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Network discovery from correlation

O/I correlation gene correlation mutual correlation

• ”Big data” aspects

• Large number of unknowns (hubs, edges, subgraphs)

• Small number of samples for inference on unknowns

• Crucial need to manage uncertainty (false positives)

4 65



Outline Motivation Correlation mining Graphical models Theory Application Conclusions References

Network discovery from correlation

O/I correlation gene correlation mutual correlation

• ”Big data” aspects

• Large number of unknowns (hubs, edges, subgraphs)

• Small number of samples for inference on unknowns

• Crucial need to manage uncertainty (false positives)

4 65



Outline Motivation Correlation mining Graphical models Theory Application Conclusions References

Sample correlation: p = 2 variables n = 50 samples

Sample correlation:

ĉorrX ,Y =

∑n
i=1(Xi − X )(Yi − Y )√∑n

i=1(Xi − X )2
∑n

i=1(Yi − Y )2
∈ [−1, 1]

,

Positive correlation =1 Negative correlation =-1
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Sample correlation for two sequences: p = 2, n = 50

Q: Are the two time sequences Xi and Yj correlated, e.g.
|ĉorrXY | > 0.5?
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Sample correlation for two sequences: p = 2, n = 50

Q: Are the two time sequences Xi and Yj correlated?
A: No. Computed over range i = 1, . . . 50: ĉorrXY = −0.0809
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Sample correlation for two sequences: p = 2, n < 15

Q: Are the two time sequences Xi and Yj correlated?
A: Yes. ĉorrXY > 0.5 over range i = 3, . . . 12 and ĉorrXY < −0.5
over range i = 29, . . . , 42.
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Real-world example: reported correlation divergence

Source: FuturesMag.com www.futuresmag.com/.../Dom%20FEB%2024.JPG
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Correlating a set of p = 20 sequences

Q: Are any pairs of sequences correlated? Are there patterns of
correlation?
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Thresholded (0.5) sample correlation matrix R

Apparent patterns emerge after thresholding each pairwise
correlation at ±0.5.
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Associated sample correlation graph

Graph has an edge between node (variable) i and j if ij-th entry of
thresholded correlation is non-zero.

Sequences are actually uncorrelated Gaussian.
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The problem of false discoveries: phase transitions

• Number of discoveries exhibit phase transition phenomenon

• This phenomenon gets worse as p/n increases.

• Example: false discoveries of high correlation for uncorrelated
Gaussian variables
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Objective of correlation mining

Objective: estimate or detect patterns of correlation in complex
sample-poor environments

High level question being addressed

What are the fundamental properties of a network of p
interacting variables that can be accurately estimated
from a small number n of measurements?

Regimes

• n/p →∞: sample rich regime (CLT, LLNs)

• n/p → c : sample critical regime (Semi-circle,
Marchenko-Pastur)

• n/p → 0: sample starved regime (Chen-Stein)
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Importance of correlation mining in SP applications

• Network modeling: learning/simulating descriptive models
• Empirical prediction: forecast a response variable Y
• Classification: estimate type of correlation from samples
• Anomaly detection: localize unusual activity in a sample

Each application requires estimate of covariance matrix ΣX or its
inverse

Prediction: Linear minimum MSE predictor of q variables Y from X

Ŷ = ΣYXΣ−1
X X

Covariance matrix related to inter-dependency structure.

Classification: QDA test H0 : ΣX = Σ0 vs H1 : ΣX = Σ1

X
T

(Σ−1
0 −Σ−1

1 )X
H1

>
<
H0

η

Anomaly detection: Mahalanobis test H0 : ΣX = Σ0 vs H1 : ΣX 6= Σ0

X
T

Σ−1
0 X

X
T

X

H1

>
<
H0

η
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Correlation mining on Abilene network traffic

Correlation mining: infer properties of correlation from small
number of samples.

