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Abstract

Over the past decade there has been an explosion in the
amount of genomic data available to biomedical researchers
due to advances in biotechnology. For example, using gene
microarrays, it is now possible to probe a person’s gene ex-
pression profile over the more than 20,000 genes in the hu-
man genome. Signals extracted from gene microarray exper-
iments can be linked to genetic factors underlying disease,
development, and aging in a population. This has greatly ac-
celerated the pace of gene discovery. However, the massive
scale and experimental variability of genomic data makes ex-
traction of biologically significant genetic information very
challenging. One of the most important problems is to select
a list of genes which are both biologically and statistically
significant based on the outcomes of gene microarray exper-
iments. We will describe a novel multicriteria method that
we have developed for this gene selection problem that al-
lows tight control of both minimum observable differential
change (biological significance) and familywise error rate
(statistical significance) and also provides a set of simulta-
neous confidence intervals for the differences.

Keywords: bioinformatics, gene filtering, multicriteria
scattergram, familywise error rates.

1. INTRODUCTION

Since Watson and Crick discovered DNA more than fifty
years ago, the field of genomics has progressed from a spec-
ulative science starved for data and computation cycles to
one of the most thriving areas of current research and de-
velopment.32 It was not until almost 45 years after Watson
and Crick’s discovery that the first entire bacterial genome
was sequenced, the E Coli bacterium containing over 4000
genes, after many years of effort. In 2000, under the aus-
pices of the international Human Genome Project (HGP),
the first draft human genome was obtained, identifying the
genes in 90% of 30,000 tagged sites along the DNA double
helix. In Spring 2003, and almost two years ahead of sched-
ule, the HGP was declared complete with 99% of the human

genome sequenced with 99.9% accuracy.10 In spring 2003
the genome for the SARS corona virus (SARS-CoV) was se-
quenced and authenticated in less than 2 months time.28,23

These recent leaps in progress would not have been possible
without significant advances in gene sequencing technology.
One such technology, which is the main focus of this paper,
are gene microarrays and their associated signal extraction
and processing algorithms.

Gene microarrays provide a high throughput method to
simultaneously probe a large number gene expression lev-
els in a biological sample. Current state-of-the-art microar-
rays contain up to 50,000 gene probes that interact with the
sample producing probe responses that can be measured as
a multichannel signal. When the probes are suitably repre-
sentative of the range of genetic variation of the organism,
this signal specifies a unique gene expression signature of
the sample. Gene microarrays are a very powerful tool which
can be used to perform gene sequencing, gene mapping and
gene expression profiling. They will be critical in determin-
ing the genetic circuits that regulate expression levels over
time and genetic pathways that lead to specific biological
function or dysfunction of an organism.

In this paper we will present a new multicriteria approach
to analyzing gene microarray data that we have developed
while interacting with our collaborators in molecular biol-
ogy. The focus application of the paper is the analysis of
temporal gene expression profiles and their role in explor-
ing genetic factors underlying disease, regulatory pathways
controlling cell function, organogenesis and development. In
particular we and our collaborators in the Dept. of Human
Genetics at the University of Michigan are interested in an-
alyzing retinal data to determine genetic factors underlying
dysfunction of the eye due to aging, glaucoma, macular de-
generation, and diabetes. Our examples will be primarily
drawn from these areas and we will focus on the problem
of selection of genes that are both biologically significant, in
terms of exhibiting large foldchange over time or over treat-
ment, and statistically significant, in terms of controlling the
rate of false positives.



In our past work on signal processing for gene microar-
rays12,13,16,29,17 our primary goal has been to develop sta-
tistically reliable methods for ranking temporal gene expres-
sion profiles. The work most closely related to this paper is
our multicriteria optimization approach togene rankingus-
ing a statistical version of Pareto front analysis.16,17 In that
work two methods for ranking data from multiple microar-
ray experiments were introduced: cross-validation leading to
resistant Pareto front (RPF) analysis, and Bayes smoothing,
leading to posterior Pareto front (PPF) analysis. In this paper
we focus on thegene selectionproblem and adopt a statisti-
cal multicriteria approach similar to our previous work. The
novelty of our gene selection method is the use of a two stage
procedure: 1) perform preliminary screening using multicri-
teria tests of significance; and 2) perform secondary screen-
ing using false discovery rate confidence intervals (FDRCI)
on foldchange. The two stage procedure allows the experi-
menter to simultaneously impose a minimum foldchange re-
quirement and a prescribed family wise error rate (FER) on
the set of genes selected.

