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Abstract

This paper introduces a statistical methodology for identification of differentially expressed genes in
DNA microarray experiments based on multiple criteria. These criteria are: false discovery rate (FDR);
variance-normalized differential expression levels (paired t statistics); and minimum acceptable differ-
ence (MAD). The methodology also provides a set of simultaneous FDR confidence intervals on the true
expression differences. The analysis can be implemented as a two stage algorithm in which there is an
initial screen that controls only FDR, which is then followed by a second screen which controls both FDR
and MAD. It can also be implemented by computing and thresholding the set of FDR p-values for each
gene that satisfies the MAD criterion. We illustrate the procedure to identify differentially expressed genes
from a wild-type vs. knockout comparison of microarray data.
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1. INTRODUCTION

Since Watson and Crick discovered DNA more than fifty years ago, the field of genomics has progressed

from a speculative science to one of the most thriving areas of current research and development.31 After

successful completion (99%) of the Human Genome project in 2002,11 attention is turning to ”functional

genomics” and ”proteomics,” thanks principally to remarkable advances in computations and technology.

These disciplines encompass the greater challenge of understanding the complex functional behavior and

interaction of genes and their encoded proteins at the cellular level. This task has been significantly aided

by the advent of DNA microarray technology and associated algorithms that enable researchers to filter

through daunting amounts of data and genetic information. In this paper, we describe a new approach to

extracting a subset of differentially expressed genes from DNA microarray data.

A DNA microarray consists of a large number of DNA probe sequences that are put at defined positions

on a solid support such as a glass slide or a silicon wafer.10,4 After hybridization of a fluorescently la-

belled sample (gene transcripts) to DNA microarrays, the abundance of each probe present (called probe

response) in the sample can be estimated from the measured levels of hybridization (i.e., the intensity

of fluorescent signal). Two main types of DNA microarrays are in wide-use for gene expression profil-

ing: Affymetrix GeneChips,1 which are generated by photo-lithography; and spotted cDNA (or oligonu-

cleotide) arrays on glass slides.25

DNA microarrays enable biologists to study global gene expression profiles in tissues of interest over

time periods and under specific conditions or treatments. For these cases a large set of samples, consisting

of several biological replicates, are hybridized to a set of microarrays. The objective is to identify subsets

of genes whose expression profile over time exhibit salient behavior(s), e.g., differ in response to different

treatments. A crucial aspect of selecting the genes of interest is the specification of a preference ordering

for ranking the probe responses. Many gene selection and ranking methods are based on testing fitness

criteria such as: the eigenvalue spread in a principal components analysis (PCA) of all pairs of gene

expression profiles; the ratio of between-population-variation to within-population-variation; or the cross

correlation between profiles.16,2,9

These methods have deficiencies which have impeded their use for practical experiments. First, is the

need for improved relevance of the fitness criterion to the scientific objectives of the experiment. It is



often difficult for an experimenter to choose quantitative criteria that characterize the aspects of a gene

expression profile of interest. Second, is the need for simultaneous control of the biological significance

(MAD) and the statistical significance (FDR) of differential responses discovered in the selected gene

probes. A probe response difference which is too small is not of much use to the experimenter even

if the difference is statistically significant. This is because the microarray experiment is usually only

the first step in gene discovery; each microarray probe difference that is discovered must be validated

by painstaking followup analysis that may have limited sensitivity to small differences. Third, is the

need for tight confidence intervals on these differences. The size of a confidence interval provides useful

information on the statistical precision of an estimate of differential response.

The method we present in this paper adopts a statistical multicriteria framework for gene microarray

analysis with MAD constraints on differential expression. The framework allows the experimenter to adopt

multiple fitness criteria, explicitly incorporate control on biological significance in addition to statistical

significance, and generate confidence intervals on discovered gene expression differences. Our method is

strongly influenced by the FDR-adjusted confidence interval (FDR-CI) approach recently introduced by

Benjamini and Yekutieli.7 We illustrate our methods for a differential expression experiment designed

to probe the genetic basis of retinal development. This experiment involves two populations, called wild-

type and knockout, and the objective is to find genes that exhibit biologically and statistically significant

differences between these populations. The purpose of this article is to illustrate methodology and not to

report scientific findings, which will be reported elsewhere.

