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1. Rényi Entropy and Rényi Divergence

� X � f(x) ad-dimensional random vector.

� Rényi Entropy of order�

H�(f) =

1
1� �
ln

Z
f�(x)dx (1)

� Rényi Divergence of order�

I�(f; fo) =

1
1� �
ln

Z �
f(x)

fo(x)
��

fo(x)dx (2)

� fo a dominating Lebesgue density
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Examples:

� Hellinger distance squared
I 1

2

(f; fo) = ln
�Z p

f(x)fo(x)dx
�2

� Kullback-Liebler divergence

lim
�!1
I�(f; fo) =

Z
fo(x) ln
fo(x)

f(x)
dx:
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2. k-Minimal graphs

A graph G of degreel consists of vertices and edges

� vertices are subset ofXn = fxig
n

i=1: n points in IRd

� edges are denotedfeijg

� for anyi: cardfeijgj � l

Weight (with power exponent) of G

LG(Xn) =
X

e2G

kek
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Examples:

n-point Minimal Spanning Tree (MST)

LetM(Xn) denote the possible sets of edges in the class of acyclic

graphs spanningXn (spanning trees).

The Euclidean Power Weighted MST achieves

LMST(Xn) = min

M(Xn)

X
e2M(Xn)
kek :
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Figure 1. A data set and the MST
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n-point Traveling Salesman Problem (TSP)

Let T(Xn) be sets of edges in the class of graphs of degree 2 spanningXn.

The minimal power-weighted TSP tour achieves

LTSP(Xn) = min

T(Xn)

X
e2T(Xn)
kek :
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2.1. Quasi-additive Euclidean Functionals

L is a continuous subadditive functional if it satisfies

Null Condition : L(�) = 0, where� is the null set.

Subadditivity : There exists a constantC1 with the following

property: For any uniform resolution1=m-partitionQm

L(F ) � m�1
mdX

i=1
L(m[(F \Qi)� qi]) + C1m
d�

Superadditivity : There exists a constantC2 with the following

property:

L(F ) � m�1
mdX

i=1
L(m[(F \Qi)� qi])� C2m
d�
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Continuity : There exists a constantC3 such that for all finite subsets

F andG of [0; 1]d

jL(F [G)� L(F )j � C3 (card(G))(d�)=d

Definition 1 A continuous subadditive functionalL is said to be a

quasi-additive functional when there exists a continuous superadditive

functionalL� which satisfiesL(F ) + 1 � L�(F ) and the approximation

property

jE[L(U1; : : : ; Un)]�E[L�(U1; : : : ; Un)]j � C4n
(d��1)=d (3)

whereU1; : : : ; Un are i.i.d. uniform random vectors in[0; 1]d.
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2.2. Asymptotics: the BHH Theorem and entropy

estimation

Theorem 1 [Redmond&Yukich:96] LetL be a quasi-additive Euclidean

functional with power-exponent, and letXn = fx1; : : : ; xng be an i.i.d.

sample drawn from a distribution on[0; 1]d with an absolutely continuous

component having (Lebesgue) densityf(x). Then

(4)

lim
n!1

L(Xn)=n
(d�)=d = �L;
Z

f(x)(d�)=ddx; (a:s:)

Or, letting� = (d� )=d

lim
n!1

L(Xn)=n
� = �L; exp ((1� �)H�(f)) ; (a:s:)
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2.3. I-Divergence and Quasi-additive functions

� g(x): a reference density on IRd

� Assumef � g, i.e. for allx such thatg(x) = 0 we havef(x) = 0.

� Make measure transformationdx! g(x)dx on [0; 1]d. Then forYn

= transformed data [Hero&Michel:HOS99]

lim
n!1

L(Yn)=n
� = �L; exp ((1� �)I�(f; g)) ; (a:s:)
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Proof

1. Make transformation of variables
x = [x1; : : : ; xd]T ! y = [y1; : : : ; yd]T

y1 = G(x1) (5)

y2 = G(x2jx1)

...
...

yd = G(xdjxd�1; : : : ; x1)

whereG(xkjxk�1; : : : ; x1) =
R xk

�1

g(~xkjxk�1; : : : ; x1)d~xk

2. Induced densityh(y), of the vectory, takes the form:

h(y) =
f(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1))

g(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1))

(6)

whereG�1 is inverse CDF andxk = G�1(ykjxk�1; : : : ; x1).
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3. Then we know

^H�(Yn)!

1
1� �
ln

Z
h�(y)dy (a:s:)

4. By Jacobian formula:dy =
��� dydx
��� dx = g(x)dx and

1
1� �
ln

Z
h�(y)dy =

1
1� �
ln

Z �
f(x)

g(x)
��

g(x)dx = I(f; g)
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3. Outlier Sensitivity of minimal n-point graphs

Assumef is a mixture density of the form

f = (1� �)f1 + �fo; (7)

where

� fo is a known outlier density

� f1 is an unknown target density

� � 2 [0; 1] is unknown mixture parameter
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3.1. Minimal k-point Euclidean Graphs

Fix k, 1 � k � n.

Let Tn;k = T(xi1 ; : : : ; xik) be a minimal graph connectingk distinct

verticesxi1 ; : : : ; xik .