We illustrate our two stage methods for two Affymetrix
GeneChip experiments designed to probe the genes of the
retina. In these experiments we adopt pairs of criteria
for stage 1 which trade-off high selectively for robustness.
Specifically, one selection criterion is a (multivariate) paired
t-test statistic for selecting gene profiles. This criterion has
optimal gene selection properties under a Gaussian microar-
ray probe response model. The other criterion is based on
distribution-free rank order statistics. This criterion is ro-
bust to violations of distributional assumptions on the data.
Stage 2 is implemented by thresholding simultaneous con-
fidence intervals on foldchange constructed from adjusted
Student-t quantiles. The purpose of this article is to illus-
trate methodology and not to report scientific findings. How-
ever, as presented in,35,24 application of our procedure has
resulted in discovery of many novel genes which have been
experimentally validated by more sensitive foldchange quan-
titation methods (RT-PCR).

The outline of the paper is as follows. In Sec. 2 we give
some background on genomics and review gene microarrays
in the context of temporal profile analysis. In Sec. 3 we
motivate and describe the multicriteria selection and ranking
approach. In Secs. 4 and 5 we discuss familywise error rate
(FER), false discovery rate (FDR), and false discovery rate
confidence intervals (FDRCI) for multicriteria gene screen-
ing. Finally, in Sec. 6 we illustrate these techniques for ex-
perimental data.

2. GENOMICS BACKGROUND

We start with some definitions and a brief review of molecu-
lar biology and genetics. The genome refers to the genetic

operating system which controls structure and function of
cells in an organism. This genome consists of genes that
lie on segments, called exons, of the double stranded DNA
helix which lie on a number of chromosomes in the nucleus
of every cell in the organism. The number of genes in the
DNA of a given organism can range from a few thousand for
simple organisms to tens of thousands for more sophisticated
organisms. Each exon contains a gene which is encoded as
a nucleotide sequence of symbols A,C,G,T forming a 4-ary
alphabet.

Gene expression occurs when the DNA sheds certain of
its genes in the cell nucleus in order to stimulate or inhibit
various functions, e.g., cell growth or metabolism. This stim-
ulation occurs through production of derivatives of DNA, the
mRNA and tRNA, produced by a process called transcrip-
tion and translation. Stimulated by mRNA and tRNA the
ribosome of a cell produces specific amino acids in polype-
tide chains. These chains form proteins that carry out the in-
tended function expressed by the DNA. While the DNA does
not change, the specific genes expressed in this fashion can
change over time, environmental conditions, and treatments.
The objective of genomics is to identify the very large num-
bers of genes that are expressed by the organism.

Biotechnology, such as gene microarray hybridization,
Northern hybridization, and gel electrophoresis, is essential
to reliably probe the gene expression of a biological sam-
ple. Bioinformatics provides tools for computational extrac-
tion and analysis of the vast amounts of information in probe
response data. As scientists and genetic engineers become
increasingly interested in studies of gene expression profiles
over time, signal processing will become a major bioinfor-
matics tool. We next briefly describe the signals generated
by gene microarrays.

A gene microarray consists of a large numberN of known
DNA probe sequences that are put in distinct locations on a
slide. See one of the references9,5 for more details. After
hybridization of an unknown tissue sample to the gene mi-
croarray, the abundance of each probe present in the sam-
ple can be estimated from the measured levels of hybridiza-
tion. Two main types of gene microarrays are in wide use:
photo-lithographic gene chips and fluorescent spotted cDNA
arrays. An example of the former is the Affymetrix3 prod-
uct line. An example of the later is the cDNA microarray
protocol of the National Human Genome Research Institute
(NHGRI).27 A suite of software tools are available from
Affymetrix and elsewhere for extracting accurate estimates
of abundance, called probe responses. When probe responses
are to be compared across different microarray experiments
they must also be normalized. Extraction and normalization
methods can range from simple unweighted sample averag-
ing, as in the Affymetrix MAS4 software, to more sophisti-



cated model-based analysis, such as MAS5,3 the Li-Wong
method,21,22 RMA oligo-chip analysis,20 and SMA cDNA-
chip analysis.34,2 Many of these packages are available as
freeware, e.g., see websites1,31 for links to relevant software
written in the R software language.19 When several mi-

Figure 1. Probing gene expression at several time points
leads to a temporal sequence of gene microarrays (left). A
few of the sequences can be extracted at specific probe loca-
tions on the microarrays and plotted as time signals (right).