It is worthwhile to compare the framework developed in this paper to related work. Liu and Iba have

proposed an interesting multicriteria evolutionary approach to gene selection and classification in gene

microarray experiments.20 Similarly, Fleury and Hero have proposed Pareto-optimality for selecting

subsets of genes using a combination of bootstrap resampling and Bayes decision theory.14,17,13 Single

stage26 and multi stage23,3,6 screening methods which control FWER or FDR have been proposed by

several authors for similar problems to ours. However, none of the above approaches account for a MAD

constraint or provide confidence intervals on the differential expression levels of the discovered genes.

In contrast, our approach accounts for both FDR and MAD constraints and generates such confidence

intervals using the FDR-CI framework.7 Furthermore, we specify an algorithm for computing FDR p-



gene g Pn2 Pn10 M2
W 4 samples 4 samples 4 samples
K 4 samples 4 samples 4 samples

Table 1. The knockout vs wild-type experiment is equivalent to a two way layout of treatment (W or K)
and time (t=Pn2,Pn10,M2).

values for all genes at any prescribed MAD level.

The outline of the paper is as follows. In Sec. 2 we give a general description of the type of differential

gene microarray experiment that will be illustrated in Sec. 4. In Sec. 3 we describe the proposed two-stage

multicriteria approach. Finally, in Sec. 4 we illustrate these techniques for experimental data.

2. DIFFERENTIAL EXPRESSION PROFILE EXPERIMENTS

This type of experiment is very common in genetics research32,27 and involves comparing gene expression

profiles of a set of G genes expressed in two or more populations. The data from this experiment fall

into the category of a two way layout18 where each cell in the layout corresponds to a set of replicates of

samples from one of the two populations (row) and one of T time points (column) (see Table. 1).

Any gene whose temporal profile differs from wild-type to knockout populations is called “differen-

tially expressed” in the experiment. One variant of this experiment is called the wild-type vs knockout

experiment. In such an experiment one has a control population (wild-type) of subjects and a treated

population (knockout) of subjects whose DNA has been altered in some way. Each population is com-

prised of T different age groups arranged in T subpopulations. M independent samples are taken from

each subpopulation and are hybridized to a different microarray yielding G pairs of expression profiles

(see Fig. 1 for profiles of gene having probeset number 101996 at). This generates a total of 2MT mi-

croarrays. It is common to express the differential response between wild-type and knockout responses in

terms of foldchange expressed as the ratio of these responses. For example, a foldchange of 2.0, or 1.0

in log base 2, at a given time corresponds to a wild-type response which is twice as large as the knockout

response. We denote by {µt(g)}T
t=1 and {ηt(g)}T

t=1 the true log wild-type and log knockout expression

profiles, respectively, expressed as log base 2 of the true hybridization abundances.

Fig. 2 illustrates the 3 dimensional multicriteria space of mean differential responses {µt(g)−ηt(g)}3
t=1

for the three time point experiment described in Sec. 4. Also indicated is a “MAD box” which defines



unacceptably small (inside box) vs acceptably large (outside box) differential responses, and a scatter of a

small subset of all the sample mean differential responses (dots) from the experiment. Our objective is to

discover which genes are likely to have a “positive differential response” falling outside of the box in Fig.

2. A very commonly used method is to simply apply a threshold to the sample means to detect those who

fall outside of the box in Fig. 2 as positive responses. However, as will be shown, this method does not

account for statistical sampling uncertainty and can lead to many false positives.

The objective can be stated mathematically as follows: find a set of gene probes which satisfy the MAD

constraint: |µt(g)− ηt(g)| > fcmin for at least one t ∈ {1, . . . , T}. Here the MAD constraint is quantified

by the user-specified minimum magnitude foldchange fcmin (expressed in log base 2). Thus we need to

simultaneously test the G pairs of two-sided hypotheses

H0(g) : |µ1(g) − η1(g)| ≤ fcmin and · · · and |µT (g) − ηT (g)| ≤ fcmin,

H1(g) : |µ1(g) − η1(g)| > fcmin or · · · or |µT (g) − ηT (g)| > fcmin, (1)

g = 1, . . . , G. Of course when we must decide between H0(g) and H1(g) based on a random sample there

will generally be decision errors in the form of false positives (decide H1(g) when H0(g) is true) and false

negatives (decide H0(g) when H1(g) is true). For any test the experimenter needs to be able to control

both its statistical and biological level of significance. The statistical level of significance of the test is

specified by the false positive rate. In contrast the biological level of significance of the test is specified by

fcmin.

