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Data −→ correlation −→ adjacency −→ network
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Why is correlation important in SP/ML?

• Network modeling: learning/simulating descriptive models
• Empirical prediction: forecast a response variable Y
• Classification: estimate type of correlation from samples
• Anomaly detection: localize unusual activity in a sample

Each application requires estimate of cov matrix ΣX or its inverse

Prediction: Linear minimum MSE predictor of q variables Y from X

Ŷ = ΣYXΣ−1
X X

Covariance matrix related to inter-dependency structure.

Classification: QDA test H0 : ΣX = Σ0 vs H1 : ΣX = Σ1

X
T
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1 )X
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>
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Anomaly detection: Mahalanobis test H0 : ΣX = Σ0 vs H1 : ΣX 6= Σ0

X
T
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Learning correlations and complex network discovery
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Big Data aspects of correlation mining
O/I correlation gene correlation mutual correlation

• ”Big data” aspects

• Large number of unknowns (hubs, edges, subgraphs)

• Small number of samples for inference on unknowns

• Crucial need to manage uncertainty (false positives, precision)

• Scalability of methods to exascale data is desired
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Misreporting of correlations is a real problem

Source: Young and Karr, Significance, Sept. 2011
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Tasks: estimation, identification, detection, screening
• Covariance estimation: sparse regularized l2 or lF

• Banded covariance estimation: Bickel-Levina (2008) Sparse
eigendecomposition model: Johnstone-Lu (2007)

• Stein shrinkage estimator: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)

• Correlation identification Gaussian graphical model selection

• l1 regularized GGM: Meinshausen-Bühlmann (2006),
Wiesel-Eldar-H (2010).

• Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)
• Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani

(2010), Tsiligkaridis-Zhou-H (2012)

• Correlation detection: independence testing

• Sphericity test for multivariate Gaussian: Wilks (1935)
• Maximal correlation test: Moran (1980), Eagleson (1983),

Jiang (2004), Zhou (2007), Cai and Jiang (2011)

• Correlation screening (H, Rajaratnam 2011, 2012)

• Find variables having high correlation wrt other variables
• Find hubs of degree ≥ k ≡ test maximal k-NN.
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Learning a correlation matrix and its support set

• p × n: measurement matrix. X ∼ N (µ,Σ⊗ In)

X =

 x11 . . . x1n
...

. . .
...

xp1 . . . xpn

 = [X1, . . . ,Xn]

• Σ = E [(X1 − µ)(X1 − µ)T ] is p × p sparse covariance matrix

• Γ is p × p sparse correlation matrix

Γ = diag(Σ)−1/2 Σ diag(Σ)−1/2

• Adjacency matrix: Ao = h0(Γ),

hρ(u) =
1

2
(sgn(|u| − ρ) + 1)

• Connectivity support set: So = S
(1)
o = I (sum(Ao) > 1)

• Hub degree ≥ δ support set: S
(δ)
o = I (sum(Ao) > δ)
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Empirical estimation of correlation and support set

• p × p sample covariance matrix

Σ̂ = X(I− 1

n
11T )XT 1

n − 1

• p × p sample correlation matrix

R = diag(Σ̂)−1/2 Σ̂ diag(Σ̂)−1/2

• Sample estimator of adjacency matrix at correlation level
ρ ∈ [0, 1]:

Âo(ρ) = hρ(R)

• Sample estimator of connectivity support So(ρ) at level
ρ ∈ [0, 1]:

Ŝo(ρ) = I (sum(Âo(ρ)) > δ)
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Estimation vs support recovery vs screening for dependency

• Correlation screening and detection: false positive error

P0(Nρ > 0)

Nρ = card{Ŝo(ρ)} is number of discoveries above threshold ρ.

• Support recovery: support misclassification error

PΣ(Ŝo(ρ) ∆ So 6= φ)

• Covariance estimation: Frobenius norm error

‖Σ− Σ̂‖F
• Uncertainty quantification: estimation of estimator tail

probabilities
14 49
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Learning rates: sample-size vs. camplexity regimes

• Classical asymptotics: n→∞, p fixed (’Low complexity’)

• Mixed high D asymptotics: n→∞, p →∞ (’Medium complexity’)

• Purely high D asymptotics: n fixed, p →∞ (’High complexity’)

It is important to design the procedure for the prevailing sampling regime

• H and Rajaratnam, ”Large scale correlation mining for biomolecular network discovery,” in Big data over

networks, Cambridge 2015.

