
Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Combinatorial continuum limits and their applications

Alfred Hero

†University of Michigan

June 1, 2015

Conference on Scale Space and Variational Methods (SSVM)
Lege, France

1 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

1 Geometric graphs in imaging and computer vision

2 Minimal graphs

3 Continuum limits

4 Non-dominated sorting

5 Continuum limits

6 Application to anomaly detection

7 Summary

2 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Acknowledgements

Former students contributing to work

• Kumar Sricharan (Parc Research)

• Jeff Calder (UC Berkeley)

• Ko-Jen Hsiao (Whispers)

• Kevin Xu (University of Toledo)

• John Gorman (DARPA)

• Bing Ma (University of Nevada)

• Huzefa Neemuchwala (Abbott, Inc)

• Jose Costa (Teza Technologies)

Collaborators contributing to work

• Selim Esedoglu (University of Michigan)

• Olivier Michel (INPG Grenoble)

• Alejandro Frangi (U. Sheffield)

Sponsors of work presented here

• ARO Database Indexing and Retrieval Program

• ARO MURI Value of Information Program

• NSF: Theoretical Foundations Program

• NIH Biomedical Imaging Institute

3 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Outline

1 Geometric graphs in imaging and computer vision

2 Minimal graphs

3 Continuum limits

4 Non-dominated sorting

5 Continuum limits

6 Application to anomaly detection

7 Summary

4 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Geometric graphs in imaging and computer vision

A geometric graph has nodes V that represent real valued features and edges E
that represent similarities between the features (Penrose 2003).

Some applications where geometric graphs arise

• Computer vision, video and image processing
• Clustering and segmentation (GLap, kNNG, MST, graph cuts)
• Dimensionality reduction (GLap, kNNG, GMST)
• Denoising and anomaly detection (kMST, BP-kNNG)
• Orthoregistration (MST, kNNG)
• Frame-to-frame registration (TSP)
• Multi-resolution image representation (MST-based pyramid)
• Image inpainting interpolation (kNNG)

• Image/video indexing and retrieval
• Query-reference matching (NNG)
• Database partitioning (kNNG)
• Multi-criterion image retrieval (Non-dominated sorting)

Such geometric graphs are often modeled as random, having nodal feature
vectors {X1, . . . ,Xn} drawn from some probability distribution f .

M. Penrose, Random geometric graphs, Oxford University Press 2003
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Example: dictionary learning of grain networks in materials science

Bipartite indexing of polycrystaline materials (Park et al 2015)

• Nodes: Bottom - spatial locations on slice.
Top - patterns in dictionary

• Features: Possible Kikuchi diffraction
patterns of crystal planes

• Edges: The top 4 pattern matches between
slice and dictionary

Grain-level fusion of polycrystaline materials (Chen et al 2015)

• Nodes: spatial locations on slice

• Features: spatial patch intensities (BSE) or
Kikuchi patterns (EBSD)

• Edges: feature correlations that exceed a
high level

• S.U. Park et al, ”A dictionary approach to the EBSD indexing problem,” Microscopy and Microanalysis, June 2015.

• Y.-H. Chen et al,”Parameter estimation in spherical symmetry groups,” IEEE Signal Processing Letters, Jan. 2015.

• Y.-H. Chen et al, ”Coercive region-level registration for multi-modal images,” to appear in IEEE Conf. on Image Processing, 2015.
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Continuum limits of random geometric graphs

Let L(Xn) be a function of this graph, e.g., the sum of the edge weights.

Minimizing L(Xn) over the edge set is a discrete optimization problem and
often combinatorial complexity.

Sometimes there is an α > 0 such that the continuum limit
limn→∞min L(Xn)/nα exists or has a known probability distribution.

Some benefits of continuum limits

• Provides intuition about asymptotic sensitivity of graph topology to f ,
e.g., k-point MST

• Reveals new graph-based statistical estimators of mean of continuum
limit, e.g. entropy estimation

• Permits setting significance level of hypothesis tests on P(Xn), e.g.,
Friedman-Rafsky multivariate runs test

• Leads to scalable continuous relaxations of otherwise combinatorial graph
construction problem, e.g., pde solvers for non-dominated sorting problems
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Minimal geometric graphs

Define Xn = {X1, . . . ,Xn} a set of points (features)) in M⊂ IRd .

