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Abstract | We apply the results of [2] to es-
timation of R�enyi I-divergence between an un-
known distribution and a known reference dis-
tribution using power weighted pruned minimal
graphs spanning a random sample of n points
from the unknown distribution. In particular
we establish that the weight of a minimal graph
connecting the points converges a.s. in n to the
I-divergence after a suitable change of measure.

I. Introduction

Let Xn = fx1; x2; : : : ; xng denote a sample of i.i.d.
data points in Rd having unknown Lebesgue multivari-
ate density f(x) supported on [0; 1]d. De�ne the order
� R�enyi I-divergence [1] with respect to a dominating
reference density fo(x)

I�(f; fo) =
1

� � 1
ln

Z �
f(x)

fo(x)

��

fo(x)dx (1)

The I-divergence takes on its minimum value (equals
zero) if and only if f = fo (a.e.). I�(f; fo) reduces to
the R�enyi entropy H�(f) when fo is equal to a uniform
density over [0; 1]d. Special cases of interest are ob-
tained for � = 1

2
for which one obtains the log Hellinger

distance squared and for � ! 1 for which one obtains
the Kullback-Liebler divergence.

II. MST's and Entropy Estimation

A spanning tree T through the sample Xn is a con-
nected acyclic graph which passes through all the n
points fxigi in the sample. T is speci�ed by an or-
dered list of edge (Euclidean) lengths eij connecting
certain pairs (xi; xj), i 6= j, along with a list of edge
adjacency relations. The power weighted length of the
tree T is the sum of all edge lengths raised to a power
 2 (0; d), denoted by:

P
e2T

jej . The minimal span-
ning tree (MST) is the tree which has the minimal
length L(Xn) = minT

P
e2T

jej . For any subset Xn;k

of k points in Xn de�ne TXn;k the k-point MST which
spans Xn;k. The k-MST is de�ned as that k-point MST
which has minimum length. Thus the k-MST spans
the densest k-dimensional subset X �

n;k of Xn. The k-
MST computation is NP complete. In [2] we presented
asymptotic results for a d-dimensional extension of the
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planar k-MST approximation of Ravi et al, called the
greedy k-MST approximation, which runs in polyno-
mial time.

Let � 2 (0; 1) be de�ned by � = (d�)=d and de�ne
the statistic

Ĥ�(X
�
n;k) =

1

1� �
ln
�
n��L(X �

n;k)
�
+ �(�; d) (2)

where � is a constant equal to the �-th order R�enyi
entropy of the uniform density on [0; 1]d. Let G(x) be
the coordinate transformation on [0; 1]d which maps the
reference distribution fo to a uniform distribution and
de�ne the transformed data sample Yn = G(Xn). Then
using the results of [2] it can be shown that Ĥ�(Y

�
n;n)

is an a.s. consistent estimator of the I-divergence (1).
Furthermore, with � = k=n, Ĥ�(Y

�
n;k) is an �-trimmed

estimator of I-divergence in the sense that

Ĥ�(Y
�
n;k)! min

A:P (A)��

1

1 � �
ln

Z
A

�
f(x)

fo(x)

��

fo(x)dx (a:s:) (3)

where the minimization is performed over all d-
dimensional Borel subsets of [0; 1]d having probability
P (A) =

R
A
fo(x)dx � �.

Let f follow the mixture model

f = (1� �)f1 + �fo; (4)

where fo is a known outlier density and f1, � 2 [0; 1] are
unknown. Then for small � and � close to one it can
easily be shown that the right hand side of (3), which is
I�(f; fo), is to a close approximation I�(f1; fo). Thus
Ĥ�(Y

�
n;k) is a robust estimator of I�(f1; fo).

Note the following: the estimator Ĥ�(Y
�
n;k) does not

require performing the diÆcult step of density estima-
tion; estimates of various orders � of I� can be obtained
by varying the edge power exponent; the sequence of
trees Yn;2; : : :Yn;n = Yn provides a natural extension of
rank order statistics for multidimensional data. Here
k plays the same role as the parameter � in the �-
trimmed mean estimator for 1-dimensional data.
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