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ABSTRACT

In this paper we introduce a new method for analyzing expres-
sion patterns from high throughput and complex data such as
gene expression microarrays. These microarrays are collected
under different conditions such as time, phenotype and treat-
ment. The proposed method uses a Bayesian matrix decom-
position, called Bayesian linear unmixing (BLU), to extract a
set of characteristic gene signatures, or factors, and a set of
coefficients, factor scores, that specify the relative contribu-
tion of each signature to a specific sample. BLU is related to
Bayesian factor analysis but differs in an important respect:
BLU constrains the factor loadings to be non-negative and
the factor scores to be probability distributions over the fac-
tors. Thus BLU reduces the multiplexing of genes into dif-
ferent factors and can enhance interpretability of the factor
loadings and factor scores. The unsupervised version of BLU
presented in this paper also provides estimates of the number
of factors. We illustrate the application of BLU to bioinfor-
matics by analyzing gene expression microarray datasets.

Index Terms— Factor analysis, Bayesian inference,
MCMC methods, gene expression data.

1. INTRODUCTION

Factor analysis methods such as principal component analy-
sis (PCA) have been widely studied for discovering of pat-
terns of differential expression in time course and/or multi-
ple treatment biological experiments using gene microarray
samples. These methods find a decomposition of the ob-
servation matrix whose rows are indexed by gene index and
whose columns are indexed by sample index. This decompo-
sition expresses each sample as a particular linear combina-
tion of fundamental gene expression signatures, called factors
with appropriate proportions, called factor scores. The num-
ber of factors in the decomposition is usually much less than
the number of samples. Traditional factor analysis methods
such as PCA require the experimenter to specify the desired
number of factors to be estimated. However, some recent
Bayesian factor analysis methods are totally unsupervised in
the sense that they also estimate the number of factors directly
from the data [1, 2].

In this paper we propose a new Bayesian factor anal-
ysis method called unsupervised Bayesian linear unmixing
(BLU), that incorporates a non-negativity constraint on the
factors and the factor scores in addition to requiring the factor
scores to sum to one. Thus each factor score corresponds to
the proportion of a particular factor to a given sample. The
advantage of this representation for gene expression analysis
is twofold: (i) the factor scores correspond to the strengths of
each gene contributing to that factor; (ii) for each gene chip
the factor scores give the relative abundance of each factor
present in the chip. Thus, for example, a gene having a large
loading level (close to one) for a particular factor should have
a small loading (close to zero) for all other factors. In this
way, as opposed to other factor analysis methods, there is less
multiplexing making it easier to associate specific genes to
specific factors and vice versa.

Unsupervised Bayesian linear unmixing, traditionally
used for hyperspectral image analysis, is one of many factor
analysis methods. These methods include non-negative ma-
trix factorization (NMF) [3], independent component analysis
(ICA) [4], bi-clustering [5], PCA, penalized matrix decom-
position (PMD) [2], and Bayesian factor regression modeling
(BFRM) [1]. Contrary to BLU, the PCA, ICA, BFRM,
bi-clustering and PMD methods do not account for non-
negativity of the factor loadings and factor scores. On the
other hand, NMF does not account for sum-to-one constraints
on the columns of the factor score matrix. Unlike PCA or
ICA, BLU does not impose orthogonality or independence on
the components. These relaxed assumptions might better rep-
resent what is known about the preponderance of overlap and
dependency in biological pathways. Finally, BLU naturally
accommodates Bayesian estimation of the number of factors.

In this paper we provide comparative studies that estab-
lish the advantages of BLU over PCA, NMF and BFRM for
time-varying gene expression analysis. We illustrate the ap-
plication of unsupervised BLU to the analysis of a gene ex-
pression dataset. This set is the beverage data of Baty et al [6]
in which 4 different beverages were administered on different
days to 6 human individuals. Gene expression time courses
were measured over a 12-hour period for each beverage and
each individual.

The outline of the paper is as follows. Section 2 pro-



vides the observation model used in this paper. Section 3
presents the unsupervised BLU algorithm in the context of
gene expression analysis. In Section 4.1 we establish per-
formance advantages of unsupervised BLU for synthetic data
with known ground truth. Section 4.2 is devoted to the ap-
plication to the beverage gene expression dataset. Section 5
concludes the paper with comments about future works.

