(x).

221 90



Continuum limits

Dimension and entropy estimation for unif density on swiss roll

Segment n=T86:799 ¢f MST sequence (y=1,m=10) for anil sampied Ewiss Roll Segment of bgMST sequence (y=1,m=10) for unit samped Swiss Rol
81 04

802 e

i Y= 0.53'x +3.2

81 M
o HV | Y = G + b
- 803,

a0e 696

GgEIL

: e

. A~
] 90 T

™ b ¥ ThT EiE T THos
n)
logloginear Fit

loglEIL 1)

Bootstrap SE bar (83% CI)

e d = round <1L> =2
2.1
o Au(X) = 2/2oeban 73

e Ground truth: H,(X) = log(1869) = 7.53

232 | 90



Continuum limits

Dimension estimation: MNIST digits

Local Dimension/Entropy Statistics

; T | 3

w L— é et 3 i .
DR

e . I R 150 = ﬁ e 13

' q] s ‘“'ﬁ [_;LI E T T T @ T

" ' 130 + ! ]
1 H L | Eﬁo- i - Q i
I & R 1 :: H ' * |
" L L Ot 2 3 4 s & 7 8 3

J. Costa and A. Hero, " Learning intrinsic dimension and entropy of shapes,” in Statistics and analysis of shape, Eds. H. Krim and T.

Yezzi, Birkhauser, 2005
24 | 90



Continuum limits

Dimension estimation: dimension-driven image segmentation

Count

10 15
Dimension

14 16
Dimension

25 | 90



Continuum limits

Dimension estimation: dimension-driven image segmentation

Carter " Dimensionality Reduction on Statistical Manifolds,” PhD Thesis, Univ. of Michigan 2008

26 | 90



Continuum limits
Continuum limit of greedy kMST length functional

Ravi (1996) proposed a greedy partitioning approximation to kMST.

Theorem (Hero and Michel 1999 )
Fix p € [0,1]. If k/n — p then the length of Ravi's greedy partitioning k-MST
satisfies
kMST @ . fet
LMST () (pn)® — By A:P:?Afm/ Fo(xlx € Aydx  (a.5.)
Pr(A) = [, f.

Alternatively, defining the conditional entropy function

Ha(flx € A) = - L In/fa(x|x€ A)dx,
-«
1 kMST a .
1o In (LW (Xn)/(pn) ) — By.d A:P:?Af)z;) Ho(flx € A)+c  (as.)

Solution to variational problem is a level set A = A, of f.

@ A. Hero and O. Michel, " Asymptotic theory of greedy approximations to minimal K-point random graphs,” |IEEE Information Theory

1999.
27 |1 90



Continuum limits

Continuum limit of kMST length functional

Original density Derived minimum entropy density

3
Ry
0 \:Q“““\\

R
it
4y DO R Z R
LU EBRI R i TR
Rz e A la e AN N s ! Patiita

Here level set Ag satisfies P(X € Ag) = p.

Level set can be estimated empirically from data X, by
.. . . 2 _ n :
e Empirical kernel estimation of f by f(x) = G(x) *>_"_;, 6(X;)
e Solve for level-set of f by variational pde
@ S. Osher and R. Fedkiw, " Level set methods: an overview and some recent results,” Journal of Computational physics, 2001

® J. Sethian, "Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer

vision, and materials science,” Vol. 3. Cambridge university press, 1999

28 1 90



Continuum limits

Continuum limit of FR length functional

Let X = {Xi,...,Xn} and ¥ = {Y1,..., Y} be independent sets of i.i.d.
random vectors in RY with marginal pdfs £, and f,, respectively.

Theorem (Henze and Penrose, 1999)

Let n, m converge to infinity in such a way that n/(n+m) = ¢, ¢ € [0,1]. Then
the FR length functional satisfies

L (X UY)/(n+m) — / eﬂ(x)&—l(—)?l@—(xe))fy(x) dx (a.s.)

Alternatively, define the f-divergence

Di(pra) = (acta - ) ([ (LEI=C I g o1y

then (Berisha and Hero 2015)

n—+m

1- LR u)) T

— De(f, f) (a.s.)