• H and Rajaratnam, ”Foundational principles for large scale inference,” IEEE Proceedings 2015.
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Example: covariance estimation in high dimension

• n: # of available samples (sample size)

• P = p(p + 1)/2 = O(p2): # of unknown model params (complexity)

Standard covariance matrix (SCM) Σ̂ = Sn requires

1 n > p for Σ̂−1 to exist

2 n > p2 for accurate estimates in Frobenius norm

‖Σ− Σ̂‖2
F = O

(
p2/n

)
, (p2/n = sample-complexity ratio)

Structure reduces sample-complexity ratio: ‖Σ− Σ̂‖2
F < O

(
p2/n

)
Structure Error ‖Σ− Σ̂‖2

F =
Toeplitz Σ = toeplitz(r1, . . . , rp) O (p/n)
Sparse: Σ = Ωsp, nnz(Ωsp) = O(p) O (plog(p)/n)
Low Kron rank Σ =

∑r
i=1 Ai

⊗
Bi O

(
r(S2 + T 2)/n

)
• Bühlmann and van de Geer (2011)

• Tsiligkaridis and H (2014), Greenewald and H (2014)
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Kronecker product of matrices

Let A be a T × T matrix and B be a S × S matrix. For p = ST
define the p × p matrix C by the Kronecker product factorization
C = A

⊗
B where

A
⊗

B =

 a11B · · · a1pB
...

. . .
...

ap1B · · · appB


Kronecker product properties (VanLoan-Pitsianis 1992):

• C is p.d. if A and B are p.d.

• C−1 = A−1
⊗

B−1 if A and B are invertible.

• |C| = |A| |B|
• For any pq × pq matrix D

‖D− A
⊗

B‖2
F = ‖R(D)− vec(A)vec(B)T‖2

F
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R is permutation operator mapping IRST×ST to IRT 2×S2
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Kronecker product model for covariance matrix

Figure: 18× 18 covariance matrix has 18*17/2=153 unknown
cross-correlation parameters. Kronecker product covariance model
reduces this to 3 + 15 = 18 parameters.

Leads to Kronecker MLE (matrix normal): Dawid (1981),
Werner-Jansson-Stoica (2008), Tsiligkaridis-H-Zhou (2013)

Aka: matrix normal model, transposable covariance model, flip-flop
covariance
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Sparse Kronecker product model for covariance matrix

Figure: A sparse Kronecker product covariance model reduces number of
parameters from 153 to 7 unknown correlation parameters.

Leads to KGlasso (sparse matrix normal): Allen-Tibshirani (2010),
Yin-Li (2012), Tsiligkaridis-H-Zhou (2013)
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Kronecker covariance matrix decomposition

Approximate Sn using Kronecker sum with r terms

S(A,B) =
r∑

i=1

Ai

⊗
Bi

Constraints: Ai and Bi such that S(A,B) is n.n.d.

Many possible approximations (Kolda and Bader 2009)

• CANDECOMP/PARAFAC (CP) models (Carrol&Chang 1970,
Harshman 1970)

• Tucker models (Tucker 1966, DeLauthauwer et al 2000)

• Other variants: INDSCAL, PARAFAC2, PARATUCK2 . . .

Estimation procedure: minimize Frobenious norm error
⇒ min ‖Sn − S(A,B)‖2

F = min ‖R(Sn)− R)‖2
F , R ∈ IRT×S

⇒ can apply nuclear norm relaxation (Fazel 2002,
Recht-Fazel-Parillo 2007, Hiriart-Urruty and Le 2011)
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Estimation of Kronecker factors: Kronecker PCA

Relaxed Kronecker PCA on permuted Sn

R̂ = aminR{‖R(Sn)− R‖2
F + λ‖R‖∗}

Solution is explicit (Kronecker sum approximation):

Theorem (Tsiligkaridis-H 2013)

The solution to the relaxed Kronecker PCA minimization:

Σ̂ = R−1
(

R̂
)
, R̂ =

min(S2,T 2)∑
i=1

(
σi −

λ

2

)
+

uiv
T
i

• (σk ,uk , vk) is the k-th component of the SVD of R(Sn)

Tsiligkaridis and Hero, “Covariance Estimation in High Dimensions via Kronecker Product Expansions,”, IEEE

Trans. on TSP, 2013.