A graph G = {V, E}
• {V} = {X1, . . . ,Xn}: vertices or nodes

• {E} = {eij}: edges connecting distinct pairs {i , j}
• |eij | = ‖Xi − Xj‖: edge length wrt to a distance metric on M
• A = ((aij)): adjacency matrix associated with G

aij =

{
1, eij ∈ E
0, o.w .

• di =
∑

j aij : degree of vertex i

Length functional

L(V, E) =
∑
eij∈E

|eij |γ

where γ ≥ 0.
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k-nearest neighbor (kNN) graph

• kNN graph is solution of the
optimization

LkNN
γ (V) = min

E:A1=k1
Lγ(V, E)

= min
E:A1=k1

∑
eij∈E

|eij |γ

=
n∑

i=1

∑
j∈Nk (Xi )

‖Xi − Xj‖γ

• Nk(Xi ) are the k-nearest neighbors of
Xi in Xn − {Xi}

• Vision applications: inpainting, feature
density estimation,
clustering+classification,
dimensionality reduction

• Computational complexity is
O(knlogn)
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kNNGs in spectral clustering and dimensionality reduction

k-NNG-based spectral algorithm

• Extract features Xn = {X1, . . . ,Xn}
• Compute similarity matrix W btwn Xi ’s

• Use W to construct kNN graph over Xn

• (V,Λ) =Eigendecomp(W −D), D = diag(W1)

• Dimension reduction: Yn = Λ
1/2
2×2[v1, v2]T Xn

• Spectral clustering: K-means(v2)

Adjacency matrix kNNG

kNNG clustering for image segementation (Felzenszwalb 2003)

3D data 2D Graph Laplacian embeddings (Ting 2011)

• Belkin, Mikhail, and Partha Niyogi. ”Laplacian eigenmaps and spectral techniques for embedding and clustering.” NIPS. Vol. 14. 2001.

• Coifman, Ronald R., and Stphane Lafon. ”Diffusion maps.” Applied and computational harmonic analysis 21.1 (2006): 5-30.
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Minimal spanning tree (MST)

• MST is solution of the optimization

LMST
γ (V) = min

E:A1>0
Lγ(V, E)

= min
E:A1>0

∑
eij∈E

|eij |γ

• MST spans all of the vertices V
without cycles

• MST has exactly n − 1 edges

• Vision applications: image
segmentation, image registration,
clustering

• Computational complexity is O(n2logn)
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Illustration: MST for image segmentation, representation and rendering

MST-based image segmentation (Zahn 1971, Felzenszwalb 2003)

MST for surface rendering (Hoppe 1992))
MST for building image pyramid (Mathieu 1996)

• Zahn, Charles T. ”Graph-theoretical methods for detecting and describing gestalt clusters.” IEEE Transactions on Computers, 1971

• P. Felzenswalb and D. Huttenlocher, ”Efficient graph-based image segmentation,” International Journal of Computer Vision, 2004

• H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, ”Surface reconstruction from unorganized points,” SIGRAPH, 1992

• C. Mathieu and I. Magnin, ”On the choice of the first level on graph pyramids”, Journal of Mathematical Imaging and Vision, 1996
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Friedman-Rafsky graph (FR)

• Two labeled samples Xn, Ym

• Start with MST over V = Xn ∪ Ym

LMST
γ (V) = min

E:A1>0
Lγ(V, E)

=
∑

eij∈E∗
|eXXij |γ + |eXYij |γ + |eYYij |γ

• FR graph is the set of edges {eXYij }
• The length of FR graph is

LFR
γ (V) =

∑
eXYij ∈E

∗

|eXYij |γ

• This was proposed as a difference
measure (divergence) btwn
distributions of Xn and Ym (Friedman
and Rafsky, 1979)

J. Friedman, and L. Rafsky. ”Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests,” Annals of Statistics, 1979.
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Friedman-Rafsky graph (FR)

• Two labeled samples Xn, Ym

• Start with MST over V = Xn ∪ Ym

LMST
γ (V) = min

E:A1>0
Lγ(V, E)