® N. Henze and M. Penrose, "On the multivariate runs test,” Ann. of Statistics, 1999.
e V. Berisha and A. Hero, "Empirical non-parametric estimation of the Fisher Information,” IEEE Signal Processing Letters, 2015.

209 | 90



Continuum limits

Continuum limit of shortest path

Let X = {Xi,...,X,} be i.i.d. random vectors in R? with marginal pdf f and
fix two points x and y in RY.

Theorem (Hwang, Damelin and Hero 2015)

Assume that inf.f(x) > 0 over a compact support set S with pd metric tensor
g. The shortest path between any two points x,y € S satisfies

L/ G [ 1) o (0,7 @)t (25

dist~ (x,y)

where the infimum is taken over all piecewise smooth curves 7 : [0,1] — R?
with mo = x and w1 =y and C(d,~) is a constant independent of f.

® S.-J. Hwang, A. Hero, "Shortest path through random points,” submitted (arXiv:1202.0045) 2012.
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Continuum limits

Experimental validation of shortest path continuum limit

10' g — -

F ——-0.4879 X + 2.3315 |3

I ——-0.5108 X + 1.9059 | |

T 4
» R T E
10-' TT—— =

E 1 1 1 [ R | 1 1 1 TR R

107 10° 10*

Regression equation (o = (1 —~)/d):

logL+(X) = alogn + logdisty(x, y) + logCq,~
Experimental setting
e d =2, v = 2 so that slope should be (1 —~v)/d =—-0.5
e X, are n uniform points on S = §2
e Blue plot: x =(1,0,0), y = (-1,0,0)
e Red plot: x =(0,1,0), y =(0,0,1)
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Non-dominated sorting

Outline

© Non-dominated sorting
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Non-dominated sorting

Motivation of non-dominated sorting

Focus has been on finding a solution to a convex optimization problem
e Basis pursuit and dictionary learning find “a best match.”
e Parametric estimation produces a ML, MAP, or min MSE estimator.

e Matrix completion gives “the best signal reconstruction.”
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Non-dominated sorting

Motivation of non-dominated sorting

Focus has been on finding a solution to a convex optimization problem
e Basis pursuit and dictionary learning find “a best match.”
e Parametric estimation produces a ML, MAP, or min MSE estimator.

e Matrix completion gives “the best signal reconstruction.”

Emerging area in Imaging, SP and ML: “Learning to rank”
e Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender,
Learning to rank using gradient descent. ICML 2005.
e Jamieson, Nowak, Active ranking using pairwise comparisons, NIPS 2011.

e Osting, Brune, Osher, Enhanced statistical rankings via targeted data
collection, ICML 2013.

e Duchi, Mackey, Jordan, The asymptotics of ranking algorithms, Ann.
Stat. 2013.
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Non-dominated sorting

Motivation of non-dominated sorting

Focus has been on finding a solution to a convex optimization problem
e Basis pursuit and dictionary learning find “a best match.”
e Parametric estimation produces a ML, MAP, or min MSE estimator.

e Matrix completion gives “the best signal reconstruction.”

Emerging area in Imaging, SP and ML: “Learning to rank”
e Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender,
Learning to rank using gradient descent. ICML 2005.
e Jamieson, Nowak, Active ranking using pairwise comparisons, NIPS 2011.
e Osting, Brune, Osher, Enhanced statistical rankings via targeted data
collection, ICML 2013.
e Duchi, Mackey, Jordan, The asymptotics of ranking algorithms, Ann.
Stat. 2013.

Driving application: database search and retrieval
o Internet users won't examine more than a few of the top matches

e In many cases there exist multiple criteria, multiple ranking functions

e cost vs location of hotels in TripAdvisor search
e recency vs number of citations in Google Scholar search
o risk vs expected return in financial portfolio selection
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Non-dominated sorting

Example: retrieve images combining semantic concepts

Objective: search a database for images combining semantic concepts of "sea”
and "mountain”

Desired match
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Non-dominated sorting

Example (ctd): Query 1 results from Google images

Image size:
344 x 214
Find other sizes of this image:
All sizes - Medium - Large
Visually similar images Report images

B— e — |
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Non-dominated sorting

Example (ctd): Query 2 results from Google images

Image size:
344 % 257

Find other sizes of this image:
All sizes - Large

Report images
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Non-dominated sorting

Problem: single query searches can't combine multiple concepts

Matches to concepts sorted according to scalar ranking functions ri,r» > 0

n(i) < n(ik) <...<r(i)

rz(jl) < I’z(jg) <. < I’z(jn)
Problem: Single matching criterion cannot easily combine different concepts.