2. MATHEMATICAL MODEL

Consider a gene microarray represented by a vector y of G
gene expression levels. For example, in an Affymetrix HU133
gene chip, the number G of genes indexing the elements of
y may range from ten to twenty thousand depending on the
type of chip description file (CDF) processing used to trans-
late the oligonucleotide fragments to gene labels. The ele-
ments of y have units of hybridization abundance levels with
non-negative values. In this context of gene expression data,
the starting point for Bayesian linear unmixing is the linear
mixing model (LMM)

y =
R∑

r=1

mrar + n, (1)

where R is the number of distinct gene signatures that can
be present in the chip, mr = [mr,1, . . . ,mr,G]T is a gene
signature vector, mr,g ≥ 0 is the strength of the g-th gene in
the r-th signature, and ar is the relative contribution of the
r-th signature vector to the sample y, where ar ∈ [0, 1] and∑R

r=1 ar = 1. Here n denotes the residual error of the LMM.
For a matrix of N data samples Y = [y1, . . . ,yN ] the LMM
can be written in matrix form

Y = MA + N, (2)

with M = [m1, . . . ,mR], A = [a1, . . . ,aN ] and N =
[n1, . . . ,nN ]. The matrices M, A satisfy positivity and sum-
to-one constraints defined by

mr,g ≥ 0, ar,i ≥ 0, [1, . . . , 1]A = [1, . . . , 1], (3)

where mr,g denotes the (r, g)-th element of matrix M. The
reader will note that except the constraints (3) the LMM (2) is
identical to standard factor analysis model [7] for which the
columns of M are called factors, the elements of each of these
column vectors are called factor loadings, and the columns of
A are called factor scores. The constraints (3) arise naturally
when dealing with positive data for which one is seeking the
relative contribution of positive factors that have the same nu-
merical characteristics as the data, i.e., the signature mr is
itself interpretable as a vector of hybridization abundances.

The objective of linear unmixing is to simultaneously esti-
mate the factor matrix M and the factor score matrix A from
the available N data samples. The representation (2) is rank

deficient since A has rank N − 1. This presents algorith-
mic challenges for solving the unmixing problem. Several
algorithms have been proposed in the context of hyperspec-
tral imaging to solve similar problems [8, 9]. Most of these
algorithms perform unmixing in a two step procedure where
M is estimated first using an endmember extraction algo-
rithm (EEA) followed by a constrained linear least squares
step to solve for A. A common, but restrictive, assumption
in these algorithms is that there exist samples in the dataset
which are “pure” in the sense that they contain a single fac-
tor, say mr. Recently, this assumption has been relaxed by
applying a single step hierarchical Bayesian approach, called
Bayesian linear unmixing (BLU). The resulting algorithm re-
quired the number R of factors to be specified (see [10] for
details). Here we extend BLU to a fully unsupervised algo-
rithm that generates samples distributed according to the joint
posterior distribution of R and the other model parameters,
from which a Bayesian estimator of R can be derived. This
unsupervised algorithm is then applied to extract expression
patterns in gene microarray data.

3. UNSUPERVISED BAYESIAN LINEAR UNMIXING

The BLU algorithm studied in [10] generates an estimate
of the posterior distribution of M and A given the num-
ber R of factors for appropriate prior distributions assigned
to the mixing parameters in (1). Moreover, the residual
errors in (1) are assumed to be independent identically dis-
tributed (i.i.d.) zero-mean Gaussian distributed residual errors
(ni ∼ N

(
0G, σ

2IG

)
for i = 1, . . . , N , where IG denotes the

identity matrix of dimension G×G).
Because of the constraints in (3), the data samples yi (i =

