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Motivation

Network discovery from correlation

O/I correlation gene correlation mutual correlation

The Internet Gene pathways School friendships
(Burch and Cheswick, 1998) (Huang, 2011) (Moody, 2001)
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Motivation

Network discovery from correlation

O/I correlation gene correlation mutual correlation

The Internet Gene pathways School friendships
(Burch and Cheswick, 1998) (Huang, 2011) (Moody, 2001)

e "Big data” aspects
e Large number of unknowns (hubs, edges, subgraphs)
e Small number of samples for inference on unknowns

e Crucial need to manage uncertainty (false positives)
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Motivation

Sample correlation: p = 2 variables n = 50 samples

Sample correlation:

(X = X)(Yi—Y)

C/Oﬁ”xyy = < [—1, 1]
2 . _ V)2
VI (X = X2 S, (Y- )
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Positive correlation =1 Negative correlation =-1
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Motivation

Sample correlation for two sequences: p =2, n = 50

!
5 1o 15 20 25 30 35 a0 45 a0
Tirne index i

Q: Are the two time sequences X; and Y; correlated, e.g.
|cortxy| > 0.57
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Motivation

Sample correlation for two sequences: p =2, n = 50

25 T T T T T
— X
2k
15+
1k
05+
ok
05
R
15
2k
25 L
5 1o 15 20 25 30 35 a0 45 a0
Tirne index i

Q: Are the two time sequences X; and Y; correlated?
A: No. Computed over range i = 1,...50: corrxy = —0.0809
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Motivation

Sample correlation for two sequences: p =2, n < 15

corr(X‘Y)ZO 5219 Twi uncorrelated sequenfies ‘ Corr(xl\/):,g 5128
i i T

!
5 m 15 20 25 30 35 4an 45 50
Time index i

Q: Are the two time sequences X; and Y; correlated?
A: Yes. corrxy > 0.5 over range i = 3,...12 and corrxy < —0.5

over range i = 29,...,42.
165



Motivation

Real-world example: reported correlation divergence

Dollar Index

' Divergence |-~
/ =

.

y

M Wpot wri

Source: FuturesMag.com www.futuresmag.com/. ../Dom%20FEB2024.JPG
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Motivation

Correlating a set of p = 20 sequences

20 uncarrelated sequences
45 T

Flijs

3

0r

2BF 0~

20+

Time index i

Q: Are any pairs of sequences correlated? Are there patterns of

correlation?
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Motivation

Thresholded (0.5) sample correlation matrix R
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Apparent patterns emerge after thresholding each pairwise

correlation at £0.5.
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Motivation

Associated sample correlation graph

[Node 5] [Nodes| [Node16| [Mode3|
Node 17 [Mode 10]  [Node 11]  [Mode 2|

Mode 1 MNode 9

[Mode 4| [MNode 13| [Node15| [Mode19| [Node14| [Node 18

[Modes|  [Mode7] [Node12]

Graph has an edge between node (variable) i and j if jj-th entry of
thresholded correlation is non-zero.

Sequences are actually uncorrelated Gaussian. -



Motivation

The problem of false discoveries: phase transitions

e Number of discoveries exhibit phase transition phenomenon
e This phenomenon gets worse as p/n increases.

e Example: false discoveries of high correlation for uncorrelated
Gaussian variables

n=101, p=100 n=25 p=100 n=10, p=100
200 200 200
150 150 150
100 100 100
50 50 50
0 0 0
-1 0 1 -1 0 1 -1 0 1

Sample correlation value Sample correlation value Sample correlation value
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Motivation

The problem of false discoveries: phase transitions

e Number of discoveries exhibit phase transition phenomenon
e This phenomenon gets worse as p/n increases.

e Example: false discoveries of high correlation for uncorrelated
Gaussian variables

n=101, p=100 n=25, p=100 n=10, p=100
200 200 200
150 150 150
100 100 100
50 50 50
0 0 0
-1 0 1 -1 0 1
Sample correlation va[ue Sample correlatigh value Sample correlation value
= 10. p. = *0.63 p. = +0.89

14 | 65



Correlation mining
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Correlation mining

Objective of correlation mining

Objective: estimate or detect patterns of correlation in complex

sample-poor environments

High level question being addressed
What are the fundamental properties of a network of p
interacting variables that can be accurately estimated
from a small number n of measurements?