The combined concepts will tend to be far down each list.

Possible solutions:
e Semantic labeling with text tags: requires human intervention
e Metasearch: search the results of the searches

e Scalarization: convert r; and r, to single criterion

ro =an+ (1 —a)rn, «a€l0,1]

Scalarization is a convexification of the multiple criteria [r1, r2] requiring
specification of «

A7 1 90



Non-dominated sorting

Example (ctd): Set of pairs X = {[ri (i), ()]}
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Non-dominated sorting

Example (ctd): Scalarization with o = 0.1
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Non-dominated sorting

Example (ctd): Scalarization with o = 0.3
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Non-dominated sorting

Example (ctd): Scalarization with a = 0.9
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Non-dominated sorting

Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull

Alternative: non-dominated ranking (multi-objective optimization)
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Non-dominated sorting

Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull
Alternative: non-dominated ranking (multi-objective optimization)

Let X = {X1,...,X,} be n points in RY
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Non-dominated sorting

Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull
Alternative: non-dominated ranking (multi-objective optimization)

Let X = {X1,...,X,} be n points in RY

Define partial order relation " <" between any X,Y € R

XSY&e Xi <Y, Vi=1,...,d
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Non-dominated sorting

Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull
Alternative: non-dominated ranking (multi-objective optimization)

Let X = {X1,...,X,} be n points in RY

Define partial order relation " <" between any X,Y € R

XY s X <Y, Vi=1,...,d
X is a minimal element of X if
DXeXand2){Xie X : X; <X} =10

Define min X the set (Pareto front) of all minimal elements of X
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Non-dominated sorting

Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull
Alternative: non-dominated ranking (multi-objective optimization)

Let X = {X1,...,X,} be n points in RY

Define partial order relation " <" between any X,Y € R

XSY&e Xi <Y, Vi=1,...,d

X is a minimal element of X if
DXeXand2){Xie X : X; <X} =10

Define min X the set (Pareto front) of all minimal elements of X

A Pareto front of depth k, denoted {F}, is defined recursively

Fi = minX
Fi min{X/u,k;ff,-}, k=1,2,...
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Non-dominated sorting

Example (ctd): Set of pairs F = {[fi(i), ()]},
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Non-dominated sorting

Example (ctd): Pareto front F
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Non-dominated sorting

Example (ctd): Pareto fronts U?_, F;
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Non-dominated sorting

Example (ctd): Pareto fronts U3_, F;

=
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Non-dominated sorting

Example (ctd): Pareto fronts U?_| F;
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Non-dominated sorting

Example (ctd): Pareto fronts U2_, F;
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Non-dominated sorting

Example (ctd): Pareto fronts U®_, F;

59 | 90



Non-dominated sorting

Real application: multiple concept image retrieval

Pareto fronts give high
ranks to points that are
not highly ranked by linear

A S LY : : N scalarization.

_lOO points below this line

Red fronts are the first4
- fronts covering around

| i 100 points.

il Red and green fronts are

| it the first 8 fronts covering

around 200 points

200 points below this line

. . . 1
Black lines: scalarize with A = >

L L L i I I . s

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching

Hsiao, Calder and H, “Multiple-query Image Retrieval using Pareto Front Method,” IEEE Trans. on Image Processing 2015.
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Non-dominated sorting

Real application: first Pareto front (Skyline)

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching
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Non-dominated sorting

Multi-query retrieval performance comparisons

——— Pareta front mathod —F— Parsto front method
0.072 Joini_Avg Joint_Avg
— - - MO Awg — — —MQAvg
MO Max MO_Max
0.07% | —+— Joint SVM —+— Joim_SVM
**&++*
g ; "
a — QT
0.066 0.08
L B L o B S
0.064 __7_,——--"""’ 0.07
0.062 0.06
20 40 60 80 100 5
K
{a) Mediamill dataset (by LAMDA dataset

nDCR is normalized discounted cumulative relevance score (Hsiao 2015) that
measures the relevance of top K matches to the queries.

