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Abstract not have been possible without significant advances in gene
sequencing technology. One such technology, which is the

Over the past decade there has been an explosion in thgain focus of this paper, are gene microarrays and their as-
amount of genomic data available to biomedical researchers SOciatéd signal extraction and processing algorithms.

due to advances in biotechnology. For example, using gene  Gene microarrays provide a high throughput method to
microarrays, it is now possible to probe a person’s gene ex- simultaneously probe a large number gene expression lev-
pression profile over the more than 30,000 genes of the hu-g|s in a biological sample. Current state-of-the-art microar-
man genome. Signals extracted from gene microarray experyays contain up to 50,000 gene probes that interact with the
iments can be linked to genetic factors underlying disease,sample producing probe responses that can be measured as
development. and aging in a population. This has greatly ac- 3 multichannel signal. When the probes are suitably repre-
celerated the pace of gene discovery. However, the massiv@entative of the range of genetic variation of the organism,
scale and experimental variability of genomic data makes ex-this signal specifies a unique gene expression signature of
traction of biologically significant genetic information very - the sample. Gene microarrays are a very powerful tool which
challenging. One of the most important problems is to selectcan pe used to perform gene sequencing, gene mapping and
a list of genes which are both biologically and statistically gene expression profiling. They will be critical in determin-
significant based on the outcomes of gene microarray expering the genetic circuits that regulate expression levels over
iments. We will describe a novel multlple criterion method time and genetic pathways that lead to Specific bio'ogica|
that we have developed for this gene selection problem thatynction or dysfunction of an organism.

allows tight control of both minimum observable differential

change (biological significance) and familywise error rate  In this paper we will present a new multiple-criteron ap-
(statistical significance) and also provides a set of simulta- Proach to analyzing gene microarray data that we have de-
neous confidence intervals for the differences. veloped while interacting with our collaborators in molecu-
lar biology. The focus application of the paper is the analysis
of temporal gene expression profiles and their role in explor-
ing genetic factors underlying disease, regulatory pathways
controlling cell function, organogenesis and development. In
particular we and our collaborators in the Dept. of Human
1. INTRODUCTION Genetics at the University of Michigan are interested in an-

. . . ... alyzing retinal data to determine genetic factors underlying
Slncre Watst(k)‘n f?r}g Cf”Ckndlifovﬁred PN'rA mo(rjefrthrin fifty dysfunction of the eye due to aging, glaucoma, macular de-
Uative science starved for data and computation cycles 1c0C 120N, and diabetes. Our examples will be primatily

P Y drawn from these areas and we will focus on the problem

one of the most thriving areas of current research and de'of selection of genes that are both biologically significant, in
velopment. It was not until almost 45 years after Watson

: X ! . terms of exhibiting large foldchange over time or over treat-
and Crick’s discovery that the first entire genome was se- g-arg g

guenced, the E Coli bacterium containing over 4000 genes,gfggfigigtggzﬁiﬂg significant, in terms of controlling the

after several years of effort. In 2001 the first draft of the '

human genome, containing more than 30,000 genes, was ob- In our past work on signal processing for gene microar-
tained. In spring 2003 the genome for the SARS corona virusrays%-11:1427.15 oyr primary goal has been be to develop

(SARS-CoV) was sequenced and authenticated in less tharstatistically reliable methods for ranking temporal gene ex-
2 months tim&%2!  These recent leaps in progress would pression profiles. The work most closely related to this paper

Keywords: bioinformatics, gene filtering, multicriterion
scattergram, familywise error rates.



is our multi-criterion optimization approach gene rank- helix which lie on a number of chromosomes in the nucleus
ing using a statistical version of Pareto front analy$i&’ of every cell in the organism. The number of genes in the
In that work two methods for ranking data from multiple DNA of a given organism can range from a few thousand for
microarray experiments were introduced: cross-validation simple organisms to tens of thousands for more sophisticated
leading to resistant Pareto front (RPF) analysis, and Bayesorganisms. Each exon contains a gene which is encoded as
smoothing, leading to posterior Pareto front (PPF) analysis.a nucleotide sequence of symbols A,C,G, T forming a 4-ary
In this paper we focus on thgene selectioproblem and alphabet.