• p: number of variables

• P: number of unknown parameters

• n: number of independent samples
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Abiline: Spatial-only correlation mining: i.i.d. over time

p = 11, P =
(11

2

)
, n = 576

19 65



Outline Motivation Correlation mining Graphical models Theory Application Conclusions References

Abilene: Spatio-temp correlation mining
p = 11, P =

(11
2

)
M, n = T (per window)
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Spatio-temp correlation mining: stationary over time

p = 11T , P =
(11

2

)
T , n = M = 576/T
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Correlation mining for community detection

p = 100, 000, n = 30
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Correlation mining for detecting hubs of dependency

p = 100, 000, n = 30

Source: orgnet.com

Informal leader has higher hub degree δ than formal leader
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Correlation mining for intrusion detection

p = 182, n = 20

Chen, Wiesel and H, “Robust shrinkage estimation of high dimensional covariance matrices,” IEEE TSP 2011
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Correlation mining for neuroscience

p = 100, n1 = 50, n2 = 50

Xu, Syed and H, “EEG spatial decoding with shrinkage optimized directed information assessment,” ICASSP 2012
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Correlation mining for musicology: Mazurka Project

p = 3134, n = 15

One of 49 Chopin Mazurkas Correlation of 30 performers
(Center for History and Analysis of Recorded Music (CHARM) http://www.charm.rhul.ac.uk)
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Correlation mining for finance

p = 2000, n1 = 60, n2 = 80

Source: “What is behind the fall in cross assets correlation?” J-J Ohana, 30 mars 2011, Riskelia’s blog.

• Left: Average correlation: 0.42, percent of strong relations 33%
• Right: Average correlation: 0.3, percent of strong relations 20%

Firouzi, Wei and H, Spatio-Temporal Analysis of Gaussian WSS Processes, IEEE GlobalSIP, 2013
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Correlation mining for biology: gene-gene network

p = 24, 000, n = 270

Gene expression correlation graph

Q: What genes are hubs in this correlation graph?
Huang, . . ., and H, Temporal Dynamics of Host Molecular Responses Differentiate. . . , PLoS Genetics, 2011
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Correlation mining pipeline
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Measurement matrix, correlation and partial correlation

Variable 1 Variable 2 . . . Variable d

Sample 1 X11 X12 . . . X1p

Sample 2 X21 X22 . . . X2p
...

...
... . . .

...
Sample n Xn1 Xn2 . . . Xnp

n × p measurement matrix X has i.i.d. rows Xi with Σ = cov(Xi )

X =

 X11 · · · · · · X1p
...

. . .
. . .

...
Xn1 · · · · · · Xnp

 =

 (X1)T

...
(Xn)T

 = [X1, . . . ,Xp]

• p × p correlation matrix:

Γ = diag(Σ)−1/2 Σ diag(Σ)−1/2

• p × p partial correlation matrix:

Ω = diag(Σ−1)−1/2 Σ−1 diag(Σ−1)−1/2
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Correlation vs Partial Correlation

Sparsity is a key property since leads to fewer unknown parameters

• Sparse correlation (Σ) graphical models:
• Most correlation are zero, few marginal dependencies
• Examples: M-dependent processes, moving average (MA)

processes

• Sparse inverse-correlation (K = Σ−1) graphical models
• Most inverse covariance entries are zero, few conditional

dependencies
• Examples: Markov random fields, autoregressive (AR)

processes, global latent variables

• Sometimes correlation matrix and its inverse are both sparse
• Often only one of them is sparse

Refs: Meinshausen-Bühlmann (2006), Friedman (2007), Bannerjee
(2008), Wiesel-Eldar-H (2010) .
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Example: Gaussian graphical models (GGM)

Multivariate Gaussian model

p(x) =
|K|1/2

(2π)p/2
exp

− 1
2

p∑
i ,j=1

xixj [K]ij


where K = [cov(X)]−1: p × p precision matrix

• GGM specifies a graph associated with p(x) (Lauritzen 1996)

