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Abstract�

This paper introduces a statistical methodology for identi-
fication of differentially expressed genes in DNA microarray
experiments based on multiple criteria. These criteria are:
false discovery rate (FDR); variance-normalized differential
expression levels (paired t statistics); and minimum accept-
able difference (MAD). The methodology also provides a set
of simultaneous FDR confidence intervals on the true expres-
sion differences. The analysis can be implemented as a two
stage algorithm in which there is an initial screen that con-
trols only FDR, which is then followed by a second screen
which controls both FDR and MAD. It can also be imple-
mented by computing and thresholding the set of FDR p-
values for each gene that satisfies the MAD criterion. We
illustrate the procedure to identify differentially expressed
genes from a wild-type vs. knockout comparison of microar-
ray data.

Keywords: bioinformatics, gene filtering, gene profiling
multiple comparisons, familywise error rates.

1. INTRODUCTION

Since Watson and Crick discovered DNA more than fifty
years ago, the field of genomics has progressed from a spec-
ulative science to one of the most thriving areas of current
research and development.31 After successful completion
(99%) of the Human Genome project in 2002,11 atten-
tion is turning to ”functional genomics” and ”proteomics,”
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thanks principally to remarkable advances in computations
and technology. These disciplines encompass the greater
challenge of understanding the complex functional behav-
ior and interaction of genes and their encoded proteins at
the cellular level. This task has been significantly aided by
the advent of DNA microarray technology and associated al-
gorithms that enable researchers to filter through daunting
amounts of data and genetic information. In this paper, we
describe a new approach to extracting a subset of differen-
tially expressed genes from DNA microarray data.

A DNA microarray consists of a large number of DNA
probe sequences that are put at defined positions on a solid
support such as a glass slide or a silicon wafer.10,4 After
hybridization of a fluorescently labelled sample (gene tran-
scripts) to DNA microarrays, the abundance of each probe
present (called probe response) in the sample can be esti-
mated from the measured levels of hybridization (i.e., the
intensity of fluorescent signal). Two main types of DNA
microarrays are in wide-use for gene expression profiling:
Affymetrix GeneChips,1 which are generated by photo-
lithography; and spotted cDNA (or oligonucleotide) arrays
on glass slides.25

DNA microarrays enable biologists to study global gene
expression profiles in tissues of interest over time periods and
under specific conditions or treatments. For these cases a
large set of samples, consisting of several biological repli-
cates, are hybridized to a set of microarrays. The objective
is to identify subsets of genes whose expression profile over
time exhibit salient behavior(s), e.g., differ in response to dif-
ferent treatments. A crucial aspect of selecting the genes
of interest is the specification of a preference ordering for
ranking the probe responses. Many gene selection and rank-
ing methods are based on testing fitness criteria such as: the
eigenvalue spread in a principal components analysis (PCA)
of all pairs of gene expression profiles; the ratio of between-
population-variation to within-population-variation; or the
cross correlation between profiles.16,2,9



These methods have deficiencies which have impeded
their use for practical experiments. First, is the need for im-
proved relevance of the fitness criterion to the scientific ob-
jectives of the experiment. It is often difficult for an exper-
imenter to choose quantitative criteria that characterize the
aspects of a gene expression profile of interest. Second, is the
need for simultaneous control of the biological significance
(MAD) and the statistical significance (FDR) of differential
responses discovered in the selected gene probes. A probe
response difference which is too small is not of much use to
the experimenter even if the difference is statistically signif-
icant. This is because the microarray experiment is usually
only the first step in gene discovery; each microarray probe
difference that is discovered must be validated by painstaking
followup analysis that may have limited sensitivity to small
differences. Third, is the need for tight confidence intervals
on these differences. The size of a confidence interval pro-
vides useful information on the statistical precision of an es-
timate of differential response.