croarray experiments are performed over time they can be
combined in order to find genes with interesting temporal
expression profiles (see Fig. 1). This is a data mining prob-
lem known variously as “gene selection,” “gene screening,”
and “gene filtering” for which many methods have been pro-
posed.15,4,8 Crucial for gene ranking is the specification of
a preference ordering for the ranking. A popular gene selec-
tion and ranking method is based on optimizing some sin-
gle fitness criterion such as: the ratio of between-population-
variation to within-population-variation; or the temporal cor-
relation between a measured profile and a profile template. A
problem with this single criterion ranking method is that it is
often difficult for the molecular biologist to articulate what
he is looking for in terms of a single quantitative criterion.
It is for this reason that our group has proposed multicriteria
methods for selecting and ranking gene profiles.12,16,17

3. MULTICRITERIA SELECTION AND
RANKING

As contrasted to maximizingscalar criteria, multicriteria
gene screening seeks gene profiles that strike an optimal
compromise between maximizing several criteria. It is of-
ten easier for a molecular biologist to specify several criteria

than a single criterion. For example the biologist might be in-
terested in aging genes, which he might define as those genes
having expression profiles that are increasing over time, have
low curvature over time, and whose total increase from ini-
tial time to final time is large. Or one may have to deal with
two biologists who each have different criteria for what fea-
tures constitute an interesting aging gene. As another ex-
ample, which reflects the applications discussed below, one
may wish to use two different statistical criteria; one quan-
titative foldchange criterion matched to an assumed model
and another qualitative monotonicity criterion that is robust
to violations in model assumptions.

Multicriteria Gene Selection: We define the fitness of a
geneg using the vector�(g) = [�1(g); : : : ; �p(g)]. Any
genes whose fitness vector lies in the positive quadrant
�1(g) > u1; : : : ; �p(g) > up will be said to have a “posi-
tive response.” Hereu1; : : : ; up are thresholds which could
be selected by the experimenter to reflect the biological sig-
nificance of a particular level of measured gene fitness�(g).
This is illustrated in Fig. 2 where the selected sector for
two aging criteria is superimposed over the scatter plot of
fitness levels extracted for all the genes probe in the microar-
ray. This scatter plot is called the multicriteria scattergram of
the fitness responses.

Figure 2. Multicriteria scattergram of gene fitness responses
for aging study with overlaid gene selection sector. Genes
falling in this sector are declared “positive responses”. The
choice of position[u1; u2] of the sector could depend on the
experimenter’s chosen biological significance levels. The
two criteria are the JT (horizontal axis) and paired T-test
(vertical axis) statistics described in Section 6.

Multicriteria Gene Ranking : In a well designed gene mi-
croarray experiment, multicriteria (or other) methods of se-
lection will generally result in a large number of genes



and the biologist must next face the problem of selecting
a few of the most “promising genes” to investigate further.
Resolution of this problem is of importance since valida-
tion of gene response requires running more sensitive am-
plification protocols, such as quantitative real-time reverse-
transcription polymerase-chain-reaction (RT-PCR). As com-
pared to microarray experiments, RT-PCR’s higher sensitiv-
ity is offset by its lower throughput and its higher cost-per-
probe. Some sort of rank ordering of the selected genes
would help guide the biologist to a solution of the valida-
tion problem. As a linear ordering of vector quantities such
asf[�1(g); : : : ; �p(g)]gg does not generally exist, an absolute
ranking of the selected genes is of course generally impossi-
ble. However a partial ordering of these vectors is possible
and such a ”partial ranking” can be formulated as a multicri-
teria optimization problem. Further details on multicriteria
optimization approaches to gene ranking were presented in17

to which the reader is referred for more details. In this paper
we concentrate on the gene selection problem.

Multicriteria gene selection and ranking methods are re-
lated to multicriteria optimization, also called multiobjective
optimization and vector optimization,11 which are applica-
ble to any user defined set of criteria. However, these meth-
ods do not account for any statistical uncertainty. The study
of gene expression almost always requires hybridizing sev-
eral microarrays from a population to capture and reduce re-
sponse variability. This variability can be due to two fac-
tors: biological variability of the population and experimen-
tal variability. It is difficult to separate these two factors and
most analysis is performed with a statistical model which
lumps them together.

4. ERROR RATES FOR MULTIPLE
SCREENING CRITERIA

For comparing experiments in a way that accounts for sta-
tistical variations it is essential for an experimenter to re-
port a figure of statistical significance of his findings. Three
important quantities indicative of statistical significance are
the p-value, associated with testing a single gene response,
the familywise error rate (FER) and the false discovery rate
(FDR), associated with testing all the gene probes simulta-
neously (multiple comparisons). In gene microarray experi-
ments the biologist is always making multiple comparisons
so FER or FDR must be controlled. Define the aggregate
fitness vector�(g) = [�1(g); : : : ; �p(g)]

T as a statistic com-
puted by sample averaging over all of the microarray repli-
cates of theg-th gene response. The null hypothesis is that
that the response vectorsf�(g)g are independent and iden-
tically distributed (i.i.d.). The objective is to detect positive
gene responses which deviate from the null hypothesis by
detecting gene fitness vectors lying in a positive quadrant of

the multicriteria scattergram. In order to control false posi-
tive rates one needs to estimate them and this requires either
knowing the statistical distributionP of the responses under
the null hypothesis or implementing bootstrap procedures.
For concreteness in this section we assume thatP is known.