1, . . . , N ) live in a lower-dimensional subset ofRK (R−1 ≤
K ≤ G) that can be identified by a standard dimension re-
duction procedure, such as a PCA. Hence, instead of estimat-
ing the factor loadings mr (r = 1, . . . , R), we propose to
estimate their corresponding projections on appropriate axes
denoted as

tr = P(mr − ȳ) (4)

where ȳ = 1
N

∑N
i=1 yi is the empirical mean of the data and

P is an appropriate projection matrix. A multivariate Gaus-
sian distribution (MGD) truncated on a subset Tr is chosen as
prior distribution for the projected factors tr. The subset Tr is
defined so that the non-negativity constraint on mr is ensured
(see [10]). The mean vectors er of this truncated MGD are
provided by an EEA dedicated to hyperspectral imagery and
the variances s2r are fixed to a large value. To summarize, the
prior for tr is

tr ∼ NTr

(
er, s

2
rIR−1

)
(5)

where NTr

(
er, s

2
rIR−1

)
denotes the truncated MGD with

mean er and covariance matrix s2rIR−1.



er

��

s2r

��
tr

��

ai

vv

γ

��

ν

xxyi σ2

Fig. 1. DAG for the parameter priors and hyperpriors (the
fixed parameters appear in dashed boxes).

The sum-to-one constraint for the factor scores ai, for
each observed sample i (i = 1, . . . , N ), allows this vector
ai to be rewritten as

ai =
(
ai,1:R−1

ai,R

)
with ai,1:R−1 = [ai,1, . . . , ai,R−1]T ,

and ai,R = 1 −
∑R−1

r=1 ai,r. We propose to assign uni-
form distributions over the simplex S as priors for the
vectors ai,1:R−1, where the simplex S is defined by S =
{ai,1:R−1 | ‖ai,1:R−1‖1 ≤ 1 and ai,1:R � 0}, where ‖·‖1
is the l1 norm (‖ai‖1 =

∑R
r=1 |ai,r|) and ai � 0 stands

for the set of inequalities {ai,r ≥ 0}r=1,...,R. Finally, an
inverse gamma prior has been chosen for the variance of the
residual errors σ2. The resulting hierarchical structure of the
proposed BLU model is summarized in the directed acyclic
graph (DAG) shown in Fig. 1.

The unsupervised version of BLU generates samples ofR
in addition to M, A by assuming a birth/death process for R.
This is achieved by an MCMC method that chooses a birth,
death or switch move at each iteration (denoted as (t)). The
birth and death moves consist of increasing or decreasing by
1 the number R of factors using a reversible jump MCMC
method (see [11] for more details), whereas the switch move
does not change the dimension of R and requires the use of
a Metropolis-Hastings acceptance procedure. For example,
in the case of a death move, a factor and its corresponding
factor scores are randomly removed. The factor matrix M,
the factor score matrix A and the noise variance σ2 are then
updated, conditionally upon the number of factors R, using
Gibbs moves. After a sufficient number of iterations, the gen-
erated samples are used to approximate the maximum a pos-
teriori (MAP) estimator of the number of factors R̂, and con-
ditionally upon R̂ the joint MAP estimator

(
M̂, Â

)
of the

factor and factor score matrices. Figure 2 summarizes the
proposed BLU method.

Fig. 2. Flow diagram of the BLU algorithm.

4. SIMULATION RESULTS

4.1. Synthetic data

To illustrate the performance of the proposed Bayesian un-
mixing algorithm, many simulations have been conducted on
synthetic data. The experiments conducted in this paper cor-
respond to the expression value of G = 512 genes, for N =
128 samples. Each sample is composed of exactly R = 3 dif-
ferent factors. These factors are mixed in random proportions
(factor scores), and are corrupted by an i.i.d. noise sequence.
The signal-to-noise ratio has been fixed to SNR = 20 dB.
The hidden mean vectors er (r = 1, . . . , R) are chosen as
the PCA projections of the factors, previously identified by
the VCA algorithm [8]. The proposed algorithm has been run
with Nmc = 5000 Monte Carlo iterations with a burn-in pe-
riod of Nbi = 500 iterations.

The first step of the algorithm consists of estimating the
number of factors R involved in the mixture, and hence de-
termining the dimensions of the matrices M and A. The esti-
mated posterior distribution of R depicted in Fig. 3 is clearly
in agreement with the actual value of R. This figure also
shows that the proposed algorithm moves into spaces with
different dimensions (corresponding to R = 2 and R = 4).
The second step of the algorithm consists of estimating the
unknown parameters (M, A and σ2) conditionally upon R̂.
As an example, the posterior distribution of the factor scores
obtained for the particular sample ]30 is depicted in Fig. 4.



