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1. Renyi Entropy and Réenyi Divergence

X ~ f(x) ad-dimensional random vector.

Rényi Entropy of order
1
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Rényi Divergence of order
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Examples

e Hellinger distance squared

(f, fo) =In (/ \/f(x)fo(x)d:c)2

e Kullback-Liebler divergence

I

1
2

fo(z)

o) dzx.

g:nlllu(fafo):/fo(x)ln




2. k-Minimal graphs

A graph G of degreéconsists of vertices and edges
e vertices are subset &f, = {z;}"_,: n points in R*
e edges are denoted;; }
o foranyi: card{e;;}; <l

Weight (with power exponent) of G

Lg(X) = > el
eEG




Examples:

n-point Minimal Spanning Tree (MST)

Let M(AX,,) denote the possible sets of edges in the class of acyclic
graphs spanning’, (spanning trees).

The Euclidean Power Weighted MST achieves
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Figure 1. A data set and the MST




n-point Traveling Salesman Problem (TSP)
Let T(X,,) be sets of edges in the class of graphs of degree 2 spaffing

The minimal power-weighted TSP tour achieves

Ltgp(X,) = min > e,
T(xn)
ecT(x,)




2.1. Quasi-additive Euclidean Functionals

L Is a continuous subadditive functional if it satisfies
Null Condition: L(¢) = 0, where¢ is the null set.

Subadditivity : There exists a constaat; with the following
property: For any uniform resolutioty m-partition 9™

<m_1ZL [(FNQ;) — ql) +Cim*™

Superadditivity : There exists a constagl, with the following
property:

>m_1ZL (FNQ;)—g]) — Com?




Continuity : There exists a constatgl; such that for all finite subsets
F andG of [0, 1]¢

L(FUG) — L(F)| < Cs (card(G))=/

Definition 1 A continuous subadditive functionéalis said to be a
guasi-additive functional when there exists a continuous superadditive
functional L* which satisfied (F') + 1 > L*(F') and the approximation

property
[E[L(U1,...,Un)] — E[L*(Uy,...,Uy)]| < Cynld=7=1/d(3)

whereUy, . .., U, are i.i.d. uniform random vectors i, 1].




2.2. Asymptotics: the BHH Theorem and entropy
estimation

Theorem 1 [Redmond&Yukich:96] Lel be a quasi-additive Euclidean
functional with power-exponent and letX,, = {z1,...,z,} be ani.i.d.
sample drawn from a distribution df, 1]¢ with an absolutely continuous
component having (Lebesgue) dengity). Then

(4)

lim L(&X,)/m@=/4 = g /f(x)(d_’”/ddx, (a.s.)

n—oo

Or, lettingr = (d — v)/d

lim L(AX,)/n"”

n—oo
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Figure 2. 2D Triangular vs. Uniform sample study for MST.
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Figure 3. MST and log MST weights as function of number of sam-
ples for 2D uniform vs. triangular study.




2.3. I-Divergence and Quasi-additive functions

g(x): areference density oR4

Assumef < g, i.e. for allz such thaty(x) = 0 we havef(z) = 0.

Make measure transformatiada — g(z)dz on|[0, 1]¢. Then for)),
= transformed data [Hero&Michel:HOS99]

lim LOW)/n = Bus exp((L-v)L(f9),  (as.)

n—oo




Proof

1. Make transformation of variables

r=[zl,.. 2N —y=1[y' ...,y

= G2z .2t

k
whereG (zF |z, ... 21) = ffoo g(@Flzk=t ... zl)dz"

2. Induced densityi(y), of the vectory, takes the form:

G, G )
g(GTD), Gy, yh)

whereG~! is inverse CDF and* = G~ 1(y*|z*~1, ... ot).

h(y)




3. Then we know
1

1 —v

f[,,(yn) — ln/h”(y)dy (a.s.)

4. By Jacobian formulady = ‘j—g‘ dz = g(x)dz and

1 —v 1 —v

Lo [y = om [ (@)ngda::f(f,g)

g(x)




3. Outlier Sensitivity of minimal n-point graphs

Assumef is a mixture density of the form

f=Q0—ef1+¢efo,
where
e f,Is aknown outlier density
e f; IS an unknown target density

e ¢ c [0,1]is unknown mixture parameter




50 samples from f 1 density Add 50 samples of uniform noise

Figure 4. 1st row: 2D torus density with and without the addition
of uniform “outliers.” 2nd row: corresponding MST'’s.