There are three aspects to the hypothesis testing problem (1) which make it non-standard: (i) standard

tests on differences in means, such as the paired-t test, treat any non-zero difference as significant whereas

(1) specifies that only differences exceeding the specified MAD level of fcmin are significant; (ii) a positive

response (H1(g)) is described by multiple criteria, here equal to the T magnitude log response ratios at

each point in time; (iii) the G pairs of hypotheses must be tested simultaneously. For the case G = T = 1

the first aspect can be treated by applying methods for composite hypothesis testing such as generalized

likelihood ratio tests, unbiased tests, and confidence interval test procedures.8,30 When fcmin = 0, (ii)

and (iii) can be handled by applying a standard method, like paired t-test, to (1) for each gene probe g,

implemented with a multiplicity error correction factor, e.g., Bonferroni, familywise error rate, or false
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Figure 1. Responses for a particular gene (probeset number 101996 at) in knockout mouse (left) vs wild-
type mouse (right) for the differential expression study discussed in Sec. 2. There are 3 time points (labeled
Pn2, Pn10 and M2) and at each time point there are 4 replicates.
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Figure 2. Three dimensional multicriteria space for knockout and wild-type profiles over 3 time points
shown in Fig. 1. The 3 criteria are the differential probe responses at each time point. Shown is a scatter
plot of sample means of the differential responses along with a box of edge length 2fcmin distinguishing
biologically significant responses (outside box) from biologically insignificant responses (inside box).



discovery rate,.12 However, such a repeated test of significance will result in excessive false positives

corresponding to small log response ratios that are biologically insignificant (do not satisfy the MAD

constraint) but are statistically significant.

3. MULTICRITERIA GENE SCREENING METHOD

Define ξ(g) = [ξ1(g), . . . , ξT (g)] the true differential response vector associated with gene probe g, where

ξt(g) = µt(g) − ηt(g). Given the DNA microarray data our objective is to test the G hypotheses (1)

involving a total of P = GT unknown parameters {ξ(g)}G
g=1.

Any test of (1) must test over multiple criteria {ξ
t
(g)}t and multiple genes at a given level of biological

significance MAD=fcmin and a given level of statistical significance max FDR=α. Unless fcmin = 0, this

is a doubly composite hypothesis testing problem since the parameter values ξt are not specified under

H0 or H1. Due to the presence of multiple criteria and multiple genes this problem falls into the area of

multiple testing, simultaneous inference, and repeated tests of significance.5,22 Two standard measures

of statistical significance of a test of (1) are its familywise error rate (FWER) and its false discovery rate

(FDR).5 A mathematically convenient notation for a test of (1) is φ(g), which is called a test function,

taking on values 0 or 1 depending on whether the test declares H0 or H1 for probe g, respectively. With G0

denoting the probes not having positive responses, the FWER and FDR of a test φ can be mathematically

defined as:

FWER(G0) = 1 − E
[

ΠG
g=1(1 − φ(g))ψG0

(g)
]

FDR(G0) = E

[

∑G
g=1 φ(g)ψG0

(g)
∑G

g=1 φ(g)

]

,

where E[Z] denotes statistical expectation of a random variable Z and ψG0
(g) is the indicator function of

the set G0. In words, the FWER is the probability that the test of allG pairs of hypotheses (1) yields at least

one false positive in the set of declared positive responses. In contrast, the FDR is the average proportion

of false positives in the set of declared positive responses. The FDR is dominated by the FWER and is

therefore a less stringent measure of significance. Both FWER and FDR have been widely used for gene

microarray analysis.12,28,23,3

It is useful to contrast the FWER and FDR to the per-comparison error rate (PCER). The PCER refers to

the false positive error rate incurred in testing a single pair of hypothesisH0(g) vs. H1(g) for a single gene,



say gene g = go and does not account for multiplicity of the hypotheses (1). The PCER is the probability

that purely random effects would have caused go to be erroneously selected, generating a false positive,

based on observing microarray responses for gene go only. If an experimenter were only interested in

deciding on the biological significance of a single gene go based only on observing probes for that gene,

then reporting PCER(go) would be sufficient for another biologist to assess the statistical significance of

the experimenter’s statement that go exhibits a positive response. In contrast to the PCER, FWER and