These posteriors are in good agreement with the actual values
of the factor scores (dashed lines).

Fig. 3. Estimated posterior of R (synthetic data).

Fig. 4. Estimated posterior distributions for the factor scores
[a1,30, a2,30, a3,30]T conditionally upon R̂ = 3.

The performance of the proposed BLU algorithm has been
compared with other existing factor decomposition methods
including NMF, PCA and BFRM by using different criteria

• the factor mean square errors (MSE)

MSE2
r = ‖m̂r −mr‖2 , r = 1, . . . , R

• the global MSE of factor scores

GMSE2
r =

N∑
i=1

(
âi,r − ai,r

)2
, r = 1, . . . , R

• the reconstruction error

RE =
N∑

i=1

∥∥∥∥∥yi −
R∑

r=1

m̂râi,r

∥∥∥∥∥
2

• the computational time.

Simulation results are reported in Table 1. Note that the
BFRM method can be run with or without specifying the
number of factors. The NMF, PCA, and BFRM method have
been run for the actual number of factors to be estimated, i.e.
R = 3.

Table 1. Comparison measures between the proposed BLU
algorithm and NMF, PCA and BFRM methods.

BLU NMF PCA BFRM BFRM
R = 3 R = 3 R = 3

MSE2
r

5.31 5.89 29.29 1209 2808
7.22 2.75 55.30 1381 3113
4.91 1.58 66.80 1641 N/A

GMSE2
r

0.60 1.46 0.52 3616 79.15
0.62 5.41 0.38 2188 77.74
0.66 2.73 0.71 4883 N/A

RE 28.80 118.99 52.50 3.68× 105 2.61× 104

Time (in s) 647.1 1.5 0.1 28.2 283.0

The results obtained with synthetic data have illustrated
the accuracy (and superiority) of the proposed Bayesian ap-
proach for the unsupervised unmixing of gene-expression
data when compared to other existing factor decomposition
methods.

4.2. Beverage data

This section shows some results obtained with a publicly
available gene expression dataset from gene expression om-
nibus (GEO) [6] (through GEO Series accession number
GSE3846) called the beverage dataset. This dataset consists
of N = 108 processed affymetrix chips collected during an
experiment where six subjects imbibed one of four different
beverages. Peripheral blood microarray analysis was per-
formed at five post-treatment time instants corresponding to
0, 1, 2, 4 and 12 hours. The four beverages were water, grape
juice, red wine and alcohol. The experiment was repeated
four times on each subject under treatment with a different
beverage.

The proposed BLU algorithm was run with Nmc = 10000
Monte Carlo iterations, including a burn-in period of Nbi =
1000 iterations. Figure 5 shows that the MAP estimate of the
number of factors is R̂ = 3. These 3 factors are depicted in
Fig. 6 where the G = 22283 genes have been reordered so
that the dominant genes are grouped together in each factor.
The 3 sharp peaks in the figure correspond to the gene index
that has maximal loading for each of the factors. The factor
scores are shown in Fig. 7, where they are displayed as an
image whose columns (respectively rows) correspond to the
6 subjects (resp. the 5 time instants under the 4 experiments).
Note that factor ]2 is strongly associated with subjects ]1 and
]3. However, factor ]3 seems to have close values for the dif-
ferent samples. Thus, this factor is not specific to a particular
subject or treatment.



Fig. 5. Estimated posterior of R (beverage data).

Fig. 6. Estimated factor loadings ranked by decreasing domi-
nance.

Fig. 7. Estimated factor scores for each of the R = 3 factors.

5. CONCLUSION

This paper studied an unsupervised Bayesian unmixing algo-
rithm for gene expression microarrays. An interesting prop-
erty of the proposed algorithm was to provide positive factor
loadings and to ensure positivity as well as sum-to-one con-
straints for the factor scores. A reversible-jump MCMC al-
gorithm was used to estimate the different unknown model
parameters, including the number of factors involved in the
mixture. Simulation results performed on synthetic and real
data are very encouraging for gene expression analysis. Fu-
ture works will be to extend the proposed model to models
with temporal dependencies, to enforce sparsity on the factor
scores [12], and to enforce the factors to be related to treat-
ments instead of subjects.
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