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1. Renyi Entropy and Réenyi Divergence

X ~ f(x) ad-dimensional random vector.

Rényi Entropy of order
1

1 —v

H,(f) =

In / () da

Rényi Divergence of order

L) = [ (4 )Vfo(af)dw

v—1

f, a dominating Lebesgue density




Examples

e Hellinger distance squared

Lt 4o = - [ V@G dx)

e Kullback-Liebler divergence

lin A4, £0) = [ £o(o)n J;f(f)) dz.



Current non-parametric entropy/divergence estimation methods are bgsed
on density estimation

1 "
H, = ln/ f¥(x)dx
Rd

1 —v

Difficulties

Histogram estimate of cts. entropy requires discretization correctign
factor

kernel or histogram estimation is unstable esp. for large
d-dimensional integration if,, can be impractical

convergence is slow esp. in highand asymptotic analysis is
complicated

unclear how to robustify’ against outliers

= function{ f(z) : = € R%} over-parameterizes entropy functional




2. Minimal Euclidean graphs

A graph G of degreéconsists of vertices and edges
e vertices are subset &f, = {z;}"_,: n points in R*
e edges are denoted;; }
o foranyi: card{e;;}; <l

Weight (with power exponent) of G

Lg(X) = > el
eEG




Example:

n-point Minimal Spanning Tree (MST)

Let M(AX,,) denote the possible sets of edges in the class of acyclic
graphs spanning, (spanning trees).

The Euclidean Power Weighted MST achieves

Other examples: TSP, Steiner Tree, K-means
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Figure 1. A data set and the MST




2.1. Asymptotics: the BHH Theorem and entropy
estimation

Theorem 1 [Redmond&Yukich:96] Lel be a quasi-additive Euclidean
functional with power-exponent and letX,, = {z1,...,z,} be ani.i.d.
sample drawn from a distribution df, 1]¢ with an absolutely continuous
component having (Lebesgue) dengity). Then

(3)
lim L(&X,)/m@=/4 = g /f(x)(d_’”/ddx, (a.s.)

n—oo

Or, lettingr = (d — v)/d

lim L(AX,)/n"”

n—oo




uniform 2—-d distribution (n=100) triangular 2—d distribution (n=100)
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Figure 2. 2D Triangular vs. Uniform sample study for MST.




MST length
2*Log(Ln/sqrt(n))
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Figure 3. MST and log MST weights as function of number of sam-
ples for 2D uniform vs. triangular study.




2.2. I-Divergence and Quasi-additive functions

g(x): areference density oR4

Assumef < g, i.e. for allz such thaty(x) = 0 we havef(z) = 0.

Make measure transformatiada — g(z)dz on|[0, 1]¢. Then for)),
= transformed data

lim L(Y,)/n"

n—oo




Proof

1. Make transformation of variables

r=[zl,.. 2N —y=1[y' ...,y

= G2z .2t

k
whereG (zF |z, ... 21) = ffoo g(@Flzk=t ... zl)dz"

2. Induced densityi(y), of the vectory, takes the form:

G, G )
g(GTD), Gy, yh)

whereG~! is inverse CDF and* = G~ 1(y*|z*~1, ... ot).

h(y)




3. Then we know
1

1 —v

f[,,(yn) — ln/h”(y)dy (a.s.)

4. By Jacobian formulady = ‘j—g‘ dz = g(x)dz and

1 —v 1 —v

Lo [y = om [ (@)ngda::f(f,g)

g(x)




3. Outlier Sensitivity of minimal n-point graphs

Assumef is a mixture density of the form

f=Q0—ef1+¢efo,
where
e f,Is aknown outlier density
e f; IS an unknown target density

e ¢ c [0,1]is unknown mixture parameter




50 samples from f 1 density Add 50 samples of uniform noise

Figure 4. 1st row: 2D torus density with and without the addition
of uniform “outliers.” 2nd row: corresponding MST'’s.




3.1. k-Minimal Euclidean Graphs

Fixk, 1 <k<n.

Let T, x = T(xy,, ...,z ) be aminimal graph connectirigdistinct
verticesz;, , ..., T;, .