adopt a statistical multiple criteria approach similar to our  gape expression occurs when the DNA sheds certain of
previous work. The novelty of our gene selection method ji5 genes in the cell nucleus in order to stimulate or inhibit

is the use of a two stage procedure: 1) perform preliminary arioys functions, e.g., cell growth or metabolism. This stim-
screening using multiple-criteria tests of significance; and 2) ation occurs through production of derivatives of DNA, the
perform secondary screening using false discovery rate cony,rRNA and tRNA, produced by a process called transcrip-
fidence intervals (FDRCI) on foldchange. The two stage pro- ion and translation. Stimulated by mMRNA and tRNA the
cedure allows the experimenter to simultaneously impose ajposome of a cell produces specific amino acids in polype-
minimum foldchange requirement and a prescribed family jge chains. These chains form proteins that carry out the in-
wise error rate (FER) on the set of genes selected. tended function expressed by the DNA. While the DNA does

We illustrate our two stage methods for two Affymetrix Nnot change, the specific genes expressed in this fashion can
GeneChip experiments designed to probe the genes of th€hange over time, environmental conditions, and treatments.
retina. In these experiments we adopt pairs of criteria The objective of genomics is to identify the very large num-
for stage 1 which trade-off high selectively for robustness. bers of genes that are expressed by the organism.

Specifically, one selection criterion is a (multivariate) paired  Bjotechnology, such as gene microarray hybridization,
t-test statistic for selecting gene profiles. This criterion has Northern hybridization, and gell electrophoresis, is essential
optimal gene selection properties under a Gaussian microarto reliably probe the gene expression of a biological sam-
ray probe response model. The other criterion is based orple. Bioinformatics provides tools for computational extrac-
distribution-free rank order statistics. This criterion is ro- tion and ana|ysis of the vast amounts of information in probe
bust to violations of distributional assumptions on the data. response data. As scientists and genetic engineers become
Stage 2 is implemented by thresholding simultaneous con-increasingly interested in studies of gene expression profiles
fidence intervals on foldchange constructed from adjustedoyer time, signal processing will become a major bioinfor-
Student-t quantiles. The purpose of this article is to illus- matics tool. We next briefly describe the signals generated
trate methodology and not to report scientific findings. How- py gene microarrays.

ever, as presented #;?2 application of our procedure has
resulted in discovery of many novel genes which have been
experimentally validated by more sensitive foldchange quan-
titation methods (RT-PCR).

A gene microarray consists of a large numbeof known
DNA probe sequences that are put in distinct locations on a
slide. See one of the referendésfor more details. After
hybridization of an unknown tissue sample to the gene mi-

The outline of the paper is as follows. In Sec. 2 we give croarray, the abundance of each probe present in the sam-
some background on genomics and review gene microarraygle can be estimated from the measured levels of hybridiza-
in the context of temporal profile analysis. In Sec. 3 we mo- tion. Two main types of gene microarrays are in wide use:
tivate and describe the multicriterion selection and ranking photo-lithographic gene chips and fluorescent spotted cDNA
approach. In Secs. 4 and 5 we discuss familywise error ratearrays. An example of the former is the Affymeftigrod-
(FER), false discovery rate (FDR), and false discovery rateuct line. An example of the later is the cDNA microarray
confidence intervals (FDRCI) for multicriterion gene screen- protocol of the National Human Genome Research Institute
ing. Finally, in Sec. 6 we illustrate these techniques for ex- (NHGRI).2> A suite of software tools are available from

perimental data. Affymetrix and elsewhere for extracting accurate estimates
of abundance, called probe responses. When probe responses
2 GENOMICS BACKGROUND are to be compared across different microarray experiments

they must also be normalized. Extraction and normalization
We start with some definitions and a brief review of molecu- methods can range from simple unweighted sample averag-
lar biology and genetics. The genome refers to the geneticing, as in the Affymetrix MAS4 software, to more sophisti-
operating system which controls structure and function of cated model-based analyses, such as MASBe Li-Wong
cells in an organism. This genome consists of genes thatmethod!?2° RMA oligo-chip anlysis'® and SMA cDNA-
lie on segments, called exons, of the double stranded DNAchip analysig!:2 Many of these packages are available as