=
∑

eij∈E∗
|eXXij |γ + |eXYij |γ + |eYYij |γ

• FR graph is the set of edges {eXYij }
• The length of FR graph is

LFR
γ (V) =

∑
eXYij ∈E

∗

|eXYij |γ

• Vision applications: image registration,
pattern matching, meta-learning

• Computational complexity is
O((n + m)2log(n + m))
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Application: multimodality image registration using MI

Find transformation T that best aligns
images I1 and I2

Feature vector at location zi ∈ IR2:
X(i) = [I1(zi ),T (I2(zi ))]

Joint intensity histogram
pX(x1, x2) = n−1

∑n
i=1 X[x1,x2](X(i))

Maximize mutual information (MI)

max
T

255∑
x1,x2=0

pX(x1, x2) ln

(
pX(x1, x2)

pX1
(x1)pT (X2)(x2)

)
= max

T
H(I1,T (I2))− H(I1)− H(T (I2))

Where have defined entropy of V

H(V) = n−1
∑
v

ln
1

pV (v)

Mutual information (MI) based registration

• W. Wells, P. Viola, P., H. Atsumi, S. Nakajima, and R. Kikinis, ”Multi-modal volume registration by maximization of mutual

information,” Medical image analysis, 1996.

• E. Oubel, M. De Craene, A. Hero, A. Pourmorteza, M. Huguet, G. Avegliano, B. Bijnens, A. Frangi, ”Cardiac motion estimation by

joint alignment of tagged MRI sequences,” Med. Image Anal. 2012.
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Comparison: multimodality image registration using FR

Find transformation T that best aligns
images I1 and I2

Feature vectors of I1 and T (I2) at
location zi ∈ IR2:

X1(i) = [W(zi ), zi ], X2(i) = [W(zi ), zi ]

W1(zi ) and W2(zi ) are localized Meyer
wavelet coefficients of I1 and T (I2)

Maximize FR statistic

max
T

LFRγ (X1,X2)

FR registration uses higher dimensional

(6) features that capture images’ local

spatial patterns

• H. Neemwuchwala and A. Hero, ”Entropic Graphs for Registration,” in Multi-Sensor Image Fusion and its Applications, Eds. R. S.

Blum and Z. Liu, Marcel Dekker, Inc., 2005.
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k-Minimal spanning tree (kMST)

• Let Vk ⊂ V and |Vk | = k

• Let Ek be edges over Vk
• kMST is solution of the optimization

LkMST
γ (V) = min

Vk :|Vk |=k
LMST
γ (Vk)

= min
Vk :|Vk |=k

min
Ek :Ak1>0

∑
eij∈Ek

|eij |γ

• kMST is the smallest MST that spans
any k of the vertices V

• Vision applications: Denoising and
outlier detection, robust image
registration, robust clustering

• Computational complexity is NP hard

• Greedy approximations are available
(Ravi 1994)

R. Ravi, M. Marathe, D. Rosenkrantz and S. Ravi ”Spanning trees short and small,” Proc of ACM-SIAM Symp on Discrete Algorithms, 1994.
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Denoising illustration of kMST

Ring pdf f1

Uniform pdf f0

f = (1− ε)f1 + εf0

• A. Hero and O. Michel, ”Asymptotic theory of greedy approximations to minimal K-point random graphs,” IEEE Information Theory

1999.

21 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Illustration: kMST for WSN intruder detection

• A. Hero, ”Geometric entropy minimization (GEM) for anomaly detection and localization,” NIPS 2006

• K. Sricharan and A. Hero, ”Efficient anomaly detection using bipartite k-NN graphs,” NIPS 2011.
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Shortest path (SP)

• Let G be a graph with m = |E| edges on n
vertices V

• π(XI ,XF ) a path over G btwn points XI

and XF

π(XI ,XF ) = (XI ,Xi1 , . . . ,Xil ,XF )

Xij+1
is neighbor on G of predecessor Xij

and XI = Xi0 , XF = Xil+1

• The shortest path is the solution to

LSPγ (V) = min
π(Xi ,XF )

∑
Xi∈π(XI ,XF )

|Xij+1
− Xij |

γ

• Typical choices of G:

• kNN graph
• MST

• Vision applications: dimensionality
reduction, manifold learning, image
retrieval

• Computational complexity is O(m+nlogn)
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Illustration: kNN and shortest paths ISOMAP dimensionality reduction

• Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. ”A global geometric framework for nonlinear dimensionality reduction.”