Let the measured aggregate fitness of a particular geneg
be�1(g) = u1(g); : : : ; �p(g) = up(g). The p-value is com-

Figure 3. The maximum p-value for multicriteria gene se-
lection in the aging gene mouse retina microarray experi-
ment (left). The FDR, computed from the p-value using a
well known formula,14 for the same experiment (right). The
genes are rank ordered in terms of their p-value and FDR
probabilities, respectively.

puted for a single gene probe, say genego, and is the prob-
ability that purely random effects would have causedgo to
be erroneously selected, generating a “false positive,” based
on observing microarray responses for genego only. More
precisely the p-value forgo is defined as:

pv(go) = P (�1 > u1(go); : : : ; �p > up(go))

where�1; : : : ; �p are random variables equal to fitness levels
of an i.i.d. random sample andu1(go); : : : ; up(go) are con-
sidered as fixed and non-random. If an experimenter were
only interested in deciding on the biological significance of a
single genego based only on observing probes for that gene,
then reportingp(go) would be sufficient for another biolo-
gist to assess the statistical significance of the experimenter’s
statement thatgo exhibits a positive response. In contrast to
the p-value, FER and FDR communicate statistical signifi-
cance of an experimenter’s finding of biological significance
after observing all gene responses. The FER is the probabil-
ity that there are any false positives among the set of genes
selected. On the other hand, the FDR refers to the expected
proportion of false positives among the selected genes. The



FDR is a less stringent criterion than the FER and weakly
controls the FER.14,6,30

When the p-values are known the FER and the FDR can
be upper bounded using Bonferroni-type methods.25 Oth-
erwise, the p-value, FER and FDR can be computed em-
pirically by simulation or resampling methods33 and this is
the method we have used here. In general an experimenter
would like the p-values, the FER and the FDR for his se-
lected genes to be as low as possible in order to ensure a high
level of statistical significance. However, as compared to the
more conservative FER and FDR constraints, screening by
the maximum p-value gives an overly optimistic measure of
significance. This is illustrated for the FDR in Fig. 3 for the
aging gene microarray study described in Section 6.

5. INCLUSION OF MINIMUM FOLD CHANGE
CRITERION

The methods described above are applicable to discover-
ing genes with any non-zero differential response at a pre-
scribed level of significance. Frequently the experimenter
is only interested in genes whose differential response over
time or over treatment exceeds some threshold. This thresh-
old is generally expressed in terms of log base two of the
ratio of two responses and has units of “foldchange.” The
experimenters choice of minimum foldchange is commonly
determined by the sensitivity of follow-up validation tech-
niques such as RT-PCR. For example, our experimental col-
laborators commonly work with a minimum validatable fold
change somewhere between 1.0 and 2.0.

For screening genes with a minimum foldchange criterion
we have adopted a two-stage procedure based on the method
of False Discovery Rate Confidence Intervals (FDRCI) of
Benjamini and Yekutieli.7 The first stage of this procedure
uses multicriteria screening techniques, described in the pre-
vious section, to find a set of genes which are differentially
expressed at a prescribed FDR levelq. The second stage
constructs simultaneous(1 � q)% confidence intervals for
the foldchanges at each time point for each gene discovered
in the first stage. These confidence intervals are constructed
on the time points using the FDRCI procedure of Benjamini
and Yekutieli. A gene is declared “foldchange-significant”
at foldchange levelfmin and significance levelq if it has at
least one time point for which the foldchange confidence in-
terval is greater thanfmin or less than�fmin. This procedure
has the advantage of providing simultaneous confidence in-
tervals on fold changes of each gene selected as foldchange-
significant.
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Figure 4. 24 data points (4 replicates at each 6 time points)
for a specific gene extracted from 24 GeneChips in mouse
retina aging study.

6. APPLICATIONS

Here we illustrate multicriteria screening techniques for data
from two gene microarray experiments. The biological
significance of the experiment and the list of foldchange-
significant genes found will be reported elsewhere.35,24 Our
purpose here is simply to illustrate the application of our
gene selection and ranking techniques on real data. Both
experiments used oligonucleotide-arrays, specifically the
Affymetrix U74 mouse chips, and probe responses were ex-
tracted using the Affymetrix MAS53 and RMA20 software
packages.