freeware, e.g., see websité8 for links to relevant software  low curvature over time, and whose total increase from ini-
written in the R software languagé. When several mi- tial time to final time is large. Or one may have to deal with
two biologists who each have different criteria for what fea-
tures constitute an interesting aging gene. As another ex-
ample, which reflects the applications discussed below, one
may wish to use two different statistical criteria; one quan-
titative foldchange criterion matched to an assumed model
and another qualitative monotonicity criterion that is robust
to violations in model assumptions.

Multicriterion Gene Selection: We define the fitness of a
geneg using the vectoé(g) = [¢1(g), - - -, &p(g)]- A reason-
able gene selection criterion would be that the fitness for each
selected genglies in the quadrart (g) > u1,-..,&(g) >
= up. Any such genes will be said to have “positive responses”.
Hereu,,...,u, are thresholds which could be selected by
the experimenter to reflect the biological significance of a
particular level of measured gene fitnegg). This is il-
lustrated in Fig. 2 where the selected sector for two aging
criteria (the orthogonalized criteria described in Sec. 6.1) is
Figure 1. Probing gene expression at several time points superimposed overthe_scatter plot of fitness_ levels extract_ed
for all the genes probe in the microarray. This scatter plot is

leads to a temporal sequence of gene microarrays (left). A lied th iticriteri it ¢ the fit
few of the sequences can be extracted at specific probe locaCa!ed the multicritenia scattérgram ot the NNess responses.

tions on the microarrays and plotted as time signals (right).

croarray experiments are performed over time they can be
combined in order to find genes with interesting temporal

expression profiles (see Fig. 1). This is a data mining prob- L P
lem known variously as "gene selection” and "gene filtering” A | v
for which many methods have been propose8® Crucial g 83
for gene ranking is the specification of a preference order- I,

ing for the ranking. A popular gene selection and ranking
method is based on optimizing some single fithess criterion
such as: the ratio of between-population-variation to within- |
population-variation; or the temporal correlation between a i 3
measured profile and a profile template. A problem with this Comiin 1
single criterion ranking method is that it is often difficult for
the molecular biologist to articulate what he is looking for
in terms of a single quantitative criterion. It is for this rea-

son that our group has proposed multiple criteria methodsforFigure 2. Multicriteria scattergram of gene fithess responses
selecting and ranking gene profifsi4.L5 with overlaid gene selection sector. Genes falling in this sec-

tor are declared “positive responses”. The choice of posi-

tion [uy, uo] of the sector could depend on the experimenter’s

3. MULTICRITERIA SELECTION AND chosen biological significance levels for gene discovery.
RANKING

As contrasted to maximizingcalarcriteria, multiple objec-  Multicriterion Gene Ranking : In a well designed gene mi-
tive gene screening seeks gene profiles that strike an optimatroarray experiment, multicriterion (or other) methods of
compromise between maximizing several criteria. It is of- selection will generally result in a large number of genes
ten easier for a molecular biologist to specify several criteria and the biologist must next face the problem of selecting
than a single criterion. For example the biologist might be in- a few of the most “promising genes” to investigate further.
terested in aging genes, which he might define as those geneResolution of this problem is of importance since valida-
having expression profiles that are increasing over time, havetion of gene response requires running more sensitive am-



plification protocols, such as quantitative real-time reverse
transcription-polymerase chain reaction (RT-PCR). As com-
pared to microarray experiments, RT-PCR’s higher sensitiv-
ity is offset by its lower throughput and its higher cost-per-
probe. Some sort of rank ordering of the selected genes
would help guide the biologist to a solution the validation
problem. As a linear ordering of set of vector quantities such
as{[¢1(9), - --,&,(9)]}, does not generally exist, an absolute
ranking of the selected genes is of course generally impossi-
ble. However a partial ordering of these vectors is possible
and such a "partial ranking” can be formulated as a multi-
ple objective optimization problem. Multiple objective op- -
timization approaches to gene rankning were presentéd in
to which the reader is referred more more details. Here we
concentrate on the gene selection problem.
i L i . Figure 3. The maximum p-value for multiple criteria gene
The above multiple criterion selection methods are appli- selection in the aging gene mouse retina microarray exper-