The method we present in this paper adopts a statistical
multicriteria framework for gene microarray analysis with
MAD constraints on differential expression. The framework
allows the experimenter to adopt multiple fitness criteria, ex-
plicitly incorporate control on biological significance in addi-
tion to statistical significance, and generate confidence inter-
vals on discovered gene expression differences. Our method
is strongly influenced by the FDR-adjusted confidence in-
terval (FDR-CI) approach recently introduced by Benjamini
and Yekutieli.7 We illustrate our methods for a differential
expression experiment designed to probe the genetic basis of
retinal development. This experiment involves two popula-
tions, called wild-type and knockout, and the objective is to
find genes that exhibit biologically and statistically signifi-
cant differences between these populations. The purpose of
this article is to illustrate methodology and not to report sci-
entific findings, which will be reported elsewhere.

It is worthwhile to compare the framework developed in
this paper to related work. Liu and Iba have proposed an
interesting multicriteria evolutionary approach to gene se-
lection and classification in gene microarray experiments.20

Similarly, Fleury and Hero have proposed Pareto-optimality
for selecting subsets of genes using a combination of boot-
strap resampling and Bayes decision theory.14,17,13 Single
stage26 and multi stage23,3,6 screening methods which con-
trol FWER or FDR have been proposed by several authors
for similar problems to ours. However, none of the above
approaches account for a MAD constraint or provide con-
fidence intervals on the differential expression levels of the
discovered genes. In contrast, our approach accounts for
both FDR and MAD constraints and generates such confi-
dence intervals using the FDR-CI framework.7 Furthermore,

gene g Pn2 Pn10 M2

W 4 samples 4 samples 4 samples
K 4 samples 4 samples 4 samples

Table 1. The knockout vs wild-type experiment is equiv-
alent to a two way layout of treatment (W or K) and time
(t=Pn2,Pn10,M2).

we specify an algorithm for computing FDR p-values for all
genes at any prescribed MAD level.

The outline of the paper is as follows. In Sec. 2 we give a
general description of the type of differential gene microar-
ray experiment that will be illustrated in Sec. 4. In Sec. 3
we describe the proposed two-stage multicriteria approach.
Finally, in Sec. 4 we illustrate these techniques for experi-
mental data.

2. DIFFERENTIAL EXPRESSION PROFILE
EXPERIMENTS

This type of experiment is very common in genetics re-
search32,27 and involves comparing gene expression profiles
of a set ofG genes expressed in two or more populations.
The data from this experiment fall into the category of a two
way layout18 where each cell in the layout corresponds to a
set of replicates of samples from one of the two populations
(row) and one ofT time points (column) (see Table. 1).

Any gene whose temporal profile differs from wild-type
to knockout populations is called “differentially expressed”
in the experiment. One variant of this experiment is called
the wild-type vs knockout experiment. In such an exper-
iment one has a control population (wild-type) of subjects
and a treated population (knockout) of subjects whose DNA
has been altered in some way. Each population is comprised
of T different age groups arranged inT subpopulations.M
independent samples are taken from each subpopulation and
are hybridized to a different microarray yieldingG pairs of
expression profiles (see Fig. 1 for profiles of gene having
probeset number101996 at). This generates a total of2MT
microarrays. It is common to express the differential re-
sponse between wild-type and knockout responses in terms
of foldchangeexpressed as the ratio of these responses. For
example, a foldchange of 2.0, or 1.0 in log base 2, at a given
time corresponds to a wild-type response which is twice as
large as the knockout response. We denote byf�t(g)gTt=1

andf�t(g)gTt=1 the true log wild-type and log knockout ex-
pression profiles, respectively, expressed as log base 2 of the
true hybridization abundances.