• G has an edge eij iff [K]ij 6= 0

• Adjacency matrix B of G obtained by thresholding K

B = h(K), h(u) = 1
2 (sgn(|u| − ρ) + 1)

To discover Kij = 0, ρ can be arbitrary positive threshold

In practice: K̂ij is never zero ⇒ ρ must be carefully chosen
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Example: GGM - Σ or Σ−1 and G = (V ,E )
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Concrete example: spatial Gauss Markov random field

Let pt(x , y) be a space-time process satisfying Poisson equation

∇2pt

∇x2
+
∇2pt

∇y2
= W t

where W t = W t(x , y) is driving process.
For small ∆x ,∆y , p satisfies the difference equation:

X t
i ,j =

(X t
i+1,j + X t

i−1,j)∆2y + (X t
i ,j+1 + X t

i ,j−1)∆2x −W t
i ,j∆

2x∆2y

2(∆2x + ∆2y)

In matrix form, as before: [I− A]Xt = Wt and

K = cov−1(Xt) = σ2
W [I− A][I− A]T

A is sparse ”pentadiagonal” matrix.
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Example: 5× 5 Poisson random field graphical model

Graph GK on IR2 corresp. K adjacency matrix
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Example: Gauss random field from Poisson equation

Figure: Poisson random field. Wt = Niso + sin(ω1t)e1 + sin(ω2t)e2

(ω1 = 0.025, ω2 = 0.02599, SNR=0dB).
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Empirical correlation graph for Gauss random field

R = diag(Sn)−1/2Sndiag(Sn)−1/2

Figure: Empirical corr at various threshold levels. p=900, n=1500

38 65



Outline Motivation Correlation mining Graphical models Theory Application Conclusions References

Empirical partial correlation graph for Gauss random field

Ω̂ = diag(S†n)−1/2S†ndiag(S†n)−1/2

Figure: Empirical parcorr at various threshold levels. p=900, n=1500
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Prior work: cov estimation, selection, screening

• Regularized l2 or lF covariance estimation
• Banded covariance model: Bickel-Levina (2008) Sparse

eigendecomposition model: Johnstone-Lu (2007)
• Stein shrinkage estimator: Ledoit-Wolf (2005),

Chen-Weisel-Eldar-H (2010)
• Gaussian graphical model selection

• l1 regularized GGM: Meinshausen-Bühlmann (2006),
Wiesel-Eldar-H (2010).

• Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani
(2010), Tsiligkaridis-Zhou-H (2012)

• Independence testing
• Sphericity test for multivariate Gaussian: Wilks (1935)
• Maximal correlation test: Moran (1980), Eagleson (1983),

Jiang (2004), Zhou (2007), Cai and Jiang (2011)
• Correlation screening (H, Rajaratnam 2011, 2012)

• Find variables having high correlation wrt other variables
• Find hubs of degree ≥ k ≡ test maximal k-NN.

Here we focus on the hub screening problem
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Screening for hubs (H-Rajaratnam 2011, 2012)

After applying threshold ρ obtain a graph G having edges E

· · ·

• Number of hub nodes in G : Nδ,ρ =
∑p

i=1 I (di ≥ δ)

I (di ≥ δ) =

{
1, card{j : j 6= i , |Cij | ≥ ρ} ≥ δ
0, o.w .

C is either sample correlation matrix

R = diag(Sn)−1/2Sndiag(Sn)−1/2

or sample partial correlation matrix

Ω̂ = diag(S†n)−1/2S†ndiag(S†n)−1/2
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Asymptotics for fixed sample size n, p →∞, and ρ→ 1

Asymptotics of hub screening: (Rajaratnam and H 2011, 2012))
Assume that rows of n × p matrix X are i.i.d. circular complex
random variables with bounded elliptically contoured density and
block sparse covariance.