Science 290.5500 (2000): 2319-2323.
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MST continuum limit: MST length functional captures “spread” of
distribution
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Large n behavior of MST length functional

length(MST) (log length(MST))/
√
n

Unif.

Triang.

Unif.

Triang.
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Continuum limit of kNN and MST length functionals

Theorem (Beardwood, Halton&Hammersley 1959)

Let Xn = {X1, . . . ,Xn} be an i.i.d. realization from a Lebesgue density f
supported on compact subset of IRd . If 0 < γ < d

lim
n→∞

LMST ,kNN
γ (Xn)/n(d−γ)/d = βγ,d

∫
f (x)(d−γ)/ddx , (a.s.)

Alternatively, letting α = (d − γ)/d and defining the entropy function

Hα(f ) =
1

1− α

∫
f α(x)dx ,

1

1− α ln Lγ(Xn)/nα → Hα(f ) + c (a.s.)

• RMS rate of convergence (Costa & Hero 2003)

sup
f∈Hβ,K

E

[∣∣∣∣βγ,d ∫
S
f (x)(d−γ)/ddx − LMST

γ (Xn)/n(d−γ)/d

∣∣∣∣2
]1/2

≥ cn−
β
β+1

1
d

J. Beardwood and J. H. Halton and J. M. Hammersley, ”The shortest path through many points,” Proc. Cambridge Philosophical Society

1959. (BHH proved the limit for the TSP, f (x) uniform, and γ = 1. )
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Continuum limit for Euclidean length functionals (Yukich 1998)

• BHH theorem holds generally for any quasi-additive continuous Euclidean
length functional Lγ(F ) (Yukich 1998) - kNN, Steiner tree, TSP

• Translation invariant and homogeneous

∀ x ∈ IRd , Lγ(F + x) = Lγ(F), (translation invariance)

∀ c > 0, Lγ(cF ) = cγLγ(F), (homogeneity)

• Null condition: Lγ(φ) = 0, where φ is the null set
• Subadditivity: There exists a constant C1 with the following property: For

any uniform resolution 1/m-partition Qm

Lγ(F ) ≤ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ]) + C1m
d−γ

• Superadditivity: For same conditions as above, there exists a constant C2

Lγ(F ) ≥ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ])− C2m
d−γ

• Continuity: There exists a constant C3 such that for all finite subsets F
and G of [0, 1]d

|Lγ(F ∪ G)− Lγ(F )| ≤ C3 (card(G))(d−γ)/d

J. Yukich, ”Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998. 29 90
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Main ideas behind proof of BHH (Yukich 1998)

Start with f (x) uniform over [0, 1]d

• Avg distance between n points in
[0, 1]d

|ei |avg = n−1/d

• Avg length of MST should therefore be

LMST
γ =

n−1∑
i=1

|ei |γavg ≈ c nn−γ/d = cn(d−γ)/d

• The constant c in front is βd,γ

Next apply partitioning heuristic

• Dissect [0, 1]d into md cubes {Qi} each with
center qi .

• From translation invariance, homogeneity,
quasi-additivity of MST

LMST
γ (Xn) ≈ m−γ

md∑
i=1

LMST
γ (m(Xn ∩ Qi ))

• From the [0, 1]d result

LMST
γ (m(Xn ∩ Qi )) = c(ni )

(d−γ)/d

• From smoothness of f

ni/n ≈ m−d f (qi )

• Therefore

LMST
γ (m(Xn∩Qi )) ≈ cn(d−γ)/d (m−d f )(d−γ)/d

• since
(m−d f )(d−γ)/d = mγm−1/d f (d−γ)/d (qi )

LMST
γ (Xn) ≈ n(d−γ)/d ·c

md∑
i=1

f (d−γ)/d (qi )m
−1/d
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Comments on BHH continuum limit

Yukich’s proof technique applies to TSP, kNNG, Steiner tree, etc.

Each of these quasi-additive continuous length functionals will have its own
characteristic constant c.

