DECENTRALIZED COMPRESSION AND RECONSTRUCTION
FOR RECOGNITION TASKS

Riten Gupta and Alfred O. Hero, III
Dept. of Electrical Engineering and Computer Science
University of Michigan

Sept, 2001
Distributed quantization in a sensor net

Objective: Observe $[\hat{x}^{(1)}, \ldots, \hat{x}^{(n)}] = Q(x)$ and decide between H_0 and H_1
Hypothesis testing from Q/VQ data

Objective: Observe $\hat{x} = Q(x)$ and decide between H_0 and H_1
ROC Performance of Various Quantizers

\[\text{ROC Curves with Various Quantizers} \]

- ROC-optimal
- MSE-opt, \(P_0 = 1 \)
- MSE-opt, \(P_0 = 0 \)
- MSE-opt, \(P_0 = 0.5 \)
Likelihood Ratio Test

Given \(\mathbf{x} = [x^{(1)}, \ldots, x^{(n)}]^T \), optimal test of \(H_0 : x \sim q_0 \) vs \(H_1 : x \sim q_1 \)

\[
\Lambda(\mathbf{x}) = \log \frac{q_1(\mathbf{x})}{q_0(\mathbf{x})} \quad \frac{H_1}{H_0} \quad > \quad T
\]

- False alarm probability \(P_F(T) = \alpha \)

\[
P_F(T) = P(\Lambda(\mathbf{x}) > T \mid H_0)
\]

- Probability of miss: \(P_M(T) = \beta \)

\[
P_M(T) = P(\Lambda(\mathbf{x}) < T \mid H_1)
\]

- Probability of Detection (power): \(P_D(T) = 1 - \beta \)
Example of a Sufficient Quantizer

Sufficient quantizer for 1-D piecewise-constant sources.
NP Q has Poor MSRE

Quantized Log-Likelihood Ratio (LLR) is a NP Quantizer:

\[x \xrightarrow{\Lambda(x)} Q_\Lambda \]

Log-likelihood ratio Scalar quantizer

Figure 2: LR VQ when sufficient statistic is \(x^{(1)} + x^{(2)} \)

Problem: Good detection performance, but poor estimation performance
Decision Region Approximation Error of Product Quantizer

Product Quantizer Cells and Neyman–Pearson Decision Regions
ROC’s for decentralized and centralized quantizers

Figure 3:

Neyman-Pearson quantizers “sample” the ROC curve.
Detection-optimal Q/VQ with small MSRE

1. Constrained detection design objective
 \[\max_Q \{ J_1 \} \text{ subject to } \text{MSRE} \leq \delta \]
 where
 \[J_1 = \text{Post Q Decision Error} \]

2. Mixed detection-estimation design objective \((\rho \in [0, 1])\)
 \[\max_Q \{ J_2 \} \text{ where} \]
 \[J_2 = (1 - \rho) \cdot \text{Post Q Decision Error} + \rho \cdot \text{Reconstruction MSE}, \]
Some post-Q detection error criteria:

1. Bayes risk (Oehler, Gray 95, Pearlmutter etal 96)

\[P_e = P_M P(H_1) + P_F P(H_0) \]

2. KL and Chernoff Information (Poor 77, 78; Benitz, Bucklew 89; Jana, Moulin, Ramchandran 99)

\[L = n^{-1} \log P_e \]

3. Sanov Information (Gupta, Hero 99)

\[L_0 = n^{-1} \log P_F, \quad L_1 = n^{-1} \log P_M \]

4. SNR (Picinbono, Duvaut 85; Tsitsiklis 93)
Area Under the Curve (AUC) Criterion

\[\text{AUC}_1 = \int_0^1 (1 - \beta) \, d\alpha, \]

\[\text{AUC}_2 = \int_0^1 L_1 \, dL_0 \]
Advantage of AUC: captures detection error independent of threshold T

Special Case

For detection of shift in μ in $\mathcal{N}(\mu, \sigma^2)$

$$\text{AUC}_1 = \frac{1}{2} + \frac{1}{2}\text{Erf} \left(\frac{\sqrt{SNR}}{2} \right)$$

$$\text{AUC}_2 = cSNR$$
Large Deviations Error Exponents for LRT

Sanov’s theorem: for \(n \) large:

\[
\alpha \approx e^{-nL(q_\lambda \| q_0)} \\
\beta \approx e^{-nL(q_\lambda \| q_1)}.
\]

Where, KL distance is

\[
L(q_1, q_0) = \int q_0(x) \ln \frac{q_0(x)}{q_1(x)} dx
\]

and for \(\lambda = f(T), \lambda \in [0, 1] \):

\[
q_\lambda(x) = \frac{q_0(x)^{1-\lambda}q_1(x)^\lambda}{\int q_0(y)^{1-\lambda}q_1(y)^\lambda dy} = "\text{tilted}" \text{ density}
\]
Note:

• λ determines T and level α of LRT

• λ for minimax LRT satisfies:

\[
L(q_\lambda\|q_0) = L(q_\lambda\|q_1)
\]

• As λ parameterizes curve (L_0, L_1)

\[
AUC = \int_0^1 L_1 \, dL_0 = \int_0^1 L_1(\lambda) \frac{dL_0(\lambda)}{d\lambda} \, d\lambda
\]

For Q cells $\{S_i\}_{i=1}^N$ define pmf’s of Quantized x

\[
\bar{q}_0(i) = P(x \in S_i \mid H_0), \quad \bar{q}_1(i) = P(x \in S_i \mid H_1)
\]
High-Resolution Analysis