FDR communicate statistical significance of an experimenter’s finding of biological significance after

observing all gene responses. The FWER is the probability that there are any false positives among the set

of genes selected. On the other hand, the FDR refers to the expected proportion of false positives among

the selected genes. The FDR is a less stringent criterion than the FWER.15,5,28

The FWER can be upper bounded as a function of {PCER(g)}G
g=1 using Bonferroni-type methods22 or

it can be computed empirically from the sample by resampling methods.33 The FDR can be computed by

applying the step-down procedure of Benjamini and Hochberg5 to the list of PCER p-values over all genes.

For a given g the PCER p-value, denoted p(g), of a test φ is a function of the microarray measurements

and is defined as the minimum value of PCER for which H0(g) would be falsely rejected by the test. The

set of gene responses which pass the test φ at a specified FDR can be simply determined after ordering

the genes indices according to increasing PCER p-value p(g(1)) ≤ . . . ≤ p(g(G)). Specifically, for a fixed

value α ∈ [0, 1] of maximum acceptable FDR, the FDR constrained test will declare the following set G1

of genes as positive responses15:

G1 = {g(1), . . . , g(K)}

K = max{k : p(g(k)) ≤ kα/G ν}, (2)

In this expression ν = 1 if the decisions φ(g) can be assumed statistically independent over g = 1, . . . , G,

while ν = 1/
∑G

k=1 k
−1 without the independence assumption.

A test which controls a maximum level α of acceptable FDR is said to be a FDR test of level-α. We

propose a test φ of (1) at FDR level α and MAD level fcmin based on intersecting simultaneous confidence

intervals on the T differences ξ(g) with the unacceptable difference region [−fcmin, fcmin]. We will

specify a two stage direct implementation and a single stage inverse implementation in the following

subsections. First, however, we recall some facts about simultaneous CIs.



Let θ be an unknown parameter, e.g., a gene’s foldchange ξ1(g) at time t = 1. A PCER (1 − α)×100%

CI on θ, is an interval I(α) = [a, b] with random data-dependent endpoints that covers the true θ value,

say θo, with probability at least 1 − α:

P (a ≤ θo ≤ b|θ = θo) ≥ 1 − α.

There is always a tradeoff between confidence level 1− α and precision (CI length) since the length b− a

of I(α) generally increases as α decreases. Let A be any subset of R. A PCER CI on θ can be converted

to a PCER level-α test of the hypotheses H0(g) : θ ∈ A vs. H1(g) : θ 6∈ A by the simple procedure:

“reject H0 if the (1 − α)× 100% CI on θ does not intersect A”.8

Multiple parameters, θ1, . . . , θP , can be simultaneously covered by FWER (1−α)×100% CIs {Ip(1−
(1 − α)1/P )}P

p=1, where Ip(α) is a PCER (1 − α)×100% CI on θp. Under the assumption that each of the

P PCER CIs are statistically independent, the FWER intervals cover all the parameters with probability at

least 1− α.22 A less stringent set of CIs {Ip(α/P )}P
p=1, which can be applied to dependent sets of PCER

CIs, is guaranteed to cover at least (1 − α)P of the unknown parameters.22,34 When the number of P of

parameters is random, as occurs when the number of parameters results from some initial screening, the

above methods cannot be applied. It was for this situation that the FDR-CI approach was developed.7 If

P is the result of initial screening at a FDR level α of Q parameters having PCER CIs {I p(α)}Q
p=1 then

the FDR-CIs on the P parameters are defined as {Ip(Pα/Q)}P
p=1. The FDR-CIs are guaranteed to cover

at least (1 − α) × 100% of the P unknown parameters.

Below we give two equivalent FDR-CI procedures for screening differentially expressed genes with

FDR and MAD constraints.

3.1. Direct Two Stage Screening Procedure

Stage 1: Gene screening at MAD level 0 extracts a set of G1 genes G1 by testing (1) under the relaxed

MAD constraint fcmin = 0 using a FDR level-α test via the step-down procedure (2).