Theorem

Let p and ρ = ρp satisfy limp→∞ p1/δ(p − 1)(1− ρ2
p)(n−2)/2 = en,δ.

Then

P(Nδ,ρ > 0)→
{

1− exp(−λδ,ρ,n/2), δ = 1
1− exp(−λδ,ρ,n), δ > 1

.

λδ,ρ,n = p

(
p − 1

δ

)
(P0(ρ, n))δ

P0(ρ, n) = 2B((n − 2)/2, 1/2)

∫ 1

ρ
(1− u2)

n−4
2 du
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Elements of proof (Hero&Rajaratnam 2012)

• Z-score representations for sample correlation

R = UHU, U = [U1, . . . ,Up], Ui ∈ Sn−2

Sn−2 is sphere of dimension n − 2 in Rn−1.
• P0(ρ, n): probability that a uniformly distributed vector

Z ∈ Sn−2 falls in cap(r ,U)∩cap(r ,−U) with r =
√

2(1− ρ).
• As p →∞, Nδ,ρ behaves like a Poisson random variable:
P(Nδ,ρ = 0)→ e−λδ,ρ,n
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P(Nδ,ρ > 0) as function of ρ (δ = 1)

n 550 500 450 150 100 50 10 8 6
ρc 0.188 0.197 0.207 0.344 0.413 0.559 0.961 0.988 0.9997

Critical threshold (δ = 1): ρc ≈ max{ρ : dE [Nδ,ρ]/dρ = −1}

ρc =
√

1− cn(p − 1)−2/(n−4)
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P(Nδ,ρ > 0) as function of ρ and n (δ = 1)

p=10 (δ = 1) p=10000

Critical threshold for any δ > 0 :

ρc =
√

1− cδ,n(p − 1)−2δ/δ(n−2)−2
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Critical threshold ρc as function of n (H-Rajaratnam 2012)
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Hub mining of large correlation networks put to practice

• Partial correlation graph with 24, 000 nodes
• 14 Billion potential edges
• Phase transition threshold depends on node degree
• How to visualize the ”highly significant” nodes?

[H and Rajaratnam, JASA 2011, IEEE IT 2012]
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Experimental Design Table (EDT): mining connected nodes

n�α 0.010 0.025 0.050 0.075 0.100

10 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99

15 0.96\0.96 0.96\0.95 0.95\0.95 0.95\0.94 0.95\0.94

20 0.92\0.91 0.91\0.90 0.91\0.89 0.90\0.89 0.90\0.89

25 0.88\0.87 0.87\0.86 0.86\0.85 0.85\0.84 0.85\0.83

30 0.84\0.83 0.83\0.81 0.82\0.80 0.81\0.79 0.81\0.79

35 0.80\0.79 0.79\0.77 0.78\0.76 0.77\0.76 0.77\0.75

Table: Design table for spike-in model: p = 1000, detection power
β = 0.8. Achievable limits in FPR (α) as function of n, minimum
detectable correlation ρ1, and level α correlation threshold (shown as
ρ1\ρ in table).
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Experimental validation

Figure: Targeted ROC operating points (α, β) (diamonds) and observed
operating points (number pairs) of correlation screen designed from
Experimental Design Table. Each observed operating point determined
by the sample size n ranging over n = 10, 15, 20, 25, 30, 35.
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From false positive rates to p-values

• Hub screening p-value algorithm:
• Step 1: Compute critical phase transition threshold ρc,1 for

discovery of connected vertices (δ = 1).
• Step 2: Generate partial correlation graph with threshold
ρ∗ > ρc,1.