Fig. 2 illustrates the 3 dimensional multicriteria space of
mean differential responsesf�t(g)� �t(g)g3t=1 for the three
time point experiment described in Sec. 4. Also indicated is
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Figure 1. Responses for a particular gene (probeset num-
ber 101996 at) in knockout mouse (left) vs wild-type mouse
(right) for the differential expression study discussed in Sec.
2. There are 3 time points (labeled Pn2, Pn10 and M2) and
at each time point there are 4 replicates.

a “MAD box” which defines unacceptably small (inside box)
vs acceptably large (outside box) differential responses, and
a scatter of a small subset of all the sample mean differen-
tial responses (dots) from the experiment. Our objective is
to discover which genes are likely to have a “positive differ-
ential response” falling outside of the box in Fig. 2. A very
commonly used method is to simply apply a threshold to the
sample means to detect those who fall outside of the box in
Fig. 2 as positive responses. However, as will be shown, this
method does not account for statistical sampling uncertainty
and can lead to many false positives.

The objective can be stated mathematically as follows:
find a set of gene probes which satisfy the MAD constraint:
j�t(g)��t(g)j > fcmin for at least onet 2 f1; : : : ; Tg. Here
the MAD constraint is quantified by the user-specified mini-
mum magnitude foldchangefcmin (expressed in log base 2).
Thus we need to simultaneously test theG pairs of two-sided
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Figure 2. Three dimensional multicriteria space for knock-
out and wild-type profiles over 3 time points shown in
Fig. 1. The 3 criteria are the differential probe responses
at each time point. Shown is a scatter plot of sample
means of the differential responses along with a box of
edge length2fcmin distinguishing biologically significant
responses (outside box) from biologically insignificant re-
sponses (inside box).

hypotheses

H0(g) : j�t(g)� �t(g)j � fcmin for all t

H1(g) : j�t(g)� �t(g)j > fcmin for at least onet;

(1)

g = 1; : : : ; G. Of course when we must decide between
H0(g) andH1(g) based on a random sample there will gen-
erally be decision errors in the form of false positives (decide
H1(g)whenH0(g) is true) and false negatives (decideH0(g)
whenH1(g) is true). For any test the experimenter needs to
be able to control both its statistical and biological level of
significance. Thestatistical level of significanceof the test is
specified by the false positive rate. In contrast thebiological
level of significanceof the test is specified byfcmin.

There are three aspects to the hypothesis testing problem
(1) which make it non-standard: (i) standard tests on dif-
ferences in means, such as the paired-t test, treat any non-
zero difference as significant whereas (1) specifies that only
differences exceeding the specified MAD level offcmin are
significant; (ii) a positive response (H1(g)) is described by
multiple criteria, here equal to theT magnitude log response
ratios at each point in time; (iii) theG pairs of hypotheses
must be tested simultaneously. For the caseG = T = 1
the first aspect can be treated by applying methods for com-
posite hypothesis testing such as generalized likelihood ra-
tio tests, unbiased tests, and confidence interval test proce-
dures.8,30 Whenfcmin = 0, (ii) and (iii) can be handled by



applying a standard method, like paired t-test, to (1) for each
gene probeg, implemented with a multiplicity error correc-
tion factor, e.g., Bonferroni, familywise error rate, or false
discovery rate,.12 However, such a repeated test of signif-
icance will result in excessive false positives corresponding
to small log response ratios that are biologically insignificant
(do not satisfy the MAD constraint) but are statistically sig-
nificant.

3. MULTICRITERIA GENE SCREENING
METHOD

Define �(g) = [�1(g); : : : ; �T (g)] the true differential re-
sponse vector associated with gene probeg, where�t(g) =
�t(g)��t(g). Given the DNA microarray data our objective
is to test theG hypotheses (1) involving a total ofP = GT
unknown parametersf�(g)gGg=1.

