Rényi Information Divergence via Measure Transformations on Minimal Spanning Trees

Alfred O. Hero¹ Dept. EECS University of Michigan 1301 Beal Avenue Ann Arbor, MI 48109-2122 USA hero@eecs.umich.edu

Abstract — We apply the results of [2] to estimation of Rényi I-divergence between an unknown distribution and a known reference distribution using power weighted pruned minimal graphs spanning a random sample of n points from the unknown distribution. In particular we establish that the weight of a minimal graph connecting the points converges a.s. in n to the I-divergence after a suitable change of measure.

I. INTRODUCTION

Let $\mathcal{X}_n = \{x_1, x_2, \ldots, x_n\}$ denote a sample of i.i.d. data points in \mathbb{R}^d having unknown Lebesgue multivariate density f(x) supported on $[0, 1]^d$. Define the order ν Rényi I-divergence [1] with respect to a dominating reference density $f_o(x)$

$$I_{\nu}(f, f_{o}) = \frac{1}{\nu - 1} \ln \int \left(\frac{f(x)}{f_{o}(x)}\right)^{\nu} f_{o}(x) dx \qquad (1)$$

The I-divergence takes on its minimum value (equals zero) if and only if $f = f_o$ (a.e.). $I_{\nu}(f, f_o)$ reduces to the Rényi entropy $H_{\nu}(f)$ when f_o is equal to a uniform density over $[0, 1]^d$. Special cases of interest are obtained for $\nu = \frac{1}{2}$ for which one obtains the log Hellinger distance squared and for $\nu \to 1$ for which one obtains the Kullback-Liebler divergence.

II. MST'S AND ENTROPY ESTIMATION

A spanning tree \mathcal{T} through the sample \mathcal{X}_n is a connected acyclic graph which passes through all the n points $\{x_i\}_i$ in the sample. \mathcal{T} is specified by an ordered list of edge (Euclidean) lengths e_{ij} connecting certain pairs $(x_i, x_j), i \neq j$, along with a list of edge adjacency relations. The power weighted length of the tree \mathcal{T} is the sum of all edge lengths raised to a power $\gamma \in (0, d)$, denoted by: $\sum_{e \in \mathcal{T}} |e|^{\gamma}$. The minimal spanning tree (MST) is the tree which has the minimal length $L(\mathcal{X}_n) = \min_{\mathcal{T}} \sum_{e \in \mathcal{T}} |e|^{\gamma}$. For any subset $\mathcal{X}_{n,k}$ of k points in \mathcal{X}_n define $\mathcal{T}_{\mathcal{X}_{n,k}}$ the k-point MST which spans $\mathcal{X}_{n,k}$. The k-MST is defined as that k-point MST which has minimum length. Thus the k-MST spans the densest k-dimensional subset $\mathcal{X}_{n,k}^*$ of \mathcal{X}_n . The k-MST computation is NP complete. In [2] we presented asymptotic results for a d-dimensional extension of the

Olivier J.J. Michel Laboratoire de Physique, URA-1325 CNRS, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France omichel@physique.ens-lyon.fr

planar k-MST approximation of Ravi et al, called the greedy k-MST approximation, which runs in polynomial time.

Let $\nu \in (0,1)$ be defined by $\nu = (d-\gamma)/d$ and define the statistic

$$\hat{H}_{\nu}(\mathcal{X}_{n,k}^{*}) = \frac{1}{1-\nu} \ln\left(n^{-\nu} L(\mathcal{X}_{n,k}^{*})\right) + \beta(\nu, d)$$
(2)

where β is a constant equal to the ν -th order Rényi entropy of the uniform density on $[0, 1]^d$. Let G(x) be the coordinate transformation on $[0, 1]^d$ which maps the reference distribution f_o to a uniform distribution and define the transformed data sample $\mathcal{Y}_n = G(\mathcal{X}_n)$. Then using the results of [2] it can be shown that $\hat{H}_{\nu}(\mathcal{Y}_{n,n}^*)$ is an a.s. consistent estimator of the I-divergence (1). Furthermore, with $\alpha = k/n$, $\hat{H}_{\nu}(\mathcal{Y}_{n,k}^*)$ is an α -trimmed estimator of I-divergence in the sense that

$$\hat{H}_{\nu}(\mathcal{Y}_{n,k}^*) \to \min_{A:P(A) \ge \alpha} \frac{1}{1-\nu} \ln \int_{A} \left(\frac{f(x)}{f_o(x)}\right)^{\nu} f_o(x) dx \quad (a.s.) \quad (3)$$

where the minimization is performed over all *d*dimensional Borel subsets of $[0, 1]^d$ having probability $P(A) = \int_A f_o(x) dx \ge \alpha.$

Let f follow the mixture model

$$f = (1 - \epsilon)f_1 + \epsilon f_o, \tag{4}$$

where f_o is a known outlier density and f_1 , $\epsilon \in [0, 1]$ are unknown. Then for small ϵ and α close to one it can easily be shown that the right hand side of (3), which is $I_{\nu}(f, f_o)$, is to a close approximation $I_{\nu}(f_1, f_o)$. Thus $\hat{H}_{\nu}(\mathcal{Y}^*_{n,k})$ is a robust estimator of $I_{\nu}(f_1, f_o)$.

Note the following: the estimator $\hat{H}_{\nu}(\mathcal{Y}_{n,k}^*)$ does not require performing the difficult step of density estimation; estimates of various orders ν of I_{ν} can be obtained by varying the edge power exponent; the sequence of trees $\mathcal{Y}_{n,2}, \ldots \mathcal{Y}_{n,n} = \mathcal{Y}_n$ provides a natural extension of rank order statistics for multidimensional data. Here k plays the same role as the parameter α in the α trimmed mean estimator for 1-dimensional data.

References

- M. Basseville, "Distance measures for signal processing and pattern recognition," *Signal Processing*, vol. 18, pp. 349–369, 1989.
- [2] A. Hero and O. Michel, "Asymptotic theory of greedy approximations to minimal k-point random graphs," *IEEE Trans. on Inform. Theory*, vol. IT-45, no. 6, pp. 1921-1939, Sept. 1999.

¹This research was supported in part by AFOSR under MURI grant F49620-97-0028.