24 49



Outline Learning correlation Tasks&Objectives Learning rates Estimation Screening Regimes Applications Conclusions

K-PCA estimator’s MSE convergence rates

Theorem (Tsiligkaridis-H 2013)

Assume Sn ∈ IRST×ST is p.d and let M = max(S ,T , n). Let λ
satisfy

λ = C (S2 + T 2 + log(M))/n

Then, with probability at least 1− 2M−1/4C the K-PCA estimator
Σ̂S ,T ,r of Σ satisfies:

‖Σ̂p.q.r −Σ‖2
F ≤ min

R:rank(R)≤r
‖R−R(Σ)‖2

F

+C ‘
(
r(S2 + T 2 + log(M))/n

)
where C ‘ = (1.5(1 +

√
2)C )2.

Tsiligkaridis and Hero, “Covariance Estimation in High Dimensions via Kronecker Product Expansions,”, IEEE

Trans. on TSP, 2013.
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Purely high D: phase transitions (H-R 2011, 2012, 2014)

• Impossible to reliably detect small correlations with finite n

• Possible to reliably detect large correlations even when n� p

• Critical threshold ρc on mean number of spurious discoveries

ρc =
√

1− cn(p − 1)−2/(n−4)

• cn = O(n−3/2) is only weakly dependent on Σ if block sparse
27 49
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Purely high D convergence theorem (H-R 2012)

Asymptotics of hub screening1: (H and Rajaratnam 2012):
Assume that columns of X are i.i.d. with bounded elliptically
contoured density and row sparse covariance Σ.

Theorem

Let p and ρ = ρp satisfy limp→∞ p1/δ(p − 1)(1− ρ2
p)(n−2)/2 = en,δ.

Then

P(Nδ,ρ > 0)→
{

1− exp(−λδ,ρ,n/2), δ = 1
1− exp(−λδ,ρ,n), δ > 1

.

λδ,ρ,n = p

(
p − 1

δ

)
(P0(ρ, n))δ J(Σ)

P0(ρ, n) = 2B((n − 2)/2, 1/2)

∫ 1

ρ
(1− u2)

n−4
2 du

1
Generalized to local screening in (Firouzi-H 2013) and complex valued screening in (Firouzi-W-H 2014)
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Critical threshold ρc as function of n (H-Rajaratnam 2012)
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Critical phase transition threshold in n and p (δ = 1)

• H and Rajaratnam, ”Foundational principles for large scale inference,” IEEE Proceedings 2015.
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Sample complexity regimes for different tasks

Sample complexity: How fast n must increase in p to maintain
constant error:

lim
n,p→∞
n=g(p)

error(n, p) = c

Task Screening Detection Identification Estimation Confidence

Error P(Ne > 0) P(Ne > 0) P({S∆Ŝ} = φ) E [‖Ω− Ω̂‖2
F ] E [(fΩ − f̂ )2]

Bound 1− e−κn pe−nβ 2p
ν
e−nβ plogp

n
β n−2/(1+p)β

Regimes logp
n
→∞ logp

n
→ α pν

n
→ α plogp

n
→ α p

logn
→ α

Threshold ρc → 1 ρc → ρ∗ ρc → 0 ρc → 0 ρc → 0

H and Rajaratnam, ”Foundational principles for large scale inference,” IEEE Proceedings 2015

• Unifying framework: value-of-information for specific tasks

• Sample complexity regime specified by # available samples

• Some of these regimes require knowledge of sparsity factor

• From L to R, regimes require progressively larger sample size

32 49
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Sample complexity regimes for different tasks

H and Rajaratnam, ”Foundational principles for large scale inference,” IEEE Proceedings 2015

• There are niche regimes for reliable screening, detection, . . . ,
performance estimation

• Smallest amount of data needed to screen for high correlations

• Largest amount of data needed to quantify uncertainty
33 49



Outline Learning correlation Tasks&Objectives Learning rates Estimation Screening Regimes Applications Conclusions

Implication: adapt inference task to sample size

Dichotomous sampling regimes has motivated (Firouzi-H-R 2013, 2015):

• Progressive correlation mining
⇒ match the mining task to the available sample size.