Extensions beyond BHH
• A CLT for kNN and MST graphs has also been established (Avram and

Bertsimas 1993)
• BHH established when S is smooth Riemannian manifold in IRd (Costa

2006)

The BHH motivated approximate combinatorial optimization algorithms
• A polynomial nearly optimal approximation to the TSP (Borovkov 1962)
• A partitioning approximations to the the TSP (Karp 1976)
• Partitioning approximations to the k-point MST (Ravi 1994)

The BHH motivated applications of combinatorial optimization algorithms
• MST and kNN graphs for entropy estimation (Hero 1999)
• MST and kNN graphs for pattern matching and image registration

(Neemuchwala 2004)
• GMST and kNN graphs for intrinsic dimension estimation (Costa 2003)

J. Costa and A. Hero, ”Learning intrinsic dimension and entropy of shapes,” in Statistics and analysis of shapes, Eds. H. Krim and T.

Yezzi, Birkhauser, 2005.
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BHH theorem Riemannian extension

Theorem (Costa 2004, 2005 )

Let (S, g) be a compact smooth Riemannian d-dimensional manifold in IRD .
Suppose Xn = {X1, . . . ,Xn} is a random sample on S with density f relative to
µg and d ≥ 2, 1 ≤ γ < d. Then

lim
n→∞

LMST
γ (Xn)

nα
= βd,γ

∫
S
f α(x)dµg

where α = (d − γ)/d.

Alternative representation For finite n

logLMST
γ (Xn) = αlogn + (1− α)Hα(X ) + logβd,L + ε(n)

where

Hα(X ) = (1− α)−1 ln

∫
S
f α(x)dµg

is α-entropy of X and ε(n)→ 0 w.p.1.

Key observation: can use representation of logLMST
γ to estimate intrinsic

dimension d of S in addition to entropy of f (x).
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Dimension and entropy estimation for unif density on swiss roll

• d̂ = round

(
γ

1− a

)
︸ ︷︷ ︸

2.1

= 2

• Ĥα(X ) =
b−γ/2logβd,γ

1−a
= 7.3

• Ground truth: Hα(X ) = log(1869) = 7.53
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Dimension estimation: MNIST digits

J. Costa and A. Hero, ”Learning intrinsic dimension and entropy of shapes,” in Statistics and analysis of shape, Eds. H. Krim and T.

Yezzi, Birkhauser, 2005

34 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Dimension estimation: dimension-driven image segmentation
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Dimension estimation: dimension-driven image segmentation

Carter ” Dimensionality Reduction on Statistical Manifolds,” PhD Thesis, Univ. of Michigan 2008
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Continuum limit of greedy kMST length functional

Ravi (1996) proposed a greedy partitioning approximation to kMST.

Theorem (Hero and Michel 1999 )

Fix ρ ∈ [0, 1]. If k/n→ ρ then the length of Ravi’s greedy partitioning k-MST
satisfies

LkMST
γ (Xn)/(ρn)α → βγ,d inf

A:Pr(A)≥ρ

∫
f α(x |x ∈ A)dx (a.s.)

Pr(A) =
∫
A
f .

Alternatively, defining the conditional entropy function

Hα(f |x ∈ A) =
1

1− α ln

∫
f α(x |x ∈ A)dx ,

1

1− α ln
(
LkMST
γ (Xn)/(ρn)α

)
→ βγ,d inf

A:Pr(A)≥ρ
Hα(f |x ∈ A) + c (a.s.)

Solution to variational problem is a level set A = Ao of f .

• A. Hero and O. Michel, ”Asymptotic theory of greedy approximations to minimal K-point random graphs,” IEEE Information Theory

1999.
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Continuum limit of kMST length functional

Here level set A0 satisfies P(X ∈ A0) = ρ.

Level set can be estimated empirically from data Xn by

• Empirical kernel estimation of f by f̂ (x) = G(x) ∗
∑n

i=1 δ(Xi )

• Solve for level-set of f̂ by variational pde

• S. Osher and R. Fedkiw, ”Level set methods: an overview and some recent results,” Journal of Computational physics, 2001

• J. Sethian, ”Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer

vision, and materials science,” Vol. 3. Cambridge university press, 1999
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Continuum limit of FR length functional

Let X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Ym} be independent sets of i.i.d.
random vectors in IRd with marginal pdfs fx and fy , respectively.