Regimes

e n/p — oo: sample rich regime (CLT, LLNs)

e n/p — c: sample critical regime (Semi-circle,
Marchenko-Pastur)

e n/p — 0: sample starved regime (Chen-Stein)

16 | 65



Correlation mining

Importance of correlation mining in SP applications

Network modeling: learning/simulating descriptive models
Empirical prediction: forecast a response variable Y
Classification: estimate type of correlation from samples
Anomaly detection: localize unusual activity in a sample

17 | 65



Correlation mining

Importance of correlation mining in SP applications

Network modeling: learning/simulating descriptive models
Empirical prediction: forecast a response variable Y
Classification: estimate type of correlation from samples
Anomaly detection: localize unusual activity in a sample

Each application requires estimate of covariance matrix X x or its
inverse
Prediction: Linear minimum MSE predictor of g variables Y from X
Y = Ty I X

Covariance matrix related to inter-dependency structure.
Classification: QDA test Hy : Zx = Xgvs H; : Xx = X

—T — Hl

X (%' - )X 2 o

<
Ho

Anomaly detection: Mahalanobis test Hy : £x =Xy vs H; : £x # X,
X'zx M

>‘ n 17 | 65



Correlation mining

Correlation mining on Abilene network traffic

11 node Abilene network 11 x 576 NetFlow measurements

@ & o

Total Flows

[N

0 6 12 18 24 42 48

30
Hours after 0:00 UTD 18-Jan

Correlation mining: infer properties of correlation from small
number of samples.

e p: number of variables

e P: number of unknown parameters

e n: number of independent samples

Patwari, H and Pacholski, "Manifold learning visualization of network traffic data," SIGCOMM 2005.
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Correlation mi

Abiline: Spatial-only correlation mining: i.i.d. over time

p=11, P= (), n=576

11 node Abilene network 11 x 576 NetFlow measurements
7 Analysis window
A
6
5
£
k)

[N

0 6 12 18 24 30 36 42 48
Hours after 0:00 UTD 18-Jan

11x11 spatial correlation matrix 11x11 adjacency matrix Correlation graph
1 05 -05 01 02 07 01 . 02 00110010 0
05 1 01 05 —07 01 —03 .. =01 1001100 0
—05 01 1 04 01 06 02 .. 01 10000 10 0
01 05 04 1 08 02 01 . 02 00100 100 0
02 —07 01 08 1 01 03 . 01 00101000 0
07 01 06 02 01 1 01 . 01 10100 0 0 0
01 -03 02 01 03 01 1 .. 02 00000 00O 0
01 -01 01 02 01 01 02 01 1 00000 O0O0O0O0O

H and Rajaratnam, “Large scale correlation screening," J. Amer Statistical Association, 2011. 101 65



Correlation mi

Abilene: Spatio-temp correlation mining
p=11, P = (121)I\/I, n= T (per window)

11 node Abilene network 11 x 576 NetFlow measurements
T samples M analysis windows

Total Flows

0 6 12 18 24 30 36 42 48
Hours after 0:00 UTD 18-Jan

11x11 spatial correlation matrices 11x11 adjacency matricesl Correlation graphs
1 ng —Nng n1 n-o n7 n1 n2 [ 1 1 n n 1 n m

1 NE  _n% N1 N2 n7 01 no 1 0 1 1 0 0 1 0 .. O
1 05 -05 01 02 07 01 . 02 g0 1.1 0 0 1 0 .
-| 05 1 01 05 -07 01 -03 .. -—o0af]| 3t 0 0 1 1 00
(05 o1 1 04 01 06 02 .. o01]f]c¢t 0 0 0 0 1 0