cable to any set of criterig, . . . ,_fp_. However, f[hese meth- iment (left). The FDR, computed from the p-value using a
ods do not account for any statistical uncertainty. The studyWeII known formuld2 for the same experiment (right). The

of glen_e expresggn almost a:wgys requires hybr(;dlz:jng S&V-genes are rank ordered in terms of their p-value and FDR
eral microarrays from a population to capture and reduce re<; - iities respectively.

sponse variability. This variability can be due to two fac-

tors: biological variability of the population and experimen- . .
tal variability. It is difficult to separate these two factors and VECtOrs lie in the selected quadrant of the multicriterion scat-

most analysis is performed with a statistical model which t€rgram. The p-value is computed for a single gene probe,
lumps them together. say gengy,, and is the probability that purely random effects

would have causegl, to be erroneously selected, i.e., a “false
positive,” based on observing microarray responses for gene

4. ERROR RATES FOR MULTIPLE go only. More precisely the p-value fgy, is defined as:
SCREENING CRITERIA
pv(go) = P(fl > up (go), s ,gp > up(go))
For comparing experiments in a way that accounts for sta-yyhereg, | .. ., ¢, are random variables equal to fitness levels

tistical variations it is essential for an experimenter to re- ot a4 ii.d. random sample. If an experimenter were only in-
port a figure of statistical significance of his findings. Three {orested in deciding on the biological significance of a single
important quantities indicative of statistical significance are geneg, based only on observing probes for that gene, then
the p-value, associated with testing a single gene responsgenortingp(g,) would be sufficient for another biologist to
the familywise error rate (FER) and the false discovery rate 4g5es the statistical significance of the experimenter’s state-
(FDR), associated with testing all the gene probes simul- yent thay, exhibits a positive response. In contrast to the p-
taneously (multiple comparisons). In gene microarray ex- 5y, FER and FDR communicate statistical significance of
periments the biologist is always making multiple compar- g experimenter’s finding of biological significance of mul-
isons so FER or FDR must be controlled. Let each geneyipje responses. The FER is the probability that there are any
on the set of microarrays have measured aggregate fitnesgse positives among the set of genes selected. On the other
&(9) = ui(g),--,6(9) = up(g), €.9., astatistic com-  hanq the FDR refers to the expected proportion of false pos-
puted as the average fitnessgobver all of the microarray  jiives among the selected genes. The FDR is a less stringent

replicates. For ease of presentation, we assume that the stasiterion than the FER and weakly controls the FER:28
tistical distributionP of &, (g), - .., &,(g) is known when the
probe responses are spatially independent and identically dis- "/hen thep-values are known the FER and the FDR can
tributed (i.i.d.) random variables over the microarray. In P& UPPer bounded using Bonferroni-type methttsOth-

other words, the aggregate fitness statistic is distribution freeSWise, the p-value, FER and FDR can be computed em-

under the null hypothesis that all probe responses are i.i.d. Pirically by simulation or resampling methotisand this is
the method we have used here. In general an experimenter

The experimenter selects genes which exhibit a positivewould like the p-values, the FER and the FDR for his se-
response according to some criterion, e.g., each of the fithessected genes to be as low as possible in order to ensure a
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high level of statistical significance. However, as compared

to the more conservative FER and FDR constraints, screen- N
ing by the maximum p-value gives an overoptimistic measure = °
of significance. This is illustrated for the FDR in Fig. 3 for a0 ° 8 o o
the aging gene microarray study described in Section 6. 250 g o 8 8
(] o
200 @ o

5. INCLUSION OF MINIMUM FOLD CHANGE o

CRITERION =
The methods described above are applicable to discover- Prz Pnio M2 Mo wel

ing genes with any non-zero differential response at a pre-_. 24.d . i h 6 i .
scribed level of significance. Frequently the experimenter Figure 4. 24 data points (4 replicates at each 6 time points)

is only interested in genes whose differential response overfor, a spe?cmc gzne extracted from 24 GeneChips in mouse
time or over treatment exceeds some threshold. This thresh/€tiNa aging study.