6.1. Strongly Increasing Profiles

The experiment consists of 24 retinal tissue samples taken
from each of 24 age-sorted mice at 6 ages (time points) with
4 replicates per time point. These 6 time points consisted of 2
early development (Pn2, Pn10) and 4 late development (M2,
M6, M16, M21) time points. DNA from each sample of reti-
nal tissue was amplified and hybridized to the 12,422 probes
on one of 24 Affymetrix U74 GeneChips. The data arrays
from the GeneChips were processed by Affymetrix MAS5
software to yield log2 probe response data. We eliminated
from analysis all genes that MAS5 called out as “absent”
from all chips in addition to the Affymetrix housekeeping
genes, leaving 6931 genes for analysis. Define the gene re-
sponse datum extracted from them-th microarray replicate
at timet for theg-th gene probe location (Figure 4):

xt;m(g); g = 1; : : : ; G; m = 1; : : : ;M; t = 1; : : : ; T: (1)

whereG = 6931, M = 4, T = 6. Figure 4 shows the re-
sponse datafxt;m(g)gt;m for one of the genes extracted from
the Affymetrix GeneChip. The scientific objective of the ex-
periment is to find genes which are strongly associated with
aging and development, i.e. those that are monotonic over



time and have large end-to-end foldchange. Template match-
ing methods are not effective here since they require specifi-
cation of a profile pattern and, due to variability in the exper-
iment, this can miss genes that have the desirable monotonic-
ity characteristics but do not agree with the specified pattern.
Thus we adopted the following multicriteria approach. We
designed criteria to key onto three types of profiles: 1) those
that are monotonically increasing; 2) those that are mono-
tonically decreasing; 3) those that display end-to-end fold-
change magnitudes greater than 1.0. We only describe the
gene selection method for the monotonic increasing case as
the treatment of the decreasing case is completely analogous.
In order to tease out the monotonic increasing profiles we use
a non-parametric distribution free statistic. In previous gene
ranking work we proposed a naturalvirtual profile criterion
that counts the number of monotonic increasing trajectories
among the64 = 4096 possible trajectories that could pass
through the 24 data points.17 However, even though it is ar-
guably a more compelling monotonicity statistic, the virtual
profile criterion has exponential computational complexity
O(MT ). Thus for this screening application we prefered to
use the well known Jonckheere-Terpstra (JT) test statistic18

as criterion�1.

�1(g) =

TX

t=1

X

t0>t

X

m6=m0

sign(xt0;m0(g)� xt;m(g))

For end-to-end change we adopted a modified one sided
paired t-test statistic26 as criterion�2.

�2(g) =
p
M=2

xT (g)� x1(g)

s(g)
(2)

where

xt(g) =
1

M

MX

m=1

xt;m(g)

and

s2(g) =
1

T (M � 1)

TX

t=1

MX

m=1

(xt;m(g)� xt(g))
2: (3)

The null distribution of the statistic�2(g) is Student-t with
T (M � 1) degrees of freedom (d.f.). The statistic (2) dif-
fers from the standard2(M � 1)-d.f. paired t-test statistic
in that we exploit the assumed homeoscedasticity (�2tm(g) =
�2(g)) of each of the probe responses to derive a more accu-
rate pooled variance estimate (3). The p-values of the JT and
paired-t statistics�1(g) and�2(g) are tabulated in18 and,26

respectively.

The JT statistic essentially counts the number of times that
a sample at a future time point is larger than a sample at a pre-
vious time point and its computation is only of polynomial

Figure 5. 3 of the64 = 4096 virtual profiles that can be
drawn through the 24 gene responses in mouse retinal ag-
ing study. None of these 3 are monotonic. Label at top left
denotes the gene’s Affymetrix probe id number.

complexity (O((T+1)T=2M2)). The paired t-test statistic is
an optimal end-to-end selection criterion when the extracted
probe responses are Gaussian random variables with identi-
cal variances. An implicit assumption underlying the use of
the JT and Student-t test statistics is that the probe responses
have identical distributions except for a possible shift in loca-
tion, as measured by the mean or median. This assumption is
reasonable after normalization of the gene microarrays, e.g.
after using the RMA procedure.34 As our collaborators are
primarily interested in the genes that are implicated in late
development or aging, we dropped the first two time points
in the data set for the analysis described below.