Stage 2: Gene screening at MAD level fcmin > 0 extracts a set G2 of positive genes from those in G1

as follows. For each gene g ∈ G1 construct T simultaneous CI’s, denoted {Ig
t (α)}T

t=1, of FWER level

(1 − α)×100% on the true foldchanges {µt(g) − ηt(g)}t=1. Convert these into (1 − α)×100% FDR-CI’s



by the method of Benjamini and Yekutieli7: Ig
t (α) → Ig

t (G1α/G), t = 1, . . . , T , g = 1, . . . , G. Finally,

define the set of indices G2 of gene profiles having at least one time point where the FDR-CI does not

intersect [−fcmin, fcmin]:

G2 = { g ∈ G1 : (∪t=1,2,3I
g
t (G1α/G) ∩ [−fcmin, fcmin]) = ∅ } , (3)

where ∅ denotes the empty set. It follows from Sec 3.1 of Benjamini and Yekutieli7 that the set G2 has

FDR less than or equal to α at MAD level fcmin.

3.2. Inverse Screening Procedure: FDR p-values

In many practical situations the experimenter may not be comfortable specifying a MAD or FDR criterion

in advance. In these situations it is more useful to solve the following “inverse problem:” what is the

most stringent pair of criteria (α, fcmin) that would cause a particular subset of genes among the positives

G2? For fixed fcmin the most stringent (minimum) value α for which a gene would fall into G2 is called

the FDR p-value. The FDR p-value for a gene go can be computed by: (1) computing the PCER p-value

sequence {p(g)}G
g=1; (2) arranging the PCER p-value sequence in increasing order p(g(1)) ≤ . . . ≤ p(g(G));

(3) finding the minimum value α = α(go) for which at least one of the PCER CIs {Igo

t (α)}T
t=1 does not

intersect [−fcmin, fcmin]; (4) computing the integer index

N(α(go)) =
G
∑

k=1

I
(

p(g(k))k/G ≤ 1 − (1 − α(go))
T
)

,

where I(A) = 1 if statement A is true and I(A) = 0 otherwise; (5) the FDR p-value of go is then simply

p(gi), where i = N(α(go)). Repeating this as go ranges over 1, . . . , G gives a sequence of FDR p-values

at MAD level fcmin that can be thresholded to determine the set of positive genes G2 at any desired FDR

level of significance.

4. APPLICATION TO A WILDTYPE VS KNOCKOUT EXPERIMENT

These experiments were performed to investigate the role of a specific retinal transcription factor, Nrl,29 in

the development of mouse retina. The retinal samples were taken from four pairs (”biological replicates”)

of wild-type and knockout (Nrl deficient) mice21 at three different time points: postnatal day 2 (Pn2),

postnatal day 10 (Pn10) and 2 months of age (M2). The samples were then hybridized to a total of



twenty-four MGU74Av2 Affymetrix Gene Chips. The log base 2 probe responses were extracted from

Affymetrix GeneChips using the Robust Microarray Analysis (RMA) package.19 We denote the measured

wild-type and knockout responses by Wt,m(g) and Kt,m(g), where m = 1, . . . ,M , t = 1, . . . , T , and

g = 1, . . . , G index microarray replicate, time, and gene probe location on the microarray, respectively.

For this experiment G = 12421, M = 4, and T = 3. To construct confidence intervals on foldchanges we

define the vector of paired t-test statistics:

ξ̂(g) =

[

|W1(g) −K1(g)|
s1(g)/

√

M/2
,
|W2(g) −K2(g)|

s2(g)/
√

M/2
,
|W3(g) −K3(g)|

s3(g)/
√

M/2

]

, g = 1, . . . , G.

Here Wt(g) = M−1
∑M

m=1Wt,m(g) and Kt(g) = M−1
∑M

m=1Kt,m(g) denote the sample mean of the M

replicates at time t for wild-type and knockout treatments, respectively, and

s2
t (g) = (2(M − 1))−1

(

M
∑

m=1

(Wt,m(g) −Wt(g))
2 +

M
∑

m=1

(Kt,m(g) −Kt(g))
2

)

denotes the pooled sample variance at time t.