old is generally expressed in terms of log base two of the
ratio of two responses and has units of “foldchange.” The 6.1. Strongly Increasing Profiles

experimenters choice of minimum foldchange is commonly The experiment consists of 24 retinal tissue samples taken

determined by the sensitivity of follow-up validation tech- from a population of age-sorted mice at 6 ages (time points)
nigues such as RT-PCR. For example, our experimental col- pop g 9 P

. - . with 4 replicates per time point. These 6 time points con-
laborators commonly work with a minimum validatable fold .
sisted of 2 early development (Pn2-Pn10) and 4 late develop-
change somewhere between 1.0 and 2.0.

ment (M2-M21) time points. DNA from each sample of reti-
For screening genes with a minimum foldchange criterion nal tissue was amplified and hybridized to the 12,422 probes
we have adopted a two-stage procedure based on the methosh one of 24 Affymetrix U74 GeneChips. The data arrays
of False Discovery Rate Confidence Intervals (FDRCI) of from the GeneChips were processed by Affymetrix MAS5
Benjamini and Yekutiell. The first stage of this procedure software to yield log2 probe response data. We eliminated
consists of using multiple-criteria screening techniques, de-from analysis all genes that MAS5 called out as “absent”
scribed in the previous section, to find a set of genes whichfrom all chips in addition to the Affymetrix housekeeping
are differentially expressed at a prescribed FDR lgvdlhe  genes, leaving 6931 genes for analysis. Figure 4 shows the
second stage consists of constructing simultanébusg)% 24 data points for a particular gene among the= 6931
confidence intervals for the foldchanges at each time pointgenes studied. Define the gene response datum extracted
for each gene discovered in the first stage. These confidencéom them-th microarray replicate at timefor the g-th gene
intervals are constructed on the time points using the FDRCl probe location:
procedure of Benjamini and Yekutieli. A gene is declared
“foldchange-significant” at foldchange levg},;, and signif- zem(9), 9=1,....,.G,m=1,.... M, t=1,...,T. (1)
icance levely if it has at least one time point for which the
foldchange confidence interval is greater thian, or less ~ WhereG = 6931, M = 4, T = 6. Figure 4 shows the
than— fmin. This procedure has the advantage of providing response datdz; ..(g) }+,» for one of the genes extracted

simultaneous confidence intervals on fold changes of eachfom the Affymetrix GeneChip. The scientific objective of
gene selected as foldchange-significant. the experiment s to find genes which are strongly associated

with aging and development, i.e. those that are monotonic
over time and have large end-to-end foldchange. Template
6. APPLICATIONS matching methods are not effective here since they require
Here we illustrate multiple criterion screening techniques for specification of a profile pattern and, due to variability in
data from two gene microarray experiments. The biologi- the experiment, this can miss genes that have the desirable
cal significance of the experiment and the list of foldchange- monotonicity characteristics but do not agree with the speci-
significant genes found will be reported elsewh&& Our fied pattern. Thus we adopted the following multiple criteria
purpose here is simply to illustrate the application of our approach. We designed criteria to key onto three types of
gene selection and ranking techniques on real data. Bottprofiles: 1) those that are monotonically increasing; 2) those
experiments used oligonucleotide-arrays, specifically thethat are monotonically decreasing; 3) those that display end-
Affymetrix U74 mouse chips, and probe responses were ex-to-end foldchange magnitudes greater than 1.0. We only de-
tracted using the Affymetrix MAS5and RMA!'® software scribe the gene selection method for the monotonic increas-
packages. ing case as the treatment of the decreasing case is completely



analogous. In order to tease out the monotonic increasing
profiles we use a non-parametric distribution free statistic.
In previous gene ranking work we proposed a natuiralial
profile criterion that counts the number of monotonicincreas-
ing trajectories among thé* = 4096 possible trajectories
that could pass through the 24 data poiritsHowever, even
though it is arguably a more compelling monotonicity statis-
tic, the virtual profile criterion has exponential computational
complexityO(MT). Thus for this screening application we
prefered to use the well known Jonckheere-Terpstra (JT) tes
statistid® as criteriont;.