• Multistage correlation mining for budget limited applications
⇒ Screen small exploratory sample prior to big collection

• Firouzi, H and Rajaratnam, ”Predictive correlation screening,” AISTATS 2013

• Firouzi, H and Rajaratnam, ”Two-stage sampling, prediction and adaptive regression via correlation screening

(SPARCS),” arxiv vol. 1502:06189, 2015
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Application: Screening for hub genes in flu trials

Zaas et al, Cell, Host and Microbe, 2009

Chen et al, IEEE Trans. Biomedical Eng, 2010

Chen et al BMC Bioinformatics, 2011

Puig et al IEEE Trans. Signal Processing, 2011

Huang et al, PLoS Genetics, 2011

Woods et al, PLoS One, 2012

Bazot et al, BMC Bioinformatics, 2013

Zaas et al, Science Translation Medicine, 2014

36 49



Outline Learning correlation Tasks&Objectives Learning rates Estimation Screening Regimes Applications Conclusions

Critical threshold ρc for H3N2 DEE2

Samples fall into 3 categories

• Pre-inoculation samples
• Number of Pre-inoc. samples: n = 34
• Critical threshold: ρc = 0.70
• 10−6 FWER threshold: ρ = 0.92

• Post-inoculation symptomatic samples
• Number of Post-inoc. Sx samples: n = 170
• Critical threshold: ρc = 0.36
• 10−6 FWER threshold: ρ = 0.55

• Post-inoculation asymptomatic samples
• Number of Pre-inoc. samples: n = 152
• Critical threshold: ρc = 0.37
• 10−6 FWER threshold: ρ = 0.57

• H and Rajaratnam, ”Large scale correlation mining for biomolecular network discovery,” in Big data over

networks, Cambridge 2015.
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Susceptibility: Correlation screening the pre-inoc. samples

• Screen correlation at FWER 10−6: 1658 genes, 8718 edges
• Screen partial correlation at FWER 10−6: 39 genes, 111 edges
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P-value waterfall analysis (Pre-inoc. parcor)
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Multi-stage predictor design: SPARCS comparisons

Support recovery (simu) Prediction (real data)

• Firouzi, H and Rajaratnam, ”Predictive correlation screening,” AISTATS 2013

• Firouzi, H and Rajaratnam, ”Two-stage sampling, prediction and adaptive regression via correlation screening

(SPARCS),” arxiv vol. 1502:06189, 2015.

40 49



Outline Learning correlation Tasks&Objectives Learning rates Estimation Screening Regimes Applications Conclusions

Application: Kronecker PCA to spatio-temporal data

T = 100, S = 20

T. Tsiligkaridis and A.O. Hero, “Covariance Estimation in High Dimensions via Kronecker Product Expansions,”

IEEE Trans on Signal Processing, Vol 61, No. 21, pp. 5347 - 5360, Nov 2013.
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Spatio-temporal covariance has row dimension M = pT
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Application: NCEP 10×10 over Arctic to Norwegian sea

• S = 100 spatial locations (10× 10 spatial grid)

• T = 8 time points (2 day time window)

• n = 224 epochs (over period 2003-2007)

• Phase transition threshold: ρc = 0.27, 10% FA threshold is 0.33.
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Application: NCEP 10×10 over Arctic to Norwegian sea

Lat (90-67.5) and long (0-22.5) is over 2.5 degree increments
44 49
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Application: NCEP 10×10 over Arctic to Norwegian sea

• Kronecker spectrum (left) significantly more concentrated than
eigenspectrum (right)
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Application: NCEP 10×10 Arctic to Norwegian sea
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Application: NCEP 10×10 over Arctic to Norwegian sea

K-PCA in LS predictor yields higher prediction accuracy

• SCM covariance estimate Σ̂ = Sn
• estimator is rank deficient
• Prediction by min-norm (Moore-Penrose inverse) linear

regression

• K-PCA covariance estimate Σ̂ =
∑r

i=1 Âi
⊗

B̂i
• estimator is full rank
• Prediction by standard linear regression
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Conclusions

• Correlation learning governed by phase transition thresholds that
determine sample complexity

• Sample complexity depends on both model and learning task

• Classical low dimensional: fixed p large n
• Mixed high dimensional: large p and large n
• Purely high dimensional: large p fixed n

• Applications:

• Discovering immune hub genes by correlation screening
• Training a Sx predictor using multi-stage data collection
• Training a spatio-temporal predictor w/ Kronecker PCA

Not covered here

• Learning spectral correlation (Firouzi and H, 2014)

• Screening for quickest change detection (Banerjee and H, 2015)

• Learning non-linear correlation (Todros and H, 2011, 2012)

• Meta learning of f-divergences (Moon and H, 2015)
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• Screening for quickest change detection (Banerjee and H, 2015)

• Learning non-linear correlation (Todros and H, 2011, 2012)

• Meta learning of f-divergences (Moon and H, 2015)
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