• Step 3: Compute p-values for each vertex of degree δ = k
found

pvk(i) = P(Nk,ρ(i) > 0) = 1− exp(−λk,ρ(i,k))

where ρ(i , k) is sample correlation between Xi and its k-th NN.
• Step 4: Render these p-value trajectories as a “waterfallplot’.

log(λ)k,ρ(i,k) vs. ρ(i , k) for k = 1, 2, . . .
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Example: 4-node-dependent Graphical Model

Figure: Graphical model with 4 nodes. Vertex degree distribution: 1 degree 1 node, 2 degree 2 nodes, 1 degree
3 node.
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Example: First 10 nodes of 1000-node Graphical Model

• 4 node Gaussian graphical model embedded into 1000 node
network with 996 i.i.d. ”nuisance” nodes
• Simulate 40 observations from these 1000 variables.
• Critical threshold is ρc,1 = 0.593. 10% level threshold is
ρ = 0.7156.
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Example: 1000-node Graphical Model

Note: log(λ) = −2 is equivalent to pv= 1− e−e
logλ

= 0.127.
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Example: NKI gene expression dataset

Netherlands Cancer Institute (NKI) early stage breast cancer

• p = 24, 481 gene probes on Affymetrix HU133 GeneChip

• 295 samples (subjects)

• Peng et al used 266 of these samples to perform covariance
selection

• They preprocessed (Cox regression) to reduce number of
variables to 1, 217 genes

• They applied sparse partial correlation estimation (SPACE)

• Here we apply hub screening directly to all 24, 481 gene probes

• Theory predicts phase transition threshold ρc,1 = 0.296
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NKI p-value waterfall plot for partial correlation hubs:
selected discoveries shown

Figure: Waterfall plot of p-values for concentration hub screening of the
NKI dataset. Selected vertex discoveries.
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NKI p-value waterfall plot for partial correlation hubs:
Peng et al discoveries shown

Figure: Waterfall plots of p-values for concentration hub screening of the
NKI dataset. Vertex discoveries using SPACE (Peng et al).
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NKI p-value waterfall plot for correlation hubs

Figure: Waterfall plots of p-values for correlation hub screening of the
NKI dataset. Vertex discoveries using SPACE (Peng et al).
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Application: correlation-mining a flu challenge study

• 17 subjects inoculated and sampled over 7 days

• 373 samples collected

• 21 Affymetrix gene chips assayed for each subject

• p = 12023 genes recorded for each sample

• 10 symptom scored from {0, 1, 2, 3} for each sample

[Huang et al, PLoS Genetics, 2011]
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Application: correlation-mining a flu challenge study

Samples fall into 3 categories

• Pre-inoculation samples
• Number of Pre-inoc. samples: n = 34
• Critical threshold: ρc = 0.70
• 10−6 FWER threshold: ρ = 0.92

• Post-inoculation symptomatic samples
• Number of Post-inoc. Sx samples: n = 170
• Critical threshold: ρc = 0.36
• 10−6 FWER threshold: ρ = 0.55

• Post-inoculation asymptomatic samples
• Number of Pre-inoc. samples: n = 152
• Critical threshold: ρc = 0.37
• 10−6 FWER threshold: ρ = 0.57
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Application: correlation-mining Pre-inoc. samples

• Correlation screening at FWER 10−6 found 1658 genes, 8718
edges

• Parcorr screening at FWER 10−6 found 39 genes, 111 edges
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P-value waterfall analysis (Pre-inoc. parcor)
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Conclusions

What we covered
• Asymptotic correlation mining theory developed for

“hyper-high” dimensional setting:

n fixed while p →∞

• Universal phase transition thresholds under block sparsity

• Phase transitions useful for properly sample-sizing experiments

Not covered here
• Linear predictor application: Prescreened OLS outperforms

lasso for small n large p (Firouzi, Rajaratnam, H, 2013)
• Structured covariance: Kronecker, Toeplitz, low rank+sparse,

etc (Tsiligkaridis and H 2013), (Greenewald and H 2014) ,,
• Non-linear correlation mining (Todros and H, 2011, 2012)
• Spectral correlation mining: bandpass measurements,

stationary time series (Firouzi and H, 2014)
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