Since the joint sampling null distribution of the JT and
paired t-test statistics is unknown, we chose to generate FER
contours empirically using a resampling method similar to
the bootstrap. Specifically, we randomly permuted the probe
responsesfxt;m(g)gt;m;g to generate 500 resampled sets of
i.i.d. probe responsesfx0

t;m(g)gt;m;g for which the marginal
distribution matches the empirical marginal distribution of
fxt;m(g)gt;m;g. Using these 500 simulated GeneChip data
sets we determined FER by computing the relative frequency
that any gene fitness statistic[�1(g); �2(g)] computed from
fx0

t;m(g)gt;m;g falls in a given sector as explained in Sec. 4.
By varying the lower left endpoint[u1; u2] of these sectors
over the plane constant FER contours were determined.

To obtain the most discriminating multicriteria test we
made an orthogonalizing transformation to data in the multi-
criteria plane. This transformation was motivated by the ob-
servation that the scattergrams of the resampled data (see Fig.
6) appeared to be a correlated approximately bivariate Gaus-
sian sample. Using a regression of�2 on �1 we determined



Figure 6. The multicriteria scattergram of pairs
f�1(g); �2(g)gGi=1 for i.i.d. resampled GeneChip probe re-
sponses appears approximately Gaussian distributed with re-
gression line as indicated. Here�1 is equal to the JT statistic
and�2 is equal to T2 which denotes the end-to-end paired t
test statistic.

a monotonic transformation that converted these resampled
scattergrams into approximately orthogonal bivariate Gaus-
sian scatter plots. This transformation was then applied to
the original data set ofG = 6931 gene responses to deter-
mine a set of monotonic increasing genes at a FER level of
q (see Fig. 7). This first stage of screening results in a set
G1 of G1 genes with declared positive responses. The sec-
ond stage of screening consists of constructing the following
level(1�q)100% simultaneous FDR confidence intervals on
the foldchangesfc for theseG1 genes:

xT (g)� x1(g)� s(g)=
p
M=2 T �1

T (M�1)(1� q0=2) � fc(g)

� xT (g)� x1(g) + s(g)=
p
M=2 T �1

T (M�1)(1� q0=2);

whereg 2 G1. Hereq0 = qG1=G is the adjusted FDRCI
significance level,7 xt(g) = M�1

PM
m=1 xt;m(g), and

T �1
� (�) is the� quantile of the Student-t distibution with�

d.f. The second stage is completed by retaining those genes
in G1 whose M2-to-M21 foldchange confidence intervals do
not intersect the interval(�1; fmin] (See Fig. 8).

Shown in Fig. 9 are the profiles of the 2 genes who have
monotone increasing gene profiles with foldchange at least
fcmin = 0:5 at FDRCI level 0.1. The stringency of this
screening procedure is reflected by the fact that the FER’s for
each of these gene are substantially below the FDRCI level.
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6.2. Differentially Expressed Profiles

The second experiment we describe is concerned with find-
ing genes whose expression profiles change significantly af-
ter a treatment. Such genes are called ”differentially ex-
pressed” after treatment. One variant of this experiment is
called a wildtype vs knockout experiment. In this experi-
ment one has a control population (wildtype) of subjects and
a treated population (knockout) of subjects whose DNA has
been altered in some way. One then collects cell samples
from both populations at different times and generates mi-
croarray data sets to find any genes that are differentially ex-
pressed. Figure 10 shows gene probe responses from such
a wildtype and knockout experiment performed on two pop-
ulations of mice by collaborators at the Sensory Gene Mi-
croarray Node at the University of Michigan. The population
consisted of 12 knockout and 12 wildtype mice each divided
into 3 subgroups of 4 mice. The 3 subgroups correspond to
different time points: postnatal 2 days (Pn2), postnatal 10
days (Pn10), and postnatal 2 months (M2). The log2 probe
responses were extracted from the Affymetrix GeneChips us-
ing the RMA algorithm. The scientific objective of the ex-
periment is to find genes whose temporal expression profiles
in the wildtype and knowckout population are significantly
different. We label the wildtype and knockout responses
Wt;m(g) andKt;m(g) in a similar manner to (1) where here
M = 4 andT = 3.