T
G9) =22 > sign(@y,m(9) — v1,m(9))

t=1t'>t m#m/'

# meplicates=m=4
# ime paints=i=H
# profiles=4"6=405G

For end-to-end change we adopted a modified one sidec
paired t-test statistfé as criteriongs.

4 ] 8

Figure 5. 3 of the6* = 4096 virtual profiles that can be

&(g) = Mﬂﬁ(g) —71(9) ) drawn through the 24 gene responses in mouse retinal ag-
s(g) ing study. None of these 3 are monotonic. Label at top left
denotes the gene’s Affymetrix probe id number.
where
1 M
7i(9) = = Y Tm(9)
M m=1
and
1 T M
2 _ A 2
) = Tar =) ;;(ﬂft,m(g) Ti(9))®.  (3) . — o

The null distribution of the statisti€:(g) is Student-t with
T(M — 1) degrees of freedom (d.f.). The statistic (2) dif-
fers from the standar@(AM — 1)-d.f. paired t-test statistic

in that we exploit the assumed homeoscedastieity, (9) =

o2 (g)) of each of the probe responses to derive a more accu-
rate pooled variance estimate (3). Thealues of the JT and

il | -l o g bl [ 107
-

paired-t statisticg; (g) and&»(g) are tabulated itf and?* o . > ,
respectively. &l

The JT statistic essentially counts the number of times that B e
asample at a future time pointis larger than a sample ata pre sz

vious time point and its computation is only of polynomial

complexity O((T+1)T/2M?)). The paired t-test statistic is

an optimal end-to-end selection criterion when the extracted _. L .
probe responses are Gaussian random variables with identi—':Igure 6. GThe r.n.ultlcnterlon scattergram of pairs
cal variances. An implicit assumption underlying the use of {€1(9), &2(9)}i, Tor .i.d. resampled GeneChip probe re-
the JT and Student-t test statistics is that the probe response%pons_;es appears apprommater_G aussian distributed \.N"Fh re-
have identical distributions except for a possible shiftin loca- gression line as indicated. He(g is equal to the JT statistic

tion, as measured by the mean or median. This assumption ié?ens? g;ﬁ;ﬂual to T2 which denotes the end-to-end paired t

reasonable after normalization of the gene microarrays, e.g.
after using the RMA procedur®. As our collaborators are

primarily interested in the genes that are implicated in late



development or aging, we dropped the first two time points
in the data set for the ana|ysis described below. Dual criteria plane. No. points selected:40. FER=0.1

8 T T T T T T T
Since the joint sampling null distribution of the JT and *
paired t-test statistics is unknown, we chose to generate FER 4 1
contours empirically using a resampling method similar to
the bootstrap. Specifically, we randomly permuted the probe
responsesz: ,(9)}+,m,s t0 generate 500 resampled sets of
i.i.d. probe response{s«:;m(g)}t,m,g for which the marginal
distribution matches the empirical marginal distribution of
{2¢,m(9) }t,m,g. Using these 500 simulated GeneChip data
sets we determined FER by computing the relative frequency
that any gene fitness statisfi¢ (¢), £2(g)] computed from
{:c't’m(g)}t,m,g falls in a given sector as explained in Sec. 4.
By varying the lower left endpoir:;, us] of these sectors i
over the plane constant FER contours were determined.

End-to-end change statistic (T2-0.1*JT+5.4)

To obtain the most discriminating multiple criterion test < —F% %% % & 5% &  © 1o
we made an orthogonalizing transformation to data in the Monotonicity statistic (37)

multicriterion plane. This transformation was motivated by ] o _ _

the observation that the scattergrams of the resampled datfigure 7. Fitness criteria plotted in orthogonalized dual
(see Fig. 6) appeared to be a correlated approximately bivariCriteria plane of {,=JT and &,=T2 statistics for detect-
ate Gaussian sample. Using a regressiog, afn ¢, we de- ing increasing genes in aging study: S_uperlmposed are the
termined a monotonic transformation that converted these re-constant contours of FER and 40 highlighted genes (aster-
sampled scattergrams into approximately orthogonal bivari- 1Sks) that pass the first stage of screening for monotonic-
ate Gaussian scatter plots. This transformation was then aplncreasing profiles at FER level 10%.