Theorem (Henze and Penrose, 1999)

Let n,m converge to infinity in such a way that n/(n + m) = ε, ε ∈ [0, 1]. Then
the FR length functional satisfies

LFR
1 (X ∪ Y)/(n + m)→

∫
fx(x)fy (x)

εfx(x) + (1− ε)fy (x)
dx (a.s.)

Alternatively, define the f-divergence

Dε(p, q) = (4ε(1− ε))−1

(∫
(εp(x)− (1− ε)q(x))2

εp(x) + (1− ε)q(x)
dx − (2ε− 1)2

)
then (Berisha and Hero 2015)

1− LFR
1 (X ∪ Y)

n + m

2nm
→ Dε(fx , fy ) (a.s.)

• N. Henze and M. Penrose, ”On the multivariate runs test,” Ann. of Statistics, 1999.

• V. Berisha and A. Hero, ”Empirical non-parametric estimation of the Fisher Information,” IEEE Signal Processing Letters, 2015.
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Continuum limit of shortest path

Let X = {X1, . . . ,Xn} be i.i.d. random vectors in IRd with marginal pdf f and
fix two points x and y in IRd .

Theorem (Hwang, Damelin and Hero 2015)

Assume that infx f (x) > 0 over a compact support set S with pd metric tensor
g. The shortest path between any two points x , y ∈ S satisfies

LSP
γ (X )/n(1−γ)/d → Cd,γ inf

π

∫ 1

0

f (πt)
(1−γ)/d

√
g(π′(t), π′(t))dt︸ ︷︷ ︸

distγ (x,y)

(a.s.)

where the infimum is taken over all piecewise smooth curves π : [0, 1]→ IRd

with π0 = x and π1 = y and C(d , γ) is a constant independent of f .

• S.-J. Hwang, A. Hero, ”Shortest path through random points,” submitted (arXiv:1202.0045) 2012.
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Experimental validation of shortest path continuum limit

Regression equation (α = (1− γ)/d):

logLγ(X ) = αlogn + logdistγ(x , y) + logCd,γ

Experimental setting

• d = 2, γ = 2 so that slope should be (1− γ)/d = −0.5

• Xn are n uniform points on S = S2

• Blue plot: x = (1, 0, 0), y = (−1, 0, 0)

• Red plot: x = (0, 1, 0), y = (0, 0, 1)
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Motivation of non-dominated sorting

Focus has been on finding a solution to a convex optimization problem

• Basis pursuit and dictionary learning find “a best match.”

• Parametric estimation produces a ML, MAP, or min MSE estimator.

• Matrix completion gives “the best signal reconstruction.”

Emerging area in Imaging, SP and ML: “Learning to rank”

• Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender,
Learning to rank using gradient descent. ICML 2005.

• Jamieson, Nowak, Active ranking using pairwise comparisons, NIPS 2011.

• Osting, Brune, Osher, Enhanced statistical rankings via targeted data
collection, ICML 2013.

• Duchi, Mackey, Jordan, The asymptotics of ranking algorithms, Ann.
Stat. 2013.

Driving application: database search and retrieval

• Internet users won’t examine more than a few of the top matches

• In many cases there exist multiple criteria, multiple ranking functions
• cost vs location of hotels in TripAdvisor search
• recency vs number of citations in Google Scholar search
• risk vs expected return in financial portfolio selection
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Example: retrieve images combining semantic concepts

Objective: search a database for images combining semantic concepts of ”sea”
and ”mountain”
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Example (ctd): Query 1 results from Google images
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Example (ctd): Query 2 results from Google images
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Problem: single query searches can’t combine multiple concepts

Matches to concepts sorted according to scalar ranking functions r1, r2 ≥ 0

r1(i1) < r1(i2) < . . . < r1(in)

r2(j1) < r2(j2) < . . . < r2(jn)

Problem: Single matching criterion cannot easily combine different concepts.

The combined concepts will tend to be far down each list.