3.1. Minimal k-point Euclidean Graphs

Fixk, 1 <k<n.

Let T, x = T(xy,, ...,z ) be aminimal graph connectirigdistinct
verticesz;, , ..., T;, .

The power weighte#-minimalgraph T, , = T"(x;+, ..., z;:) isthe
overall minimum weight-point graph

ne = L'(Xop)= min min ) [le|”
7 Uk Tn,k

6€Tn,k:




k—-MST (k=99): 1 outlier rejection (k=98): 2 outlier rejection

Figure 5. k-MST for 2D torus density with and without the addition
of uniform “outliers”.




4. Extended BHH Thm for k-Minimal Graphs

Fix a € [0, 1] and assume that thkeminimal graph igightly coverable If
k = |an], asn — oo we have (Hero&Michel:IT99)

L(X; )/(lan])” — Br, min /f”(a:\a: c A)dx (a.s.)

A:P(A) >«

or, alternatively, with

1

1 —v

H,(flz € A) = ln/f”(a:|x c A)dz

L0/ (lan))”  Brpep ((-0) win Hiflee ) (as

A:P(A) >«




Definition 2 (Tightly Coverable Graphs) LetQ™, m =1,2,...,be a
sequence of uniform partitions {f, 1]¢ of resolutionl /m. LetG be an
algorithm which constructs a graph with with= | an | vertices

Uy, 1, C Uy, ani.i.d. uniform sample ove#, 1]¢. Define

D' = Niceo(om)u, recy C the minimum volume set i(.A™) which
coversi, . The algorithmG is said to generate tightly coverable
subgraphs if for any > 0 there exists ard/ such that for alkn > M

lim sup Lo <e  (a.s.)
n— 0o n

card(U, "N D™ ) — |an]
<




5. Greedy Partition Algorithm

Greedy approximation to k-minimal graph (Raw&al.94)

0) specify a uniform partitio®™ of [0, 1]¢ havingm? cells Q;
of resolutionl /m;

1) find the smallest subs&y™ = U, (Q); of partition elements
containing at leask points

2) out of X, N B selectk points&,, , which minimizeL(X,, ).
Properties:

e Greedy algorithm is polynomial time unlike exponential time exact
k-minimal algorithm.

e Greedy algorithm yields tightly coverable graphs by construction
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F|gure 6 A sample of7 5 points from the mixture densitf(xz) = 0.25f (x) + 0.75 fo () wheref is a uniform

density over{O, 1]2 and fq is a bivariate Gaussian density with meén /2, 1 /2) and diagonal covarianceliag(0.01). A

smallest subsean is the union of the two cross hatched cells shown forthe case o= 5 andk = 17.




Figure 7. Another smallest subsét;” containing at leask = 17
points for the mixture sample shown in Fig 6.




Minimal 1/m-Cover of Probability at least «

If for any C' € o(Q™) satisfyingP(C) > «a the setd € o(Q™) satisfies

P(C) > P(A) > o,

then A is called aminimal resolutiont /m set of probability at leasd.
The class of all such sets is denotdf .

= all sets INA7' have identical coverage probabilitigg~ > .




Theorem 2 Let X,, be an i.i.d. sample from a distribution having
Lebesgue densitf(z). Fix a € [0,1], v € (0,d). Let f(4=7)/4 pe of
bounded variation ovej0, 1]¢ and denote by(A) its total variation over
a subsetd C [0,1]%. Let L be a quasi-additive functional with power
exponenty as in Theorem 1. Then,

n—oo

limsup‘L(XGLanJ)/ min /f (x|A)dz

7 A P(A) >«

where

= 1S the coverage probability of minimizing sét= A7'.




Main idea behind proof: for large can index ove#’, , C &, by
indexing overA C Borel in [0, 1]¢.