(o1 o5 04 1 08 02 01 .. 02 Jqeggo 10 0 1 0 0

(02 -07 01 08 1 01 03 .. o1 f][Jfy° t 0 1 0 00

(07 o1 06 02 01 1 01 .. o1][]cft 0O 1 0 0 0 0

01 -03 02 01 03 01 1 w02 (-0 0 0 0 0 0 0

01 -01 01 02 01 01 02 01 1 000 0000 O

H and Rajaratnam, “Large scale correlation screening," J. Amer Statistical Association, 2011.
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Correlation mining

Spatio-temp correlation mining: stationary over time

p=11T, P=(4)T, n=M=576/T

11 node Abilene network

11 x 576 NetFlow measurements
T samples M analysis windows

0 6

12 18 24 30 36 42 48
Hours after 0:00 UTD 18-Jan

(11 T)x(11 T) adjacency Correlation graphs

Firouzi, Wei and H, “Spectral correlation mining of multivariate time series,” Excursions in Harmonic Analysis, 2014.
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Correlation mining

Correlation mining for community detection

p = 100,000, n = 30

0.0 Phishing level 1.0

7
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Emails per address

3
8

Emails per address

0 5 10 15 20 25
Month

K. S. Xu et al. Revealing social networks of spammers through spectral clustering. Proc. ICC, 2009.
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Correlation mining

Correlation mining for detecting hubs of dependency

p = 100,000, n = 30

El il
Ell &
B0
. ' 5l
& Informal Leader m
= [ N L
Formal Leader —— m : m ED m
i e ="
el VY A\ Ey

Source: orgnet.com

Informal leader has higher hub degree § than formal leader

23| 65K



Correlation mining

Correlation mining for intrusion detection

p=182,n=20

Intersersar RSS measurenrents Taa gourd tnuth anonraly indiicator 2D projections of nomird 2820 RSS
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Chen, Wiesel and H, “Robust shrinkage estimation of high dimensional covariance matrices,” |IEEE TSP 2011
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Correlation mining

Correlation mining for neuroscience

p = 100, n :50, n» =50
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Xu, Syed and H, “EEG spatial decoding with shrinkage optimized directed information assessment,” ICASSP 2012
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Correlation mining

Correlation mining for musicology: Mazurka Project

p=23134, n=15

Mazurka in F major

Allegro ma non troppo. J=132 h?‘;"}:"ﬁf‘i
T P —
Y
i W |
e -
(o s 7 i
([D5eree—e -_‘ —
One of 49 Chopin Mazurkas Correlation of 30 performers

(Center for History and Analysis of Recorded Music (CHARM) http://www.charm.rhul.ac.uk)
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Correlation mining

Correlation mining for finance

p = 2000, n; = 60, np = 80

ALY 'f"
A

o Msin

Source: “What is behind the fall in cross assets correlation?” J-J Ohana, 30 mars 2011, Riskelia’s blog.

e Left: Average correlation: 0.42, percent of strong relations 33%
e Right: Average correlation: 0.3, percent of strong relations 20%

Firouzi, Wei and H, Spatio-Temporal Analysis of Gaussian WSS Processes, |IEEE GlobalSIP, 2013
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Correlation mining

Correlation mining for biology: gene-gene network

p = 24,000, n = 270

Asx post-challenge (2) Sxearly (3)  Sx late (4)

References

(" Genes mmm—

Samples

Gene expression correlation graph

Q: What genes are hubs in this correlation graph?