Possible solutions:

• Semantic labeling with text tags: requires human intervention

• Metasearch: search the results of the searches

• Scalarization: convert r1 and r2 to single criterion

rα = αr1 + (1− α)r2, α ∈ [0, 1]

Scalarization is a convexification of the multiple criteria [r1, r2] requiring
specification of α
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Example (ctd): Set of pairs X = {[r1(i), r2(i)]}ni=1
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Example (ctd): Scalarization with α = 0.1
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Example (ctd): Scalarization with α = 0.3
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Example (ctd): Scalarization with α = 0.9
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Alternative: Non-dominated ranking combines multiple concepts

Scalarization only guaranteed to highly rank those images on convex hull

Alternative: non-dominated ranking (multi-objective optimization)

Let X = {X1, . . . ,Xn} be n points in IRd

Define partial order relation ”5” between any X,Y ∈ IRd :

X 5 Y ⇔ Xi ≤ Yi , ∀i = 1, . . . , d

X is a minimal element of X if

1) X ∈ X and 2) {Xi ∈ X : Xi 5 X} = ∅

Define minX the set (Pareto front) of all minimal elements of X .

A Pareto front of depth k, denoted {Fk}, is defined recursively

F1 = minX
Fk = min

{
X/ ∪k−1

i=1 Fi

}
, k = 1, 2, . . .
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Example (ctd): Set of pairs F = {[f1(i), f2(i)]}ni=1
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Example (ctd): Pareto front F1
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Example (ctd): Pareto fronts ∪2
i=1Fi
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Example (ctd): Pareto fronts ∪3
i=1Fi
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Example (ctd): Pareto fronts ∪4
i=1Fi
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Example (ctd): Pareto fronts ∪5
i=1Fi

58 90



Geometric graphs Minimal graphs Continuum limits Non-dominated sorting Continuum limits Application Summary References

Example (ctd): Pareto fronts ∪6
i=1Fi
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Real application: multiple concept image retrieval

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching

Hsiao, Calder and H, “Multiple-query Image Retrieval using Pareto Front Method,” IEEE Trans. on Image Processing 2015.
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Real application: first Pareto front (Skyline)

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching
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Multi-query retrieval performance comparisons

nDCR is normalized discounted cumulative relevance score (Hsiao 2015) that
measures the relevance of top K matches to the queries.

Mediamill and LAMBDA are widely used multi-concept benchmarking datasets
• Mediamill has 29800 videos and 101 semantic concept labels (Snoek 2006)
• LAMBDA has 2000 images with 5 class labels: desert, sea, sunset,

mountains, trees (Zhou 2006)

• C. Snoek, M. Worring, J. Van Gemert, J. Geusebroek, and A. Smeulders, The challenge problem for automated detection of 101

semantic concepts in multimedia, in Proceedings of the 14th annual ACM Intern. Conf. on Multimedia, 2006

• Z.-H. Zhou and M.-L. Zhang, Multi-instance multi-label learning with application to scene classification, Advances in Neural

Information Processing Systems,2006.
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Continuum limit: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Gaussian2(0, I )

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Gaussian2(0, I )

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Gaussian2(0, I )

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Gaussian2(0, I )

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Asymptotic theorem

Define un(x) the function that counts the number of Pareto fronts in wedge
{Xi 5 x}. Assume that supp(f ) ⊂ Ω ⊂ IRd , Ω bounded with Lipshitz ∂Ω.

Theorem (Calder et al. [2014])

There exists a cd > 0 such that w.p.1

n−1/dun → cdU, in L∞(IRd
+)

where

1 U is the Pareto monotone a solution of the variational problem

U(x) = sup
γ∈A

∫ 1

0

f
1
d (γ(t))(γ

′
1(t) · · · γ

′
d(t))

1
d dt

where A =
{
γ ∈ C 1(0, 1; IRd) : γ

′
(t) = 0 ∀t ∈ [0, 1]

}
2 U is the unique viscosity solution to the Hamilton-Jacobi p.d.e

∂U

∂x1
· · · ∂U

∂xd
=

1

dd
f in Ω

U = 0 on ∂Ω
aU(x) ≤ U(y) if x 5 y

J. Calder, S. Esedoglu and A. Hero, ”A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting”, SIAM Mathematical

Analysis, Feb 2014
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Demonstration: theory vs experiment for Unif[0, 1]/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Demonstration: theory vs experiment for smoothed Unif[0, 1]/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Discussion

Proof of theorem relies on connection to longest chain problem (Ulam
[1961]),(Hammersley et al. [1972]), (Aldous and Diaconis [1995])

• un(x) is the length of longest chain in {Xi ∈ X : Xi 5 x}.
• Fk is anti-chain containing {Xi ∈ X : un(Xi ) = k}
• un = u{X1,...,Xn} is a superadditive functional in the sense that

u{X1,...,Xn}(x) ≥
m∑
i=1

u{X1,...,Xn∩Ri}(x)

• Superadditivity implies convergence of n−1/dun

• Smoothness of f implies convergent limit obeys Hamiltonian-Jacobi p.d.e.