Any test of (1) must test over multiple criteriaf�
t
(g)gt

and multiple genes at a given level of biological significance
MAD= fcmin and a given level of statistical significance max
FDR=�. Unlessfcmin = 0, this is a doubly composite hy-
pothesis testing problem since the parameter values�t are not
specified underH0 or H1. Due to the presence of multiple
criteria and multiple genes this problem falls into the area of
multiple testing, simultaneous inference, and repeated tests
of significance.5,22 Two standard measures of statistical sig-
nificance of a test of (1) are itsfamilywise error rate(FWER)
and itsfalse discovery rate(FDR).5 A mathematically con-
venient notation for a test of (1) is�(g), which is called atest
function, taking on values0 or 1 depending on whether the
test declaresH0 orH1 for probeg, respectively. WithG0 de-
noting the probes not having positive responses, the FWER
and FDR of a test� can be mathematically defined as:

FWER(G0) = 1�E
�
�Gg=1(1� �(g)) G0(g)

�
FDR(G0) = E

"PG
g=1 �(g) G0(g)PG

g=1 �(g)

#
; (2)

whereE[Z] denotes statistical expectation of a random vari-
ableZ and G0(g) is the indicator function of the setG0. In
words, the FWER is the probability that the test of allG pairs
of hypotheses (1) yields at least one false positive in the set
of declared positive responses. In contrast, the FDR is the
average proportion of false positives in the set of declared
positive responses. The FDR is dominated by the FWER and
is therefore a less stringent measure of significance. Both
FWER and FDR have been widely used for gene microarray
analysis.12,28,23,3

It is useful to contrast the FWER and FDR to the per-
comparison error rate (PCER). The PCER refers to the false

positive error rate incurred in testing a single pair of hypoth-
esisH0(g) vs.H1(g) for a single gene, say geneg = go and
does not account for multiplicity of the hypotheses (1). The
PCER is the probability that purely random effects would
have causedgo to be erroneously selected, generating a false
positive, based on observing microarray responses for gene
go only. If an experimenter were only interested in deciding
on the biological significance of a single genego based only
on observing probes for that gene, then reporting PCER(go)
would be sufficient for another biologist to assess the sta-
tistical significance of the experimenter’s statement thatgo
exhibits a positive response. In contrast to the PCER, FWER
and FDR communicate statistical significance of an exper-
imenter’s finding of biological significance after observing
all gene responses. The FWER is the probability that there
are any false positives among the set of genes selected. On
the other hand, the FDR refers to the expected proportion of
false positives among the selected genes. The FDR is a less
stringent criterion than the FWER.15,5,28

The FWER can be upper bounded as a function of
fPCER(g)gGg=1 using Bonferroni-type methods22 or it can
be computed empirically from the sample by resampling
methods.33 The FDR can be computed by applying the
step-down procedure of Benjamini and Hochberg5 to the
list of PCER p-values over all genes. For a giveng the
PCER p-value, denotedp(g), of a test� is a function of
the microarray measurements and is defined as the mini-
mum value of PCER for whichH0(g) would be falsely re-
jected by the test. The set of gene responses which pass
the test� at a specified FDR can be simply determined af-
ter ordering the genes indices according to increasing PCER
p-valuep(g(1)) � : : : � p(g(G)). Specifically, for a fixed
value� 2 [0; 1] of maximum acceptable FDR, the FDR con-
strained test will declare the following setG1 of genes as
positive responses15:

G1 = fg(1); : : : ; g(K)g
K = maxfk : p(g(k)) � k�=G �g; (3)

In this expression� = 1 if the decisions�(g) can be as-
sumed statistically independent overg = 1; : : : ; G, while
� = 1=

PG
k=1 k

�1 without the independence assumption.

A test which controls a maximum level� of accept-
able FDR is said to be a FDR test of level-�. We pro-
pose a test� of (1) at FDR level� and MAD level fcmin
based on intersecting simultaneous confidence intervals on
theT differences�(g) with the unacceptable difference re-
gion [�fcmin; fcmin]. We will specify a two stage direct
implementation and a single stage inverse implementation in
the following subsections. First, however, we recall some
facts about simultaneous CIs.