Huang, ..., and H, Temporal Dynamics of Host Molecular Responses Differentiate. .., PLoS Genetics, 2011
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Correlation mining

Correlation mining pipeline

Social collaborative
retrieval nets

Grain
networks

Spammer communities

i - *
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CAMSAP '13, WSDM "14, ISTSP 14.
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| H M | Feature representation |
I —
{7 ——
ﬂ_li‘.‘._gﬂ_ alue ot Info | Data acquisition and sampling | —
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Email volume Personal/Social data
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Graphical models

Outline

© Graphical models of correlation
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Graphical models
Measurement matrix, correlation and partial correlation

’ H Variable 1 ‘ Variable 2 ‘ ‘ Variable d ‘

Sample 1 X11 X12 C le

Sample 2 X21 X22 . sz

Sample n Xm X2 . Xnp

n x p measurement matrix X has i.i.d. rows X' with £ = cov(X')
X1 oo oo Xip (Xl)T
X=| + -~ . 1 |= : = [X1,...,X,]

Xox oo o Xop (xn)T
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Graphical models
Measurement matrix, correlation and partial correlation

’ H Variable 1 ‘ Variable 2 ‘ ‘ Variable d ‘

Sample 1 X11 X12 C le

Sample 2 X21 X22 . sz

Sample n Xm X2 . Xnp

n x p measurement matrix X has i.i.d. rows X' with £ = cov(X')
X1 oo oo Xip (Xl)T
X=| + -~ . 1 |= : = [X1,...,X,]

Xox oo o Xop (xn)T

e p X p correlation matrix:
I = diag(X)"Y? £ diag(x) /2
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Graphical models
Measurement matrix, correlation and partial correlation

’ H Variable 1 ‘ Variable 2 ‘ ‘ Variable d ‘

Sample 1 X11 X12 C le

Sample 2 X21 X22 . sz

Sample n Xm X2 . Xnp

n x p measurement matrix X has i.i.d. rows X' with £ = cov(X')
X1 oo oo Xip (Xl)T
X=| + -~ . 1 |= : = [X1,...,X,]

Xox oo o Xop (xn)T

e p X p correlation matrix:
I = diag(X)"Y? £ diag(x) /2
e p X p partial correlation matrix:

Q= diag(E 1) V2 £ diag(x 1) "12|

21| 65



Graphical models

Correlation vs Partial Correlation

Sparsity is a key property since leads to fewer unknown parameters

e Sparse correlation (X) graphical models:
e Most correlation are zero, few marginal dependencies
e Examples: M-dependent processes, moving average (MA)
processes
e Sparse inverse-correlation (K = X 1) graphical models
e Most inverse covariance entries are zero, few conditional
dependencies
e Examples: Markov random fields, autoregressive (AR)
processes, global latent variables

e Sometimes correlation matrix and its inverse are both sparse
e Often only one of them is sparse

Refs: Meinshausen-Biihimann (2006), Friedman (2007), Bannerjee
(2008), Wiesel-Eldar-H (2010) .

22| 65



Graphical models

Example: Gaussian graphical models (GGM)

Multivariate Gaussian model

‘K|1/2
Px) = 755572 &P Z xix; (K]

i,j=1

where K = [cov(X)]™!: p x p precision matrix

e GGM specifies a graph associated with p(x) (Lauritzen 1996)
G has an edge e iff [K]; # 0
e Adjacency matrix B of G obtained by thresholding K

B = h(K), h(u) = 3(sgn(lu] —p) + 1)

To discover Kj; = 0, p can be arbitrary positive threshold

23| 5



Graphical models

Example: Gaussian graphical models (GGM)

Multivariate Gaussian model

‘K|1/2
Px) = 755572 &P Z xix; (K]

i,j=1

where K = [cov(X)]™!: p x p precision matrix

e GGM specifies a graph associated with p(x) (Lauritzen 1996)
G has an edge e iff [K]; # 0
e Adjacency matrix B of G obtained by thresholding K

B = h(K), h(u) = 3(sgn(lu] —p) + 1)

To discover Kj; = 0, p can be arbitrary positive threshold

S

In practice: Kj; is never zero = p must be carefully chosen

23| 5



Graphical models

Example: GGM - X or Xt and G = (V, E)