Low complexity (linear) numerical p.d.e. solver proposed (Calder et al. [2013])

d∏
i=1

[U(x)− U(x− hei )] = hdd−d f (x), x ∈ {h, 2h, . . . ,Mh}d

J. Calder, S. Esedoglu, A. O. Hero, ”A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015
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Relation of Pareto fronts to longest chain problem

A chain is a sequence x1, . . . , xn such that

x1 5 . . . 5 xl

Equivalent definition of counting function un(x)

un(x) is length of longest chain in {Xi : Xi 5 x}

Note: Number of points on a front un(x) = k is of order n
d−1
d

⇒ Number of fronts is of order n
1
d

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Proof concept behind integral form of continuum limit

By monotonicity of γ, can connect the chains within Rj ’s

`({X1, . . . ,Xn}) ≥
∑
j

`({X1, . . . ,Xn} ∩ Rj )

≈ cd

∑
j

f
1
d (γ(tj ))(γ

′
1(tj ) · · · γ

′
d (tj ))

1
d ∆t

 n
1
d

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Proof concept behind pde form of continuum limit

Rigorous proof is more complicated since
• on this slide we assumed U ∈ C 1, which is not generally true
• on this slide we assumed n−1/dun → U
• norm of HJ p.d.e. is non-standard and may not have unique soln

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Multicriteria anomaly detection

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Multicriteria anomaly detection

Speed and shape similarity between trajectories Ti (t),Tj(t) ∈ IR2:

D1(i , j) = ‖hist(∆Ti )− hist(∆Tj)‖,

D2(i , j) = ‖Ti − Tj‖

K.-J. Hsiao, K. Xu, J. Calder and A. Hero “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Detection performance of multicriteria anomaly detection

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Run-time comparisons

• Performed on 50, 000 trajectories (a total of 109 Pareto points)

• Grid size used 250× 250

J. Calder, S. Esedoglu, A. O. Hero, ”A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015. Calder et al.

[2013]
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References for continuum limits of non-dominated sorting

References for continuum approximations to non-dominated sorting:

1 J. Calder, S. Esedoglu and A.O. Hero, ”A Hamilton-Jacobi equation for
the continuum limit of non-dominated sorting”, SIAM Mathematical
Analysis, Feb 2014. arXiv:1302.5828.

2 J. Calder, S. Esedoglu, A. O. Hero, ”A PDE-based approach to
non-dominated sorting,” SIAM Numerical Analysis, Jan 2015.
arxiv:1320.2498.

A gentle introduction to the theory:

1 J. Calder, S. Esedoglu and A.O. Hero, ”A continuum limit for
non-dominated sorting,” Conference on Information Theory and
Applications(ITA), Feb. 2014.

References for applications of non-dominated sorting:

1 K.-J. Hsiao, J. Calder and A.O. Hero, ”Pareto-depth for multiple-query
image retrieval,” IEEE Trans. Image Processing (in press) 2015.
arxiv:1402.5176

2 K.-J. Hsiao, K. S. Xu, J. Calder and A. O. Hero, ”Multi-criteria Anomaly
Detection using Pareto Depth Analysis”, Proc. of Neural Information
Processing Systems (NIPS), Dec. 2012. arxiv:1110.3741 .
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Summary

• Asymptotic continuum limits can be useful for combinatorial problems in
imaging

• These limits are related to entropy and divergence and motivate
• New methods for geometric combinatorial optimization problems
• New approaches to clustering, classification, registration in high dimension
• Continuous optimization interpretations for certain discrete optimization

problems

• There are other fruitful continuum limit applications: directed graphs,
multigraphs, hypergraphs.
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