plied to the original data set @ = 6931 gene responses to
determine a set of monotonic increasing genes at a FER level
of ¢ (see Fig. 7). This first stage of screening results in a set

10 T T T T T T
G, of G genes with declared positive responses. The sec- . |
ond stage of screening consists of constructing the following T AT
level (1—¢)100% simultaneous FDR confidence intervalson 5 °|
the foldchangef: for these?; genes: -SK/ ]

7(g) — 71(9) — s(9) VM2 Ty 1y (1= /2) <felg) | |

I
0 1000 2000 3000 4000 5000 6000 7000

S ﬁ(g) — x_l(g) + S(g)/\/ ]\/[/2 Ti(}\/ffl) (1 — q’/2)’ gene(sorted)
whereg € G,. Hereq' = ¢G1/G is the adjusted FDRCI j |
significance level, Z;(9) = MM z;,.(g), and i |
7,71 () is thea quantile of the Student-t distibution with = |

d.f. The second stage is completed by retaining those genes
in G; whose M2-to-M21 foldchange confidence intervals do
not intersect the intervdloco, fimin] (See Fig. 8). o ‘ ‘ ‘ ‘

6650 6700 6750 6800 6850 6900 6950

Shown in Fig. 9 are the profiles of the 2 genes who have gene(sorted)
monotone increasing gene profiles with foldchange at least
femin = 0.5 at FDRCI level 0.1. The stringency of this Figure 8. (a) Plot of the upper and lower end-points of the
screening procedure is reflected by the fact that the FER’s for10% FDR confidence intervals (FDRCI) on M2-to-M21 fold-

each of these gene are substantially below the FDRCI level. changes{fc(g) } sorted by lower endpoint (lower curve). (b)
blowup of (a) over the 250 largest lower endpoint values.

Only the two genes whose lower FDRCI endpoint is greater
6.2. Differentially Expressed Profiles than the minimum foldchangg.;, = 0.5 pass the second
The second experiment we describe is concerned with find-Stage of screening.
ing genes whose expression profiles change significantly af-

o




FER:O FER:0.0016212 statistic for testing for parallel W vs. K responses (profiles)

12 of 8 o in a two way layout®; and 2) a multivariate paired t (MVPT)

Ll ° 8 -0s ° o test statistic for quantifying the amount of average difference
N S 8 = o © in the W vs. K responsés. Similarly to the previous exper-

08 g s o iment these two criteria are complementary: the MS test is

056 -2 a distribution-free rank-order statistical test while the MVPT

041 8 251 ° is optimal under the Gaussian assumption. We applied non-

02t o . - - -3 ‘; . . - linear transformations to these two criteria to stabilize their

FDR=0.1 variances (for large M the statistiog(1 + MV PT) is ap-

proximately Chi-square distributed). Similarly to before we

Figure 9. Last 4 time points of the two gene trajectories used a resampling method to empirically compute FER con-
(log2) with foldchange at leagtemin = 0.5 at FDRCI level tours in the dual criteria plane. These contours were su-
0.1in the mouse retinal aging study. FER’s for each gene are perimposed on the multicriterion scattergram (see Fig. 11)
substantially below the FdRCI level. The numbers at top left to find the set of genes that are differentially expressed at
of each plot simply identify these two genes in our library. a FER of prescribed level. Again we denote &y the

number of genes discovered in this first stage of the screen-
o ing procedure. Stage 2 of the test consisted of retaining
° only those genes whose FDRCI’s on differential foldchange
{fci(g)}L_, do notintersedt— fumin, fmin) for any time point
t (see Fig. 12). Specifically, th€G; level (1 — ¢)100%