-|:| 0 0O 0o
O 0O O o
oo O O O 0
O o0 0o O O
OoDo o .
- [m] O
Ooao - -
o g
0D 0O O @ DOoo
O oo PO NN NN
ooooo| @ ¢ 0oo |WOHO
O oo
oo o 000
O o

Wiesel, Eldar and H IEEE TSP 2010 24| AR



Graphical models

Concrete example: spatial Gauss Markov random field

Let pf(x,y) be a space-time process satisfying Poisson equation

v2pt v2pt
Vx2 = Vy2 -

Wt

where W = W*(x, y) is driving process.
For small A, A, p satisfies the difference equation:

Xt Xy + X )%y + (X + X
1)

2(A%x + A?y)

YA2x — VV,-’:J-AzxA2y

In matrix form, as before: [I — A]X* = W! and
K = cov }(X?) = o, [I — A][l — A]"
A is sparse " pentadiagonal” matrix.
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Graphical models

Example: 5 x 5 Poisson random field graphical model

Pentadiagonal adjacsncy mabrix

10

15

20

25

a 5 10 15 20 25
nz = 106
Graph Gk on R? corresp. K adjacency matrix
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Graphical models

Example: Gauss random field from Poisson equation

Figure: Poisson random field. W* = N5, + sin(w1t)e; + sin(wat)e;
(w1 = 0.025, wy = 0.02599, SNR=0dB).
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Graphical models

Empirical correlation graph for Gauss random field
R = diag(S,) /?S,diag(S,) /2

tho=0.93375 tho=0.945

Figure: Empirical corr at various threshold levels. p=900, n=1500

28| A5



Graphical models

Empirical partial correlation graph for Gauss random
Q = diag(Sh)~V/2s!diag(S!) /2

the=0.17 tho=0.22

tho=0.27 tho=0.32

ho=0.42 ho=0.47 o052
s N il ke ki
Eigin =gl % %
ElnnL s = I N
S EHLR = 15 i 1
et nly © - o ©

Figure: Empirical parcorr at various threshold levels. p=900, n=1500
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Theory

Outline

@ Correlation mining theory
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Theory

Prior work: cov estimation, selection, screening

e Regularized / or [r covariance estimation
e Banded covariance model: Bickel-Levina (2008) Sparse
eigendecomposition model: Johnstone-Lu (2007)
e Stein shrinkage estimator: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)
e Gaussian graphical model selection
e /; regularized GGM: Meinshausen-Biihimann (2006),
Wiesel-Eldar-H (2010).
e Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani
(2010), Tsiligkaridis-Zhou-H (2012)
e Independence testing
e Sphericity test for multivariate Gaussian: Wilks (1935)
e Maximal correlation test: Moran (1980), Eagleson (1983),
Jiang (2004), Zhou (2007), Cai and Jiang (2011)
e Correlation screening (H, Rajaratnam 2011, 2012)
e Find variables having high correlation wrt other variables
e Find hubs of degree > k = test maximal k-NN.

41 | 65



Theory

Prior work: cov estimation, selection, screening

e Regularized / or [r covariance estimation
e Banded covariance model: Bickel-Levina (2008) Sparse
eigendecomposition model: Johnstone-Lu (2007)
e Stein shrinkage estimator: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)
e Gaussian graphical model selection
e /; regularized GGM: Meinshausen-Biihimann (2006),
Wiesel-Eldar-H (2010).
e Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani
(2010), Tsiligkaridis-Zhou-H (2012)
e Independence testing
e Sphericity test for multivariate Gaussian: Wilks (1935)
e Maximal correlation test: Moran (1980), Eagleson (1983),
Jiang (2004), Zhou (2007), Cai and Jiang (2011)
e Correlation screening (H, Rajaratnam 2011, 2012)
e Find variables having high correlation wrt other variables
e Find hubs of degree > k = test maximal k-NN.