Let � be an unknown parameter, e.g., a gene’s foldchange
�1(g) at timet = 1. A PCER(1 � �)�100% CI on�, is an
intervalI(�) = [a; b] with random data-dependent endpoints
that covers the true� value, say�o, with probability at least
1� �:

P (a � �o � bj� = �o) � 1� �: (4)

There is always a tradeoff between confidence level1 � �
and precision (CI length) since the lengthb� a of I(�) gen-
erally increases as� decreases. LetA be any subset ofR. A
PCER CI on� can be converted to a PCER level-� test of the
hypothesesH0(g) : � 2 A vs.H1(g) : � 62 A by the simple
procedure: “rejectH0 if the (1��)� 100% CI on� does not
intersectA”.8

Multiple parameters,�1; : : : ; �P , can be simultaneously
covered by FWER(1 � �) � 100% CIs fIp(1 � (1 �
�)1=P )gPp=1, whereIp(�) is a PCER(1 � �)�100% CI on
�p. Under the assumption that each of theP PCER CIs are
statistically independent, the FWER intervals cover all the
parameters with probability at least1��.22 A less stringent
set of CIsfIp(�=P )gPp=1, which can be applied to dependent
sets of PCER CIs, is guaranteed to cover at least(1 � �)P
of the unknown parameters.22,34 When the number ofP of
parameters is random, as occurs when the number of param-
eters results from some initial screening, the above methods
cannot be applied. It was for this situation that the FDR-
CI approach was developed.7 If P is the result of initial
screening at a FDR level� of Q parameters having PCER
CIs fIp(�)gQp=1 then the FDR-CIs on theP parameters are
defined asfIp(P�=Q)gPp=1. The FDR-CIs are guaranteed to
cover at least(1��)�100% of theP unknown parameters.

Below we give two equivalent FDR-CI procedures for
screening differentially expressed genes with FDR and MAD
constraints.

3.1. Direct Two Stage Screening Procedure

Stage 1: Gene screening at MAD level 0 extracts a set ofG1

genesG1 by testing (1) under the relaxed MAD constraint
fcmin = 0 using a FDR level-� test via the step-down pro-
cedure (3).

Stage 2: Gene screening at MAD levelfcmin > 0 ex-
tracts a setG2 of positive genes from those inG1 as fol-
lows. For each geneg 2 G1 constructT simultaneous
CI’s, denotedfIgt (�)gTt=1, of FWER level(1 � �)�100%
on the true foldchangesf�t(g) � �t(g)gt=1. Convert these
into (1 � �)�100% FDR-CI’s by the method of Benjamini
and Yekutieli7: Igt (�) ! Igt (G1�=G), t = 1; : : : ; T , g =
1; : : : ; G. Finally, define the set of indicesG2 of gene pro-
files having at least one time point where the FDR-CI does

not intersect[�fcmin; fcmin]:

G2 = (5)

f g 2 G1 : ([t=1;2;3I
g
t (G1�=G) \ [�fcmin; fcmin]) = ; g ;

where; denotes the empty set. It follows from Sec 3.1 of
Benjamini and Yekutieli7 that the setG2 has FDR less than
or equal to� at MAD level fcmin.

3.2. Inverse Screening Procedure: FDR p-values

In many practical situations the experimenter may not be
comfortable specifying a MAD or FDR criterion in advance.
In these situations it is more useful to solve the following
“inverse problem:” what is the most stringent pair of crite-
ria (�; fcmin) that would lead to including a particular gene
among the positivesG2? For fixedfcmin the most stringent
(minimum) value� for which a gene would fall intoG2 is
called the FDR p-value. The FDR p-value for a genego
can be computed by: (1) computing the PCER p-value se-
quencefp(g)gGg=1; (2) arranging the PCER p-value sequence
in increasing orderp(g(1)) � : : : � p(g(G)); (3) finding the
minimum value� = �(go) for which at least one of the
PCER CIsfIgot (�)gTt=1 does not intersect[�fcmin; fcmin];
(4) computing the integer index

N(�(go)) =

GX
k=1

I
�
p(g(k))k=G � 1� (1� �(go))

T
�
; (6)

whereI(A) = 1 if statementA is true andI(A) = 0 other-
wise; (5) the FDR p-value ofgo is then simplyp(gi), where
i = N(�(go)). Repeating this asgo ranges over1; : : : ; G
gives a sequence of FDR p-values at MAD levelfcmin that
can be thresholded to determine the set of positive genesG2
at any desired FDR level of significance.