Define distortions for a \(\log_2 N \) bit \(Q \)

\[
\Delta L_{0,N} \overset{\text{def}}{=} L(\bar{q}_\lambda||\bar{q}_0) - L(q_\lambda||q_0)
\]

\[
\Delta L_{1,N} \overset{\text{def}}{=} L(\bar{q}_\lambda||\bar{q}_1) - L(q_\lambda||q_1)
\]

High-resolution representation:

\[
\Delta L_{j,N} = N^{-2/k} \left(\lim_{N \to \infty} N^{2/k} \Delta L_{j,N} \right) + o(N^{-2/k})
\]

\(Q \) is **optimal high-rate** if high-resolution distortion \(= \min \)
Functions Associated with High-Rate Q

Specific point density function of cell positions (Na&Neuhoff 95):

\[\zeta_s(x) = \frac{1}{NV_i}, \text{ for } x \in S_i, \]

Specific inertial profile of cell shape (Na&Neuhoff 95):

\[m_s(x) = \frac{\int_{S_i} \| y - x_i \|^2 dy}{V_i^{1+2/k}}, \text{ for } x \in S_i, \]

Specific covariation profile of cell shape:

\[M_s(x) = \frac{\int_{S_i} (y - x_i)(y - x_i)^T dy}{V_i^{1+2/k}}, \text{ for } x \in S_i, \]
Divergence: Asymptotic Forms

\[\Delta L_{0,N} \approx \frac{1}{2N^{2/k}} \int \frac{q_\lambda(x)F(x)}{\zeta(x)^{2/k}} \left[\lambda^2 + \lambda(1 - \lambda)(L(q_\lambda\|q_0) - \Lambda_0(x)) \right] \, dx \]

\[\Delta L_{1,N} \approx \frac{1}{2N^{2/k}} \int \frac{q_\lambda(x)F(x)}{\zeta(x)^{2/k}} \left[(1 - \lambda)^2 + \lambda(1 - \lambda)(L(q_\lambda\|q_1) - \Lambda_1(x)) \right] \, dx \]

where

\[F(x) = \nabla \Lambda(x)^T M(x) \nabla \Lambda(x) = \text{Fisher covariation profile} \]

\[\Lambda_0(x) = \log \frac{q_\lambda(x)}{q_0(x)} \quad \Lambda_1(x) = \log \frac{q_\lambda(x)}{q_1(x)}. \]
AUC-Optimal High-Resolution Q/VQ

Loss in area under (L_0, L_1) curve:

$$\Delta A_N \approx \frac{1}{2N^{2/k}} \int \frac{\mathcal{F}(x)\eta(x)}{\zeta(x)^{2/k}} dx.$$

Optimal point density:

$$\zeta^o(x) = \frac{[\mathcal{F}(x)\eta(x)]^k}{\int [\mathcal{F}(y)\eta(y)]^{k+2} dy}.$$

$$\eta(x) = \int_0^\infty \Psi(\lambda) q_\lambda d\lambda: \text{AUC-mean tilted density}$$
1-D Gaussian Example: Source Densities and Point Densities

\[q_0 \sim \mathcal{N}(-2, 1), \quad q_1 \sim \mathcal{N}(2, 1), \quad k = 1 \]

Figure 4: Source densities (left) and optimal point densities (right).
1-D Gaussian Example: Detection Performance

Figure 5: $L_1(L_0)$ curves with $N = 8$ (left) and ROC curves with $N = 16$ and $n = 2$ (right).

$\alpha = 0.2$ for discrimination-optimal VQ
1-D Gaussian Example: Minimax point density

\[q_0 \sim \mathcal{N}(-4, 1), \quad q_1 \sim \mathcal{N}(4, 1), \quad k = 1 \]

Figure 6: ROC-optimal and Chernoff-information-optimal point densities (left) and \(L_1(L_0) \) curves with ROC-optimal and Chernoff-information-optimal quantizers with \(N = 8 \) (right).
1-D Gaussian Example: Estimation Performance (MSRE)

Figure 7: MSRE with ROC-optimal, detection-optimal, and estimation-optimal VQ’s with $N = 16$.
2-D Anisotropic Gaussian Example

Figure 8: Source densities for 2-D anisotropic Gaussian example.
2-D Anisotropic Gaussian Example

Figure 9: Two-dimensional anisotropic Gaussian example: (a) $\eta(x)$, (b) log-likelihood ratio $\Lambda(x)$, (c) discriminability $\|\nabla \Lambda(x)\|^2$, (d) ROC-optimal point density, (e) discrimination-optimal point density, (f) estimation-optimal point density.
2-D Anisotropic Gaussian Example

Figure 10: ROC-optimal congruent-cell VQ (left), Discrimination-optimal congruent-cell VQ (middle), and Estimation-optimal VQ (right) with \(N = 64 \).
2-D Anisotropic Gaussian Example

L_1 vs. L_0 Curves with Optimal Quantizers

- No quantization
- ROC-optimal quantizer
- Discrimination-optimal quantizer
- Estimation-optimal quantizer

Figure 11: (L_0, L_1) curves for ROC-optimal, estimation-optimal, and discrimination-optimal congruent-cell VQ’s with $N = 64$.
Medical imaging Application

Figure 12: Pre-operative (left), Post-operative (right).
H0 with Detection VQ

H1 with Detection VQ

H0 with Estimation VQ

H1 with Estimation VQ
Conclusions for Q/VQ for detection

- AUC criterion introduced: independent of detection threshold
- High rate Q/VQ analysis performed
- Good VQ’s have cells aligned along contours of LR
- Optimal high rate Q/VQ strategies determined for various detection criteria
 1. One-sided discrimination exponent: Kullback Liebler divergence
 2. Two-sided discrimination exponent: α-divergence
 3. minimax exponent
 4. AUC exponent
- Application to longitudinal medical image databases is in progress