Here we focus on the hub screening problem
41 | 65



Theory

Screening for hubs (H-Rajaratnam 2011, 2012)

After applying threshold p obtain a graph G having edges E

e Number of hub nodes in G: N5, =>""_ I(d; > §)

1, card{j:j#i,|C;i|>p} >
I(d; 25):{ 0 { J?’éo'lv'ﬂ P}

C is either sample correlation matrix

R = diag(S,) /%S ,diag(S,) />
or sample partial correlation matrix

Q = diag(S!)~1/28! diag(S!) ™1/
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Asymptotics for fixed sample size n, p — 00, and p — 1

Asymptotics of hub screening: (Rajaratnam and H 2011, 2012))
Assume that rows of n x p matrix X are i.i.d. circular complex
random variables with bounded elliptically contoured density and
block sparse covariance.

Theorem
Let p and p = p, satisfy lim,_,oo p*/%(p — 1)(1 — pf,)(”_Q)/2 =ens.
Then

1- eXp(_)‘E,p,n/z)v d=1
1-— exp(—)\57p7,,), 0>1

P(Ns, > 0) — {

As.pn = P<p ; 1> (Po(p, n))°

1 n—4
Po(p, n) = 2B((n — 2)/2,1/2) / (1— 1) du

43 | 65



Theory

Elements of proof (Hero&Rajaratnam 2012)

e Z-score representations for sample correlation
R=U"U, U=][Uy,...,U,], U;€S,»

S,—o is sphere of dimension n — 2 in R"1.
e Po(p, n): probability that a uniformly distributed vector
Z c S,_» falls in cap(r, U)Ncap(r, —U) with r = 1/2(1 — p).
e As p — oo, Ns, behaves like a Poisson random variable:
P(Ng,p =0)— e No.pun

44 | 65



Theory

P(Ns, > 0) as function of p (6 = 1)

Mle, n, p)

P
10 o
7 0y DY “\,I
lill | \ \'"u "" "" II|
o.8f { || \ [
l I| I' | 1y
|| I \ |II I'. I|| ||
0.6} ||- II I | I'. | |
|| || I|I \I I|I II |
0.4} [ | \ Vol
|l II ||I III '|I | [
Il | \ \ Vol [
0.2} 1l | |
','. '\ \ \ I". |
"(-.'_L A, . \\.‘ N . A Ill
0.2 0.4 08 0.8 10 4

[n_J[ 550 500 | 450 | 150 | 100 | 50 [ 10 [ 8 [ 6
[ pc || 0188 | 0.107 | 0.207 | 0.344 | 0.413 | 0559 | 0.961 | 0.988 | 0.9997 |

Critical threshold (6 = 1): pc = max{p : dE[N;,]/dp = —1}

pe = \/1 — co(p — 1)-2/(n-4)
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Theory

P(Ns, > 0) as function of p and n (6 = 1)

False discovery probability: p=10, 6=1 False discovery probability: p=10000, 8=1

Number of shsevations n
Number of shsevations n

04 06
Applied threshold p Applied threshold p

p=10000

46 | 65



Theory

P(Ns, > 0) as function of p and n (6 = 1)

False discovery probability: p=10, 6=1 False discovery probability: p=10000, 8=1

Number of shsevations n
Number of shsevations n

04 06
Applied threshold p Applied threshold p

p=10 =1 p=10000

Critical threshold for any > 0 :

pe = \/1 i lp — 1)~28/6(n—2)=2
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Theory

Critical threshold p. as function of n (H-Rajaratnam 2012)

PHASE TRAMSITION THRESHOLD

0.9 p=10000000000
p=10000
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Application

Outline

© Application of correlation mining theory

A48 | 65



Application

Hub mining of large correlation networks put to practice

Partial correlation graph with 24,000 nodes

14 Billion potential edges

Phase transition threshold depends on node degree
How to visualize the "highly significant” nodes?