4. APPLICATION TO A WILDTYPE VS
KNOCKOUT EXPERIMENT

These experiments were performed to investigate the role of
a specific retinal transcription factor, Nrl,29 in the develop-
ment of mouse retina. The retinal samples were taken from
four pairs (”biological replicates”) of wild-type and knockout
(Nrl deficient) mice21 at three different time points: post-
natal day 2 (Pn2), postnatal day 10 (Pn10) and 2 months
of age (M2). The samples were then hybridized to a total
of twenty-four MGU74Av2 Affymetrix Gene Chips. The
log base 2 probe responses were extracted from Affymetrix
GeneChips using the Robust Microarray Analysis (RMA)
package.19 We denote the measured wild-type and knockout
responses byWt;m(g) andKt;m(g), wherem = 1; : : : ;M ,
t = 1; : : : ; T , andg = 1; : : : ; G index microarray repli-
cate, time, and gene probe location on the microarray, re-
spectively. For this experimentG = 12421, M = 4, and



T = 3. To construct confidence intervals on foldchanges we
define the vector̂�(g) = [�̂1(g); �̂2(g); �̂3(g)] of paired t-test
statistics:

�̂t(g) =
jWt(g)�Kt(g)j
st(g)=

p
M=2

; t = 1; : : : ; 3: (7)

Here Wt(g) = M�1
PM

m=1Wt;m(g) and Kt(g) =

M�1
PM

m=1Kt;m(g) denote the sample mean of theM
replicates at timet for wild-type and knockout treatments,
respectively, and

s2t (g) = (2(M � 1))�1 � (8) 
MX
m=1

(Wt;m(g)�Wt(g))
2 +

MX
m=1

(Kt;m(g)�Kt(g))
2

!

denotes the pooled sample variance at timet.

For stage 1 of the screeing procedure we consider the sim-
ple and standard22 simultaneous test of (1) at MAD level

fcmin = 0: “decideH1(g) if maxt=1;2;3
jWt(g)�Kt(g)j

st(g)=
p
M=2

>

f ”, where f is the standard FDR significance threshold. Un-
der the largeM approximation that the paired t-test statistic
has a Student t distribution,24 and assuming time indepen-
dence of cells in the two way layout of Table 1, we can easily
compute both the PCER p-value for this test

p(g) = 1�
h
2T2(M�1)(�̂(g))� 1

i3
; (9)

where�̂(g) is the maximum element of the vector�̂(g) de-
fined above. Define the simultaneous(1 � �)�100% con-
fidence intervals,fIgt (1 � (1 � �)1=3)gt=1;2;3, for the tem-
poral foldchangesf�t(g) � �t(g)gt=1;2;3 of geneg, where
It(�) = flt � �t(g)� �t(g) � utg with

lt = Wt(g)�Kt(g)� st(g)=
p
M=2 T �1

2(M�1)(1� �=2)

ut = Wt(g)�Kt(g) + st(g)=
p
M=2 T �1

2(M�1)(1� �=2):

(10)

In the aboveTm : R 7! [0; 1] denotes the Student t cumu-
lative distribution function withm degrees of freedom and
T �1
m denotes its functional inverse, i.e., the Student-t quan-

tile function.

With the above expressions we can find the setG1 of gene
indices which pass stage 1 FDR screening by substituting
the sorted PCER p-values (9) into the step-down algorithm
(3). Stage 2 of screening selects gene indices according to
the FDR-CI’s from (5). This direct two stage screening stage
procedure is summarized in Table 2. Alternatively, the in-
verse procedure of Sec. 3.2 can implemented using (9) and

Stage 1 Compute and sort PCER p-values according to (9)
Select gene indicesG1 according to (3)

Stage 2 Construct simultaneous PCER CIs using (10)
Select gene indicesG2 according to (5)

Table 2. Two stage FDR-CI algorithm for screening genes
from the knockout vs wild-type experiment.

the explicit expression for the�(g) sequence

�(g) =

2

"
1� T2(M�1)

 
max jWt(g)�Kt(g)j � fcmin)

st(g)=
p
M=2

!#
;

(11)

for g = 1; : : : ; G.