Mediamill and LAMBDA are widely used multi-concept benchmarking datasets
e Mediamill has 29800 videos and 101 semantic concept labels (Snoek 2006)
e LAMBDA has 2000 images with 5 class labels: desert, sea, sunset,
mountains, trees (Zhou 2006)

e C. Snoek, M. Worring, J. Van Gemert, J. Geusebroek, and A. Smeulders, The challenge problem for automated detection of 101
semantic concepts in multimedia, in Proceedings of the 14th annual ACM Intern. Conf. on Multimedia, 2006
® Z.-H. Zhou and M.-L. Zhang, Multi-instance multi-label learning with application to scene classification, Advances in Neural

Information Processing Systems,2006.
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Continuum limits

Outline

© Continuum limits
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Continuum limits

Continuum limit: Demo for Unif[0, 1]

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]

1
0.9
08
0.7
0.6
0.5
0.4
0.3
0.2
01

L T T I

-

0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]

0.8

0.7

0.6

0.5

0.4

0.3

0.2

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Gaussiany(0, /)

0.9

06

05

04r

e Tt
03l 9

0.1

L L I L L
0 01 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Gaussiany(0, /)

0.9r-

08

07

041

03fF

0.2~

0.1

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Gaussiany(0, /)

0.9r-

08

07

041

03fF

0.2~

0.1

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.

70 1 90



Continuum limits

Continuum limit: Demo for Gaussiany(0, /)
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J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]?

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]?

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]?
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J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]?
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J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits
Asymptotic theorem

Define un(x) the function that counts the number of Pareto fronts in wedge
{X; < x}. Assume that supp(f) C Q C RY, Q bounded with Lipshitz 9Q.

Theorem (Calder et al. [2014])

There exists a cg > 0 such that w.p.1
n Y, = cqU, in L®(RY)

where

@ U is the Pareto monotone ? solution of the variational problem

U(x) = sup / F ) (1) va()

€A JO

where A = {'y € CH0,1;RY) : 4 () =0Vt € [0,1]}

® U is the unique viscosity solution to the Hamilton-Jacobi p.d.e

au U 1.
o O gil 9
U = 0o0onoQ

U(x) S UQy) ifx Sy
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Continuum limits

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Demonstration: theory vs experiment for smoothed Unif[0. 1]/[0. 0.5]2

1

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits
Discussion

Proof of theorem relies on connection to longest chain problem (Ulam
[1961]),(Hammersley et al. [1972]), (Aldous and Diaconis [1995])

e uy(x) is the length of longest chain in {X; € X : X; < x}.
e Fj is anti-chain containing {X; € X : un(X;) = k}

® U, = Ugx,,....x,} IS a superadditive functional in the sense that

Ugxy,... X3 (X) > Z Uixy,... xanR;3 (X)
i1

o Superadditivity implies convergence of n~'/?u,

e Smoothness of f implies convergent limit obeys Hamiltonian-Jacobi p.d.e.

Low complexity (linear) numerical p.d.e. solver proposed (Calder et al. [2013])

d
d j—d d
[JIux) = U(x - he)] = h¥d~f(x), x € {h,2h,..., Mh}
i=1
J. Calder, S. Esedoglu, A. O. Hero, "A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015
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Continuum limits

Relation of Pareto fronts to longest chain problem

A chain is a sequence xi, ..., X, such that

X1<..A§X/

Equivalent definition of counting function ua(x)

un(x) is length of longest chain in {X; : X; < x}

d—1
Note: Number of points on a front u,(x) = k is of order n"a"
= Number of fronts is of order né

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits

Proof concept behind integral form of continuum limit

Ri,”
."’