The dual criteria chosen were: 1) a Mack-Skillings (MS)
statistic for testing for parallel W vs. K responses (pro-
files) in a two way layout18; and 2) a multivariate paired
t (MVPT) test statistic for quantifying the amount of aver-
age difference in the W vs. K responses.26 Similarly to
the previous experiment these two criteria are complemen-
tary: the MS test is a distribution-free rank-order statistical
test while the MVPT is optimal under the Gaussian assump-
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Figure 10. Responses for a gene in knockout mouse (left) vs
wildtype mouse (right) for differential expression study.

tion. To reduce dynamic range of the multicriteria scatter-
gram we applied non-linear transformationsMS 7�! p

MS
andMVPT 7�! log(1 +MV PT ) (when this latter statis-
tic is multiplied byM=2 it is approximately Chi-square dis-
tributed). Similarly to the aging study we used a bootstrap
resampling method to empirically compute FER contours in
the dual criteria plane. These contours were superimposed on
the multicriteria scattergram (see Fig. 11) to find the set of
genes that are differentially expressed at a FER of prescribed
level. Again we denote byG1 the number of genes discov-
ered in this first stage of the screening procedure. Stage 2
of the test consisted of retaining only those genes whose
FDRCI’s on differential foldchangeffct(g)gTt=1 do not inter-
sect[�fmin; fmin] for any time pointt (see Fig. 12). Specif-
ically, theTG1 level (1 � q)100% simultaneous FDRCI in-
tervals were computed as:

Wt(g)�Kt(g)� st(g)=
p
M=2 T �1

2(M�1)(1� q0=2) � fct(g)

�Wt(g)�Kt(g) + s2(g)=
p
M=2 T �1

2(M�1)(1� q0=2)

whereq0 is the adjusted confidence level

q0 = 1� (1� qG1=G)
1=T ;

and st(g) is the pooled variance estimate obtained from
fWt;m(g)gm andfKt;m(g)gm.

Figure 13 shows 9 of the differentially expressed gene
profiles in (log2 scale) among the 15 genes selected by the
two stage screening procedure at FDRCI level of significance
q = 0:1 and minimum foldchange offmin = 4:0.

7. CONCLUSION

Signal processing for analysis of gene microarray and other
gene experiments is a growing area and there are enough
challenges to keep the community busy for years. In our col-
laborations we have found it crucial to interact closely with
our biology colleagues to ensure that our signal processing
methods are relevant and capture the biological aims of the
experimenter. To illustrate this point, in this paper we have
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Figure 13. Gene trajectories of 9 differentially expressed
genes in Fig. 11 with FDRCI level of significanceq = 0:1
and minimum foldchange offmin = 4:0. Knockout “o” and
Wildtype “*” are as indicated.

described one of our projects involving gene selection and
ranking. To respond to the needs of our collaborators we had
to develop a flexible multicriteria approach to gene selection
and ranking. A single criterion would have much greater dif-
ficulty in capturing the variety of properties that our collab-
orators considered biologically significant. To account for
statistical variation, we had to extend multicriteria optimiza-
tion to a stochastic setting. To accomodate our collaborators
minimum fold change requirements we had to incorporate
simultaneous confidence intervals into our screening proce-
dure. We continue to refine our methods to meet the chang-
ing requirements of interacting with a very rapidly changing
field.

Acknowledgement

The authors would like to thank Prof. A. Swaroop, Dr.
S. Yosida, R. Farjo, and A. Mears in the Dept. of Human
Genetics at University of Michigan for their collaboration.

REFERENCES
1. Bioconductor: open source software for bioinformatics.

www.bioconductor.org/\verb .
2. SMA microarray analysis package.

www.stat.berkeley.edu/users/terry/
zarray/Software/smacode.html .

3. Affymetrix. NetAffx User’s Guide, 2000.
www.netaffx.com/site/sitemap.jsp .



4. A. A. Alizadeh and etal, “Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling,”Nature,
vol. 403, pp. 503–511, 2000.

5. D. Bassett, M. Eisen, and M. Boguski, “Gene expression
informatics–it’s all in your mine,”Nature Genetics, vol. 21,
no. 1 Suppl, pp. 51–55, Jan 1999.

6. Y. Benjamini and Y. Hochberg, “Controlling the false discov-
ery rate: A practical and powerful approach to multiple test-
ing,” J. Royal Statistical Society, vol. 57, pp. 289–300, 1995.

7. Y. Benjamini and D. Yekutieli, “False discovery rate ad-
justed confidence intervals for selected parameters (preprint),”
J. Am. Statist. Assoc., vol. Submitted (2002), , 2002.
www.math.tau.ac.il/˜yekutiel/ci_jasa.pdf .

8. M. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. Sugent,
T. Furey, M. Ares, and D. Haussler, “Knowledge-based analy-
sis of microarray gene expression data by using support vector
machines,”Proc. of Nat. Academy of Sci. (PNAS), vol. 97, no.
1, pp. 262–267, 2000.

9. P. O. Brown and D. Botstein, “Exploring the new world of the
genome with DNA microarrays,”Nature Genetics, vol. 21, no.
1 Suppl, pp. 33–37, Jan 1999.