4.1. Experimental Results

Figures 3 and 4 illustrate the direct and inverse implemen-
tations of the FDR-CI screening procedure. In Fig. 3 the
direct screening procedure is constrained by MAD and FDR
criteria fcmin = 2:0 and� = 0:2, respectively. As there
areT = 3 time points andG = 12; 421 genes there are
GT = 37; 263 parameters for which FDR-CI’s are con-
structed. A gene passes the screening if at least one of the 3
time instants has a FDR-CI that does not intersect the interval
[�fcmin; fcmin]. The test is implemented by defining two
rank orderings of the FDR-CIs of the genes according to: (1)
the FDR-CI with minimum upper boundary over the 3 time
points; and (2) the FDR-CI with maximum lower boundary
over the time points. Figure 3.a and b show relevant segments
of these two ordered sequences of CI’s. Screening all genes
with maximum lower endpoints> fcmin and minimum up-
per endpoints< �fcmin generates the set of declared posi-
tive genesG2.

Figure 4 illustrates the inverse procedure specified in Sec.
3.2 for screening differentially expressed genes. First the
FDR p-values are computed for each gene at several MAD
levels of interest. For each MAD levelfcmin we plot the
ordered FDR p-values. These can be plotted on the same
gene index axis since the induced gene ordering is indepen-
dent of MAD level. FDR p-value curves for four different
levels of fcmin are illustrated in Figure 4. The figure also
illustrates how for FDR and MAD constraints� = 0:2 and
fcmin = 0:32, respectively, theG2 positive responsesG2
can be extracted from the FDR p-value curve by threshold-
ing. Notice that for fixed�, the sizeG2 decreases rapidly
as the MAD criterion becomes more stringent, i.e., asfcmin
increases.

Figure 5 shows nine of the top ranked (in FDR p-value)
differentially expressed gene profiles in (log base 2 scale)
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Figure 3. Segments of upper and lower curves specifying
the 80% FDR confidence intervals (FDR-CI) on the fold-
changesf�t(g) � �t(g)gt=1;2;3 for the knockout vs. wild-
type study. Upper and lower curves in each figure sweep
out FDR-CI upper and lower boundaries on foldchange for
all genes (indexed by probeset number). In the top graph
the curves sweep out the sequence of FDR-CIs indexed in
increasing order of the (maximum) lower CI boundary. In
the lower graph the ordering is in increasing order of the
(minimum) upper CI boundary. Only those genes whose 3
FDR-CIs do not intersect[�fcmin; fcmin] are selected by
the second stage of screening. When the MAD foldchange
criterion is fcmin = 2:0 (1:0 in log base 2) these genes are
obtained by thresholding the curves as indicated.

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sorted FDR p−values for various min fold changes

Probeset index(sorted)

F
D

R
 p

−v
al

ue

MAD=0.32
MAD=0.58
MAD=0.85
MAD=1.00

FDR=0.2 

G
2
 

Figure 4. Plots of FDR p-value curves over sorted list of
gene indices for 4 values of the minimum acceptable differ-
ence (MAD) criterion: fcmin = 0:32; 0:58; 0:85; 1:0 (log
base 2) corresponding to wild-type/knockout MAD ratios of
1:25; 1:5; 1:8, and2:0, respectively. Constraints FDR� 0:2
and foldchange> 0:32 determine a setG2 ofG2 differentially
expressed genes by thresholding the corresponding curve as
indicated.

among the 59 genes selected by either the direct or inverse
implementations of the FDR-CI screening procedure. In the
figure the level of significance constraint is FDR� � = 0:2
and the minimum foldchange constraint is MAD> fcmin =
1:0.