For stage 1 of the screeing procedure we consider the simple and standard22 simultaneous test of (1) at

MAD level fcmin = 0: “decide H1(g) if maxt=1,2,3
|Wt(g)−Kt(g)|

st(g)/
√

M/2
> fcmin”. Under the large M approx-

imation that the paired t-test statistic has a Student t distribution,24 and assuming time independence of

cells in the two way layout of Table 1, we can easily compute both the PCER p-value for this test

p(g) = 1 −
[

2T2(M−1)(ξ̂(g)) − 1
]3

, (4)

and simultaneous (1 − α)×100% confidence intervals, I g
1 (α), Ig

2 (α), Ig
3 (α), for the temporal foldchanges

{µt(g) − ηt(g)}t=1,2,3 of gene g

Wt(g) −Kt(g) − st(g)/
√

M/2 T −1
2(M−1)(1 − α/2) ≤

µt(g) − ηt(g) (5)

≤ Wt(g) −Kt(g) + st(g)/
√

M/2 T −1
2(M−1)(1 − α/2),

t = 1, 2, 3. In the above Tν : R 7→ [0, 1] denotes the Student t cumulative distribution function with ν

degrees of freedom and T −1
ν denotes its functional inverse, i.e. the Student-t quantile function.



Stage 1 Compute and sort PCER p-values according to (4)
Select gene indices G1 according to (2)

Stage 2 Construct simultaneous PCER CIs using (5)
Select gene indices G2 according to (3)

Table 2. Two stage FDR-CI algorithm for screening genes from the knockout vs wild-type experiment.

With the above expressions we can find the set G1 of gene indices which pass stage 1 FDR screening by

substituting the sorted PCER p-values (4) into the step-down algorithm (2). Stage 2 of screening selects

gene indices according to the FDR-CI’s from (3). This direct two stage screening stage procedure is

summarized in Table 2. Alternatively, the inverse procedure of Sec. 3.2 can implemented using (4) and

the explicit expression for the α(g) sequence

α(g) = 2

[

1 − T2(M−1)

(

max |Wt(g) −Kt(g)| − fcmin)

st(g)/
√

M/2

)]

,

g = 1, . . . , G.

4.1. Experimental Results

Figures 3 and 4 illustrate the direct and inverse implementations of the FDR-CI screening procedure. In

Fig. 3 the direct screening procedure is constrained by MAD and FDR criteria fcmin = 2.0 and α = 0.2,

respectively. As there are T = 3 time points and G = 12, 421 genes there are GT = 37, 263 parameters

for which FDR-CI’s are constructed. A gene passes the screening if at least one of the 3 time instants has a

FDR-CI that does not intersect the interval [−fcmin, fcmin]. The test is implemented by defining two rank

orderings of the FDR-CIs of the genes according to: (1) the FDR-CI with minimum upper boundary over

the 3 time points; and (2) the FDR-CI with maximum lower boundary over the time points. Figure 3.a

and b show relevant segments of these two ordered sequences of CI’s. Screening all genes with maximum

lower endpoints > fcmin and minimum upper endpoints < −fcmin generates the set of declared positive

genes G2.

Figure 4 illustrates the inverse procedure specified in Sec. 3.2 for screening differentially expressed

genes. First the FDR p-values are computed for each gene at several MAD levels of interest. For each

MAD level fcmin we plot the ordered FDR p-values. These can be plotted on the same gene index axis

since the induced gene ordering is independent of MAD level. FDR p-value curves for four different levels
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Figure 3. Segments of upper and lower curves specifying the 80% FDR confidence intervals (FDR-CI)
on the foldchanges {µt(g) − ηt(g)}t=1,2,3 for the knockout vs. wild-type study. Upper and lower curves
in each figure sweep out FDR-CI upper and lower boundaries on foldchange for all genes (indexed by
probeset number). In the top graph the curves sweep out the sequence of FDR-CIs indexed in increasing
order of the (maximum) lower CI boundary. In the lower graph the ordering is in increasing order of the
(minimum) upper CI boundary. Only those genes whose 3 FDR-CIs do not intersect [−fcmin, fcmin] are
selected by the second stage of screening. When the MAD foldchange criterion is fcmin = 2.0 (1.0 in log
base 2) these genes are obtained by thresholding the curves as indicated.
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Figure 4. Plots of FDR p-value curves over sorted list of gene indices for 4 values of the minimum
acceptable difference (MAD) criterion: fcmin = 0.32, 0.58, 0.85, 1.0 (log base 2) corresponding to wild-
type/knockout MAD ratios of 1.25, 1.5, 1.8, and 2.0, respectively. Constraints FDR≤ 0.2 and foldchange>
0.32 determine a set G2 of G2 differentially expressed genes by thresholding the corresponding curve as
indicated.

of fcmin are illustrated in Figure 4. The figure also illustrates how for FDR and MAD constraints α = 0.2

and fcmin = 0.32, respectively, the G2 positive responses G2 can be extracted from the FDR p-value curve

by thresholding. Notice that for fixed α, the sizeG2 decreases rapidly as the MAD criterion becomes more

stringent, i.e., as fcmin increases.