120|

o
000 o

100 101996 ¢
10 101996 1
90| 8 al

00 0

oo ) 6 . simultaneous FDRCI intervals were computed as:
— . Wilg) — Ki(9) = se(9)/V/M/2 Ty a4y (1 = d'[2) < fei(g)
T/ T —1 !
Figure 10. Responses for a gene in knockout mouse (left) vs < Wilg) — Ki(g) +52(9)/ VM2 Ty 01y (1= ¢'/2)

wildtype mouse (right) for differential expression study. ) ) i
whereq' is the adjusted confidence level

ter a treatment. Such genes are called "differentially ex- ¢ =1-1-qG /)T,

pressed” after treatment. One variant of this experiment is

called a wildtype vs knockout experiment. In this experi- ands:(g) is the pooled variance estimate obtained from
ment one has a control population (wildtype) of subjects and {We,m (9) }m and{ Kz n.(g) }m-

a treated population (knockout) of subjects whose DNA has  Figyre 13 shows 9 of the differentially expressed gene

been altered in some way. One then collects cell Samp'?sprofiles in (log2 scale) among the 15 genes selected by the

from both populations at different times and generates mi- q stage screening procedure at FDRCI level of significance
croarray data sets to find any genes that are differentially ex—%: 0.1 and minimum foldchange of i, = 4.0.

pressed. Figure 10 shows gene probe responses from suc
a wildtype and knockout experiment performed on two pop-

ulations of mice by collaborators at the Sensory Gene Mi- 7. CONCLUSION
croarray Node at the University of Michigan. The population

consisted of 12 knockout and 12 wildtype mice each divided
into 3 subgroups of 4 mice. The 3 subgroups correspond to
different time points: postnatal 2 days (pn2), postnatal 10
days (pn10), and postnatal 2 months (M2). The log2 probe

Signal processing for analysis of gene microarray and other
gene experiments is a growing area and there are enough
challenges to keep the community busy for years. In our col-
laborations we have found it crucial to interact closely with

tracted f the Aff trix GeneChi our biology colleagues to ensure that our signal processing
responses were extracted irom th€ Allymetnx GeneLNIPS Us-, o545 are relevant and capture the biological aims of the

ng _the RMA a_lgonthm. The scientific objective O.f the ex- experimenter. To illustrate this point, in this paper we have
periment is to find genes whose tempor_al expression IorOfIIesdescribed one of our projects involving gene selection and
n the wildtype and knowcl_<out population are significantly ranking. To respond to the needs of our collaborators we had
different. We label the wildtype and knockout responses to develop a flexible multi-criterion approach to gene selec-

gtv’_” 29) agglﬁ,gn(g) in a similar manner to (1) where here tion and ranking. A single criterion would have much greater
=fandl =o. difficulty in capturing the variety of properties that our col-
The dual criteria chosen were: 1) a Mack-Skillings (MS) laborators considered biologically significant. To account
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Figure 11. Fitness of genes plotted in transformed dual
criteria plane for detecting differentially expressed genes in
knockout study. Points on the plane are the square root Mack-
Skillings (MS) statistic and the log of 1 plus the multivari-
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Figure 13. Gene trajectories of 9 differentially expressed
genes in Fig. 11 with FDRCI level of significange= 0.1

ate paired T test (MVPT). Superimposed are the constantdnd mi”ir]l‘fm foldchange gfuin = 4.0. Knockout “o” and
contours of FER and genes (asterisks) that pass the multi-Wildtype “*” are as indicated.

criterion test at a FER of 0.1.
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Figure 12. (a) Segment of upper and lower curves specifying
the 10% FDR confidence intervals (FDRCI) on the maximum
foldchangemax;—1 2 3{fc;(g)} sorted according to genes
having largest lower endpoint (lower curve). (b) same as (a)
except that FDRCI'’s are on the maximum foldchange sorted
by largest upper endpoint values (upper curve). Only those
genes whose FDRCI's do not interspelfiin, fmin] Pass the
second stage of screening.

for statistical variation, we had to extend multi-criterion op-
timization to a stochastic setting. To accomodate our col-
laborators minimum fold change requirements we had to in-
corporate simultaneous confidence intervals into our screen-
ing procedure. We continue to refine our methods to meet
the changing requirements of interacting with a very rapidly
changing field.
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