[H and Rajaratnam, JASA 2011, IEEE IT 2012]
A0 | 65



Application

Experimental Design Table (EDT): mining connected nodes

ma | 0.010 0.025 0.050 0.075 0.100
10 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99
15 | 0.96\0.96 | 0.9610.95 | 0.95\0.95 | 0.95\0.94 | 0.95\0.94
20 |0.92\0.91 | 0.91\0.90 | 0.91\0.89 | 0.90\0.89 | 0.90\0.89
25 |0.88\0.87 | 0.87\0.86 | 0.86\0.85 | 0.85\0.84 | 0.85\0.83
30 |0.84\0.83 | 0.83\0.81 | 0.82\0.80 | 0.81\0.79 | 0.81\0.79
35 |0.80\0.79 | 0.79\0.77 | 0.78\0.76 | 0.77\0.76 | 0.77\0.75

Table: Design table for spike-in model: p = 1000, detection power
B = 0.8. Achievable limits in FPR («) as function of n, minimum
detectable correlation p;, and level « correlation threshold (shown as

p1\p in table).




Application

Experimental validation

Theoretical vs empirical performance guarantees

1
1 1 1 1
8 g 2 2’5
0ot & > e Bce b
1 1
2
é 546 64%5 %k 6 354
0.8f (%2 o o o
L]
[T
Qo
0.7 ¢ o o o
1 1 1 . 1 1
2 32
g 6 3:46 5 6
o6 ¢ ¢ ¢ ¢ ¢
0.5 L
0 0.05 0.1 0.15
alpha

Figure: Targeted ROC operating points («, 3) (diamonds) and observed
operating points (number pairs) of correlation screen designed from
Experimental Design Table. Each observed operating point determined
by the sample size n ranging over n = 10, 15, 20, 25, 30, 35.
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From false

Application

positive rates to p-values

screening p-value algorithm:

Step 1: Compute critical phase transition threshold p. 1 for
discovery of connected vertices (6 = 1).

Step 2: Generate partial correlation graph with threshold
p* > pe-

Step 3: Compute p-values for each vertex of degree § = k
found

ka(i) = P(Nk7p(,') > 0) =1- exp(f)\k,p(,-*))

where p(i, k) is sample correlation between X; and its k-th NN.
Step 4: Render these p-value trajectories as a “waterfallplot’.

log(/\)k)p(;’k) Vs. p(i, k) for k = ].,2,. ..
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Application

Example: 4-node-dependent Graphical Model

Graphical model - partial conelation graph
1

Correlation matrix Partial correlation matrix
0 0
1 - - . - 1 - -
2 - - . - 2 - - - -
2
3 - - . - 3 * - L4
I 4 e
5 5
0 1 2 3 4 5 o 1 2 3 4 s
nz=16 nz=12

Flgu re: Graphical model with 4 nodes. Vertex degree distribution: 1 degree 1 node, 2 degree 2 nodes, 1 degree
3 node.

1.0000 0.40635 0 0
0.4069 1.0000 -0.517v9 -0.8138
0  -0.5179 1.0000 0.7071
0O -0.8138 0.7071 1.0000
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Application

Example: First 10 nodes of 1000-node Graphical Model

Correlation matrix Partial correlation matrix
0 0
. .
2 * 2
oo .
4}« o - 4
6 + 5 +
. .
g g
+ .
10 + 10 +
[t} 5 1 o 5 10
nz =22 nz=15

e 4 node Gaussian graphical model embedded into 1000 node
network with 996 i.i.d. "nuisance” nodes

e Simulate 40 observations from these 1000 variables.

e Critical threshold is pc 1 = 0.593. 10% level threshold is

p = 0.7156.
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Application

Example: 1000-node Graphical Model

p-values. Curves indexed over vertex degrees ranges d>0,....2
1.5

1k

0.5r

ol

-0.5r

loglog{1-pv{(i)} "

logi(2)

Bel
0.65 0.8 0.65 0.7 0.75 0.8

Note: log(\) = —2 is equivalent to pv=1 — e = 0.127.
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Application

Example: NKI gene expression dataset

Netherlands Cancer Institute (NKI) early stage breast cancer
o p =24 481 gene probes on Affymetrix HU133 GeneChip
295 samples (subjects)