E[Xfilﬂ-arlnj L(Xn,Losz )] ~ A;Pl(nAf)ZaE[L(Xn N A,




Proof of Theorem uses following lemmas:

Lemma 1 For givena € [0, 1] and a set of: i.i.d. points
X, = [z1,...,2,]" let B™ be the minimal cover ofan| points with
resolutiond /m produced by the greedy subset selection algorithm. Thgn

P (liminf {X, : Bl € AT}) = 1.

n—oo

29



Lemma 2 For v € [0, 1] let f¥ be of bounded variation ovéd, 1]¢ and
denote by (A) its total variation over any subset < [0, 1]¢. Define the
resolutionl /m block density approximatiofi(z) = Z;fl 0:1g,(x)
wheret; = m? [, f(z)dz. Then foranyd € o(Q™)

0 < /A F@) = f@lde < mt Y 0(Qin 4)




Lemma 3 Assumef is of bounded total variation((Q);) in each partition

cell@; € Q™. Let A be any set in the clasd”'. Then for any

def

quasi-additive functionaL,, (B7,,,|) = L(X, N BT, )

n—oo

lim sup | Ly (B[4 )/n(d n/d_ g /f(d_’Y)/d(a:)da:
A

md

<2m~4py ., Z v(Q; NOAL), (a.s).

1=1




Lemma 4 Let&,, |, be any|an] points selected frons}” - Then,

lan
for any quasi-additive functiondl,, (B, ) def L,(X,.NB" )

Lan |

limsup | Ln (B{%,)) — L(Xn, |an)) /nd=)/d

n—oo

< C3(pam — o) d=17d (g5

wherep 4» = P(A7}) is the coverage probability of seff} in A7




Interpretations of Theorem 2:
e Boundy is tight: lim,_,; 6 = 0 and theorem reduces to BHH.
e Sincesup,cq . Fld=/4(2) < v([0,1]?%) and

> ie V(@i NOAZ) < ([0, 1]%),
0 can be upper bounded by

§ < [26L,7m_d + Cgm7_d} v([0, 1]%).

Thus if an upper bound on the total variation of is available and
the tolerance is given

LS, )/ (lan))” = Bry exp{—(1 = V)R,)| < ¢

we obtain a selection rule for required partition resolutigm

€

1/m = (2 + 03)@.

e ¢ decreases to zero as a function of resolutipm at overall rate




O(m"~%). Thus convergence rate In'm is fastest for smal.

e Conjecture: as
E[Lrst Un)] = Brysr 0t /4) = O (max(1, nld=71-D/4))
[Redmond&Yukich:96], rate of convergence in the limsup of
Theorem 2 is at begd(1/n'/¢) and this rate can be attained only
whenvy < d — 1.

e k-minimal graph entropy estimator will have fastest convergence
when the Rnyi order parameteris in the rangd /d < v < 1.

e Theorem extends easily to I-divergence limit by measure
transformation.




6. Application 1. MST Discrimination

o f(z)=(1—¢€)fi(x)+ efo(x): mixture density
e f1(z)is 2D separable triangle density @h1]*
e fo(z) is 2D uniform density ori0, 1]*




ROC - K -, N=256, €=.1,.3,.5,.7,.9 ; ref=Unif.
T T

Figure 8. ROC curves for the &hyi information divergence test for
detecting triangle-uniform mixture densify= (1 —e¢) f1 + € fo (H1)
against triangular hypothesig = f; (Hy). Curves are increasing
ine € {0.1,0.3,0.5,0.7,0.9}.




7. Application Il: Nonuniform Qutlier Rejection

256 random samples

Figure 9. Left: A scatterplot of a 256 point sample from triangle-
uniform mixture density with = 0.1. Labels '0’ and *’ mark those
realizations from the uniform and triangular densities, respectively.
Right: superimposed is theMST implemented directly on the scat-

terplot X, with £ = 230.




0.2 0.4 0.6 . 0.4
Original Coordinates Transformed Coordinates

Figure 10. Left: A sample from triangle-uniform mixture density
with ¢ = 0.9 In the transformed domaip/,,. Labels '0’ and *
mark those realizations from the uniform and triangular densities,
respectively. Right: transformed coordinates.




N=256, k/N=0.9, fO:unif, flztriang N=256, k/N=0.9, fO:unif, flztriang
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Figure 11. Left: thek-MST implemented on the transformed scat-
terplot),, with £ = 230. Right: same&:-MST displayed in the origi-
nal data domain.