Figure 5 shows nine of the top ranked (in FDR p-value) differentially expressed gene profiles in (log

base 2 scale) among the 59 genes selected by either the direct or inverse implementations of the FDR-CI

screening procedure. In the figure the level of significance constraint is FDR≤ α = 0.2 and the minimum

foldchange constraint is MAD> fcmin = 1.0.

In Table 3 we compare the performance of the proposed screening algorithm, labeled “Two-stage FDR-

CI,” to two other algorithms, called “Thresholded FDR” and “Thresholded RMA.” All three algorithms
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Figure 5. Gene profiles of 9 of the differentially expressed genes discovered using proposed two stage
FDR-CI procedure with constraints on level of significance α = 0.2 and minimum foldchange fcmin =
1.0. Knockout “o” and Wildtype “*” are as indicated.

aim to control MAD at a level of fcmin = 1.0(log base 2). The “Two-stage FDR-CI” and “Thresholded

FDR” algorithms aim to control FDR at a level of α = 0.2 in addition to MAD. Both of these latter

algorithms were implemented as two stage algorithms with common stage 1, which is to select the gene

responses g ∈ G1 that pass the paired-t test of hypotheses (1) with fcmin = 0 at a FDR level of 20%. The

second stage of the “Two-stage FDR-CI” algorithm selects G2 as a subset of G1 at the prescribed CI FDR

level of 20%. Stage 2 of the “Thresholded FDR” algorithm simply selects the subset of genes g ∈ G1

having at least one sample mean foldchange exceeding fcmin = 1.0, i.e., it implements the following filter

max
t=1,2,3

|Wt(g) −Kt(g)| > 1.0, (6)

on probes g ∈ G1. The single stage “Thresholded RMA” algorithm, a non-statistical method commonly

used in many microarray studies, implements the filter (6) on the responses of each g in the original set of

12,421 genes as indicated in Fig. 2.



# Screened # Discovered max(pv) median(pv) avg(FDR-CI length)
Thresholded RMA 12,421 159 1.0 0.80 1.52
Thresholded FDR 303 127 1.0 0.31 1.17
Two-stage FDR-CI 303 59 0.19 0.02 1.09

Table 3. Performance comparison for three algorithms for selecting genes with magnitude (log base 2)
foldchange > 1.0. Thresholded RMA and Thresholded FDR are significantly worse in terms of statistical
significance (p-value) than the proposed Two-stage FDR-CI algorithm (columns 4 and 5). Furthermore,
the average length of the CIs on foldchanges of the discovered genes are shorter for the Two Stage FDR-CI
algorithm than for the other algorithms (column 6).

The number of screened and discovered genes for the three algorithms is indicated in the first two

columns of Table 3. The maximum and median of the FDR p-values of the discovered genes is indicated

in the third and fourth columns for each algorithm. The last column indicates the maximum length of the

FDR-CI’s on foldchanges of the discovered genes. We conclude from Table 3 that the proposed “Two stage

FDR-CI” algorithm outperforms the other algorithms in terms of: 1) maintaining the FDR requirement that

false positives not exceed 20% (column 4); 2) ensuring a substantially lower median FDR p-value than

the others (column 5); 3) discovering genes that have tighter (on the average) confidence intervals on

biologically significant (> 1.0) foldchange (column 6).

5. CONCLUSION

Signal processing for analysis of DNA microarrays for gene expression profiling is a rapidly growing area

and there are enough challenges to keep the community busy for years. It is essential that signal processing

methods be relevant and capture the biological aims of the experimenter. In this paper we developed a

flexible multicriteria approach to gene selection and ranking for screening differentially expressed gene

profiles. The criteria, selected here for analysis, capture the expression differences at multiple time points,

account for minimum acceptable difference constraints, and control false discovery rate.
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