Peng et al used 266 of these samples to perform covariance
selection

e They preprocessed (Cox regression) to reduce number of
variables to 1,217 genes
e They applied sparse partial correlation estimation (SPACE)

Here we apply hub screening directly to all 24,481 gene probes

Theory predicts phase transition threshold p. 1 = 0.296
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Application

NKI p-value waterfall plot for partial correlation hubs:
selected discoveries shown
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Application

NKI p-value waterfall plot for partial correlation hubs:
Peng et al discoveries shown
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Application

NKI p-value waterfall plot for correlation hubs

p-values. Curves indexed over vertex degrees di=1 s (99,
1000 T T T

or —d2 . = 4
-1000 - 9
-2000 - a|

-3000 =

oglog(1-pvi))”

e

-4000 | N 4

log(2)

-5000 - G|
-6000 - |

-7000 \ al

8000 1 L 1 I
0.4 0.5 0.6 0.7 0.8 0.9 d
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Application

Application: correlation-mining a flu challenge study

References Asx post-challenge (2) Sxearly (3) Sxlate (4)

Samples

(e Genes )

17 subjects inoculated and sampled over 7 days

373 samples collected
21 Affymetrix gene chips assayed for each subject

p = 12023 genes recorded for each sample
10 symptom scored from {0, 1,2, 3} for each sample

[Huang et al, PLoS Genetics, 2011]
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Application

Application: correlation-mining a flu challenge study

Samples fall into 3 categories

e Pre-inoculation samples
e Number of Pre-inoc. samples: n = 34
e Critical threshold: p. = 0.70
e 107° FWER threshold: p = 0.92

e Post-inoculation symptomatic samples
e Number of Post-inoc. Sx samples: n =170
e Critical threshold: p. = 0.36
e 107° FWER threshold: p = 0.55

e Post-inoculation asymptomatic samples
e Number of Pre-inoc. samples: n = 152
e Critical threshold: p. = 0.37
e 107° FWER threshold: p = 0.57
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Application

Application: correlation-mining Pre-inoc. samples

e Correlation screening at FWER 107° found 1658 genes, 8718
edges

e Parcorr screening at FWER 107° found 39 genes, 111 edges
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Application

P-value waterfall analysis (Pre-inoc. parcor)

H3N2 D2: pvalues for Pre samples
T T T T T T T

-200

-400

-600

-800

-1000

-1200

Score (log(1)=loglog(1 -pv(i))'1)

-1400
d>8 T AFFX-Bioc-3,¢

AFFX-BioB-Mt  (>9 ~~~~AFFX-BioC-3,t

-1600- = -1
z d>1 D\AFFX-BinC-Zal
FFX-EIOC(S‘(
4soo}- @12 d>11 .
d>7gFX-BioC-3 ¢ AFFX-BioC-3,t
AFFX-BioC-3 t L 1 1 1 1 1 1

2000

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
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Conclusions

Outline

@ Conclusions
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Conclusions

Conclusions

What we covered
e Asymptotic correlation mining theory developed for
“hyper-high” dimensional setting:
n fixed while p — oo

e Universal phase transition thresholds under block sparsity

e Phase transitions useful for properly sample-sizing experiments
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Conclusions

Conclusions

What we covered
e Asymptotic correlation mining theory developed for
“hyper-high” dimensional setting:
n fixed while p — oo

e Universal phase transition thresholds under block sparsity
e Phase transitions useful for properly sample-sizing experiments

Not covered here
e Linear predictor application: Prescreened OLS outperforms
lasso for small n large p (Firouzi, Rajaratnam, H, 2013)
e Structured covariance: Kronecker, Toeplitz, low rank-sparse,
etc (Tsiligkaridis and H 2013), (Greenewald and H 2014) ,,
¢ Non-linear correlation mining (Todros and H, 2011, 2012)
e Spectral correlation mining: bandpass measurements,

stationary time series (Firouzi and H, 2014)
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