In Table 3 we compare the performance of the proposed
screening algorithm, labeled “Two-stage FDR-CI,” to two
other algorithms, called “Thresholded FDR” and “Thresh-
olded RMA.” All three algorithms aim to control MAD at
a level of fcmin = 1:0(log base 2). The “Two-stage FDR-
CI” and “Thresholded FDR” algorithms aim to control FDR
at a level of� = 0:2 in addition to MAD. Both of these
latter algorithms were implemented as two stage algorithms
with common stage 1, which is to select the gene responses
g 2 G1 that pass the paired-t test of hypotheses (1) with
fcmin = 0 at a FDR level of 20%. The second stage of
the “Two-stage FDR-CI” algorithm selectsG2 as a subset of
G1 at the prescribed CI FDR level of 20%. Stage 2 of the
“Thresholded FDR” algorithm simply selects the subset of
genesg 2 G1 having at least one sample mean foldchange
exceedingfcmin = 1:0, i.e., it implements the following fil-
ter

max
t=1;2;3

jWt(g)�Kt(g)j > 1:0; (12)

on probesg 2 G1. The single stage “Thresholded RMA” al-
gorithm, a non-statistical method commonly used in many
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Figure 5. Gene profiles of 9 of the differentially expressed
genes discovered using proposed two stage FDR-CI proce-
dure with constraints on level of significance� = 0:2 and
minimum foldchangefcmin = 1:0. Knockout “o” and Wild-
type “*” are as indicated.

# Screened # Discovered max(pv) median(pv) avg(FDR-CI length)

Thresholded RMA 12,421 159 1.0 0.80 1.52
Thresholded FDR 303 127 1.0 0.31 1.17
Two-stage FDR-CI 303 59 0.19 0.02 1.09

Table 3. Performance comparison for three algorithms for
selecting genes with magnitude (log base 2) foldchange>
1:0. Thresholded RMA and Thresholded FDR are signif-
icantly worse in terms of statistical significance (p-value)
than the proposed Two-stage FDR-CI algorithm (columns 4
and 5). Furthermore, the average length of the CIs on fold-
changes of the discovered genes are shorter for the Two Stage
FDR-CI algorithm than for the other algorithms (column 6).

microarray studies, implements the filter (12) on the re-
sponses of eachg in the original set of 12,421 genes as indi-
cated in Fig. 2.

The number of screened and discovered genes for the
three algorithms is indicated in the first two columns of Ta-
ble 3. The maximum and median of the FDR p-values of the
discovered genes is indicated in the third and fourth columns
for each algorithm. The last column indicates the maximum
length of the FDR-CI’s on foldchanges of the discovered
genes. We conclude from Table 3 that the proposed “Two
stage FDR-CI” algorithm outperforms the other algorithms
in terms of: 1) maintaining the FDR requirement that false
positives not exceed 20% (column 4); 2) ensuring a substan-
tially lower median FDR p-value than the others (column
5); 3) discovering genes that have tighter (on the average)
confidence intervals on biologically significant (> 1:0) fold-
change (column 6).

5. CONCLUSION

Signal processing for analysis of DNA microarrays for gene
expression profiling is a rapidly growing area and there are
enough challenges to keep the community busy for years. It
is essential that signal processing methods be relevant and
capture the biological aims of the experimenter. To this aim,
in this paper we developed a flexible multicriteria approach
to gene selection and ranking for screening differentially
expressed gene profiles. The proposed criteria capture the
gene expression differences at multiple time points, account
for minimum acceptable foldchange constraints, and control
false discovery rate. In many cases, biological significance
requires minimum hybridization levels, e.g., as implemented
by Affymetrix in their ”absent calls” for weakly expressed
genes. This can be easily captured by incorporating an ad-
dition criterion, the minimum acceptable mean expression
level, into our multicriteria approach.
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