10. F. C. Collins, M. Morgan, and A. Patrinos, “The Human
Genome Project: lessons from large-scale biology,”Science,
vol. 300, pp. 286–290, April 11 2003.

11. K. Deb,Multi-Objective Optimization Using Evolutionary Al-
gorithms, Wiley, New York, 2001.

12. G. Fleury, A. O. Hero, S. Yosida, T. Carter, C. Barlow, and
A. Swaroop, “Clustering gene expression signals from retinal
microarray data,” inProc. IEEE Int. Conf. Acoust., Speech,
and Sig. Proc., Orlando, FL, 2002.

13. G. Fleury, A. O. Hero, S. Yosida, T. Carter, C. Barlow, and
A. Swaroop, “Pareto analysis for gene filtering in microar-
ray experiments,” inEuropean Sig. Proc. Conf. (EUSIPCO),
Toulouse, FRANCE, 2002.

14. C. R. Genovese, N. A. Lazar, and T. E. Nichols, “Thresholding
of statistical maps in functional neuroimaging using the false
discovery rate,”NeuroImage, vol. 15, pp. 772–786, 2002.

15. T. Hastie, R. Tibshirani, M. Eisen, P. Brown, D. Ross,
U. Scherf, J. Weinstein, A. Alizadeh, L. Staudt, and D. Bot-
stein, “Gene shaving: a new class of clustering methods
for expression arrays,” Technical report, Stanford University,
2000.

16. A. Hero and G. Fleury, “Posterior pareto front analysis for
gene filtering,” in Proc of Workshop on Genomic Signal
Processing and Statistics (GENSIPS), Raleigh-Durham, NC,
2002.

17. A. Hero and G. Fleury, “Pareto-optimal methods for gene
analysis,” Journ. of VLSI Signal Processing, Special Is-
sue on Genomic Signal Processing, vol. accepted, , 2003.
www.eecs.umich.edu/˜hero/bioinfo.html .

18. M. Hollander and D. A. Wolfe,Nonparametric statistical
methods (2nd Edition), Wiley, New York, 1991.

19. R. Ihaka and R. Gentleman, “R: A language for data analy-
sis and graphics,”Journal of Computational and Graphical
Statistics, vol. 5, no. 3, pp. 299–314, 1996.

20. R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-Barclay, K. An-
tonellis, U. Scherf, and T. Speed, “Exploration, normalization,
and summaries of high density oligonucleotide array probe
level data,”Biostatistics, To appear.

21. C. Li and W. Wong, “Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection,”
Proc. of Nat. Academy of Sci. (PNAS), vol. 98, pp. 31–36,
2001.

22. C. Li and W. Wong, “Model-based analysis of oligonucleotide
arrays: model validation, design issues and standard error ap-
plication,” Genome Biology, vol. 2, pp. 1–11, 2001.

23. M. Marra andetal, “The genome sequence of the SARS-
associated coronavirus,”Science Express, vol. 10.1126, , May
1 2003.www.scienceecpress.org .

24. A. Mears and etal, “ms in preparation,”, 2003.
25. R. G. Miller, Simultaneous Statistical Inference, Springer-

Verlag, NY, 1981.
26. D. F. Morrison,Multivariate statistical methods, McGraw

Hill, New York, 1967.
27. National Human Genome Research Insti-

tute (NHGRI). cDNA Microarrays, 2001.
www.nhgri.nih.gov/DIR/Microarray .

28. P. A. Rota andetal, “Characterization of a novel coronavirus
associated with severe acute respiratory syndrome,”Science,
vol. 10.1126, , May 1 2003.www.scienceecpress.org .

29. K. I. Siddiqui, A. Hero, and M. Siddiqui, “Mathematical mor-
phology applied to spot segmentation and quantification of
gene microarray images,” inProc of ASILOMAR Conference
on Signals and Systems, Pacific Grove, CA, 2002.

30. J. D. Storey and R. Tibshirani, “Estimating false discovery
rates under dependence, with applications to dna microar-
rays,” Technical Report 2001-28, Department of Statistics,
Stanford University, 2001.

31. K. Strimmer. R Packages for Gene Ex-
pression Analysis. www.stat.uni-
muenchen.de/˜strimmer/rexpress.html .

32. J. Watson and A. Berry,DNA: The secret of life, Alfred A.
Knopf, 2003.

33. P. Westfall and S. Young,Resampling-Based Multiple Testing,
Wiley, NY, 1993.

34. Y. H. Yang, S. Dudoit, P. Liu, and T. P. Speed, “Normalization
for cdna microarray data,” inProc of SPIE BIOS, San Jose,
California, 2001.

35. S. Yosida and etal, “ms in preparation,”, 2003.