I

W [Ri| = ~i(t;) - valty) A

L({ Xy, Xo}NR) = c,i(f(-,(t,))\}?]|n)%
= caf (V)T ((6) -+ 7i(1))* Atnt

By monotonicity of v, can connect the chains within R;’s

(X, X)) > D (X, X} N R)

Q=

Q

Zf" ’Yl(tj) "'Y;(tj))%At n

J. Calder, "Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limits
Proof concept behind pde form of continuum limit

For small |v|

¢, — DU

(DU, vy == U(z+v)— U(z)
=~ (# fronts in A)n._Tlf

1
{, = PUY) 22 (# samplesin A)7n™ 4

=~ (n|A|f(z))Tn 7.
Using |A| ~ L2Y "“tf' we have
(U =U(z)}

Rigorous proof is more complicated since

e on this slide we assumed U € C?, which is not generally true
e on this slide we assumed n='/9u, — U

e norm of HJ p.d.e. is non-standard and may not have unique soln o



Application

Outline

© Application to anomaly detection
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Application

Multicriteria anomaly detection

Motivation: Detect anomalous pedestrian trajectories.
Question: Which one of these groups of trajectories are anomalous?

S

Anomalous trajectories Nominal trajectories

Curve features: curve length, shape, walking speed.

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Application
Multicriteria anomaly detection

Speed and shape similarity between trajectories T;(t), T;(t) € R*:
Di(i,j) = ||hist(AT;) — hist(AT;)||,

D(i,j) = ITi = Tl

1. Scalarization: Dali) Da(i,j)
Dy(i,j) = AD4(ij) + (1-A)D,(i,j) = S

Y

2. Pareto depth analysis: (D1(i), D))
(Dl(ilj)rDz(iij)) - one dyad

K.-J. Hsiao, K. Xu, J. Calder and A. Hero “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Application

Detection performance of multicriteria anomaly detection

PDA Algorithm:

* Embed N choose 2 dyads onto plane

* Build Pareto fronts of non-dominated dyads.
* Compute anomaly scores = depth of front.

True positive rate

) = PDA method
0.2 - == k-LPE with best AUC weight
k-LPE with worst AUC weight
| Attainable region of k-LPE

PDA outperforms scalarization

:

0 0.2 0.4 0.6 0.8 1
False positive rate

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Application

Run-time comparisons

1000 T T T T T T
Non-dominated sorting —o—
Solve PDE —=— R
Solve PDE & rank all points —s— _—
@ 100 ¢ e 4
© / —
= e
z A
o 10 *E}/ 4
—_N

gt

0 18+08 26408 38+08 4e+08 5e+08 6¢+08 7e+08 82408 9e+08 1e+09
Number of samples

e Performed on 50,000 trajectories (a total of 10° Pareto points)

e Grid size used 250 x 250

J. Calder, S. Esedoglu, A. O. Hero, " A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015. Calder et al.

[2013]
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Application

References for continuum limits of non-dominated sorting

References for continuum approximations to non-dominated sorting:

@ J. Calder, S. Esedoglu and A.O. Hero, " A Hamilton-Jacobi equation for
the continuum limit of non-dominated sorting”, SIAM Mathematical
Analysis, Feb 2014. arXiv:1302.53828.

® J. Calder, S. Esedoglu, A. O. Hero, "A PDE-based approach to
non-dominated sorting,” SIAM Numerical Analysis, Jan 2015.
arxiv:1320.2498.

A gentle introduction to the theory:

@ J. Calder, S. Esedoglu and A.O. Hero, " A continuum limit for
non-dominated sorting,” Conference on Information Theory and
Applications(ITA), Feb. 2014.

References for applications of non-dominated sorting:

@ K.-J. Hsiao, J. Calder and A.Q. Hero, " Pareto-depth for multiple-query
image retrieval,” |IEEE Trans. Image Processing (in press) 2015.
arxiv:1402.5176

® K.-J. Hsiao, K. S. Xu, J. Calder and A. O. Hero, " Multi-criteria Anomaly
Detection using Pareto Depth Analysis”, Proc. of Neural Information
Processing Systems (NIPS), Dec. 2012. arxiv:1110.3741 .
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Summary

Summary

e Asymptotic continuum limits can be useful for combinatorial problems in
imaging

o These limits are related to entropy and divergence and motivate

e New methods for geometric combinatorial optimization problems

o New approaches to clustering, classification, registration in high dimension

e Continuous optimization interpretations for certain discrete optimization
problems

o There are other fruitful continuum limit applications: directed graphs,
multigraphs, hypergraphs.
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