The power weighte#-minimalgraph T, , = T"(x;+, ..., z;:) isthe
overall minimum weight-point graph

ne = L'(Xop)= min min ) [le|”
7 Uk Tn,k

6€Tn,k:




k—-MST (k=99): 1 outlier rejection (k=98): 2 outlier rejection

Figure 5. k-MST for 2D torus density with and without the addition
of uniform “outliers”.




4. Extended BHH Thm for k-Minimal Graphs

Fix a € [0, 1] and assume that thkeminimal graph igightly coverable If
k = |an], asn — oo we have (Hero&Michel:IT99)

L(X; )/(lan])” — Br, min /f”(a:\a: c A)dx (a.s.)

A:P(A) >«

or, alternatively, with

1

1 —v

H,(flz € A) = ln/f”(a:|x c A)dz

L0/ (lan))”  Brpep ((-0) win Hiflee ) (as

A:P(A) >«
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F|gure 6 A sample of7 5 points from the mixture densitf(xz) = 0.25f (x) + 0.75 fo () wheref is a uniform

density over{O, 1]2 and fq is a bivariate Gaussian density with meén /2, 1 /2) and diagonal covarianceliag(0.01). A

smallest subsean is the union of the two cross hatched cells shown forthe case o= 5 andk = 17.




4.1. Application: Robust Density
Estimation /Classification

Estimation ProblemEstimatef; () given sample from mixture

f(z) = (1—¢€)fi(z) + efolx)
e fo(x)=known contaminating density

Classification problendecide between

f(z) = fo(z)
flx)=(1—=¢€)f1(x) +efo(x), €€]0,1]




Step 1: induce change of measdie= fy(z)dx by transformation

F0(£I31)
Fo(x?|zt)

Fo(z%2%1, .. . 2t)

Step 2: builds-MST on transformed variablds’; } 7

Ly an)(Y)/(lan])” — Br,a min A(f(w) )Vfo(:v)da:

fo(z)

Robust Density Estimatorkernel estimator applied t&;_, ..., X;

tan]

A:P(A)>a

Classification rule: L} (Y) /n”




4.2. Application: Nonuniform Outlier Rejection

o f(x)=(1—c¢€)fi(x)+ efo(x): mixture density

e f1(z)is 2D unknown density ofp, 1]

e fo(z) is known 2D pyramid density of), 1]




256 random samples

F|g ure 7 . Left: A scatterplot of a 256 point sample from triangle-uniform mixture densitysvith 0.1. Labels'0o’ and ™
mark those realizations from the uniform and pyramid densities, respectively. Right: superimposek-i¥8implemented directly
on the scatterplot¥’,, with & = 230.




N=256, k/N=0.9, f=0. 1*tr|ang+0 9*unif N=256, k/N=0.9, f=0.1*triang+0.9*unif

0.2 0.4 0.6 : 0.2 0.4 0.6 0.8
Original Coordinates Transformed Coordinates

F|gu e 8 Left: A sample from triangle-uniform mixture density with= 0.9 in the transformed domaiyy,, . Labels "0’
and ™" mark those realizations from the uniform and pyramid densities, respectively. Right: transformed coordinates.




N=256, k/N=0.9, fO:unif, fl:triang N=256, k/N=0.9, fO:unif, flztriang
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F|gu e 9 . Left: thek-MST implemented on the transformed scatterplgi with & = 230. Right: samée:-MST displayed
in the original data domain.




4.3. Application: Pattern Matching and Registration

Two independent data samples to be matched
o X = | X1,..., X,] ~ f(x)
oY =[Y1,....Y] ~g(x)

Supposey(z) = f(Ax +b), ATA=1T

Objective: find rigid transformatiod, b to minimize Renyi divergence

Lfg)= gl [ (%)Vﬂw)dx




Conclusions

e Random quasi-additive graph weight convergeséoyR Divergence
of orderv after measure transformation

e Greedy polynomial implementations ofMST have been developed
for robust estimation, discrimination and pattern matching
applications

o Decision threshold depends on difficult quanity.,