The power weightedk-minimalgraph T�n;k = T�(xi�1 ; : : : ; xi�k) is the

overall minimum weightk-point graph

L�n;k = L�(Xn;k) = min

i1;:::;ik

min
Tn;k

X
e2Tn;k
kek
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4. Extended BHH Thm for k-Minimal Graphs

Fix � 2 [0; 1] and assume that thek-minimal graph istightly coverable. If

k = b�nc, asn!1 we have (Hero&Michel:IT99)

L(X �n;k)=(b�nc)
� ! �L; min

A:P (A)��
Z

f�(xjx 2 A)dx (a:s:)

or, alternatively, with

H�(f jx 2 A) =

1
1� �
ln

Z
f�(xjx 2 A)dx

L(X �n;k)=(b�nc)
� ! �L; exp
�

(1� �) min

A:P (A)��
H�(f jx 2 A)

�
(a:s:)
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Definition 2 (Tightly Coverable Graphs) LetQm, m = 1; 2; : : :, be a

sequence of uniform partitions of[0; 1]d of resolution1=m. LetG be an

algorithm which constructs a graph with withk = b�nc vertices

Un;k � Un, an i.i.d. uniform sample over[0; 1]d. Define

Dm
k = \fC2�(Qm):Un;k2Cg C the minimum volume set in�(Am) which

coversUn;k. The algorithmG is said to generate tightly coverable

subgraphs if for any� > 0 there exists anM such that for allm > M

lim sup

n!1

�����
card(Un \D
m

b�nc)� b�nc

n

����� � �; (a:s:)
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5. Greedy Partition Algorithm

Greedy approximation to k-minimal graph (Ravi&etal:94)

0) specify a uniform partitionQm of [0; 1]d havingmd cellsQi

of resolution1=m;

1) find the smallest subsetBm
k = [iQi of partition elements

containing at leastk points

2) out ofXn \Bm
k selectk pointsXn;k which minimizeL(Xn;k).

Properties:

� Greedy algorithm is polynomial time unlike exponential time exact

k-minimal algorithm.

� Greedy algorithm yields tightly coverable graphs by construction
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density over[0; 1]2 andf1 is a bivariate Gaussian density with mean(1=2; 1=2) and diagonal covariancediag(0:01). A

smallest subsetBm
k

is the union of the two cross hatched cells shown for the case ofm = 5 andk = 17.
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Minimal 1=m-Cover of Probability at least�

If for anyC 2 �(Qm) satisfyingP (C) � � the setA 2 �(Qm) satisfies

P (C) � P (A) � �;

thenA is called aminimal resolution-1=m set of probability at least�.

The class of all such sets is denotedAm
� .

) all sets inAm
� have identical coverage probabilitiespAm
�

� �.
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Theorem 2 LetXn be an i.i.d. sample from a distribution having

Lebesgue densityf(x). Fix � 2 [0; 1],  2 (0; d). Letf (d�)=d be of

bounded variation over[0; 1]d and denote byv(A) its total variation over

a subsetA � [0; 1]d. LetL be a quasi-additive functional with power

exponent as in Theorem 1. Then,

lim sup

n!1

����L(XGm

n;b�nc)=n
� � �L; min

A:P (A)��
Z

f�(xjA)dx
���� < Æ; (a:s:);

where

Æ = 2m�d�L;
mdX

i=1
v(Qi \ @A
m

� ) + C3(pAm
�

� �)(d�)=d

= O(m�d);

andpAm
�

is the coverage probability of minimizing setA = Am
� .
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Main idea behind proof: for largen can index overXn;k � Xn by

indexing overA � Borel in [0; 1]d.

E[ min

Xn;b�nc
L(Xn;b�nc)] � inf

A:P (A)��
E[L(Xn \A)];
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Proof of Theorem uses following lemmas:

Lemma 1 For given� 2 [0; 1] and a set ofn i.i.d. points

Xn = [x1; : : : ; xn]
T letBm

n be the minimal cover ofb�nc points with

resolution-1=m produced by the greedy subset selection algorithm. Then

P
�

lim inf

n!1

fXn : Bm
n 2 Am
� g

�
= 1:
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Lemma 2 For � 2 [0; 1] let f� be of bounded variation over[0; 1]d and

denote byv(A) its total variation over any subsetA 2 [0; 1]d. Define the

resolution1=m block density approximation~f(x) =
Pmd

i=1 �iIQi(x)

where�i = md
R

Qi
f(x)dx. Then for anyA 2 �(Qm)

0 �
Z

A
[ ~f�(x)� f�(x)]dx � m�d

mdX
i=1
v(Qi \A):
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Lemma 3 Assumef is of bounded total variationv(Qi) in each partition

cellQi 2 Q
m. LetA be any set in the classAm

� . Then for any

quasi-additive functionalLn(Bm
b�nc)

def

= L(Xn \B
m

b�nc)

lim sup

n!1

����Ln(Bm
b�nc)=n
(d�)=d � �L;
Z

A
f (d�)=d(x)dx

����

< 2m�d�L;
mdX

i=1
v(Qi \ @A
m

� ); (a:s):
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Lemma 4 LetXn;b�nc be anyb�nc points selected fromBm
b�nc. Then,

for any quasi-additive functionalLn(Bm
b�nc)

def

= Ln(Xn \B
m

b�nc)

lim sup

n!1

���Ln(Bm
b�nc)� L(Xn;b�nc)

��� =n(d�)=d

< C3(pAm
�

� �)(d�)=d; (a:s:)

wherepAm
�

= P (Am
� ) is the coverage probability of setsAm
� in Am
� .
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Interpretations of Theorem 2:
� BoundÆ is tight: lim�!1 Æ = 0 and theorem reduces to BHH.

� Sincesupx2Q(q)
f (d�)=d(x) � v([0; 1]d) andPmd

i=1 v(Qi \ @A
m

� ) � v([0; 1]d),

Æ can be upper bounded by
Æ �
�

2�L;m
�d + C3m
�d
�

v([0; 1]d):

Thus if an upper boundv on the total variation off is available and
the tolerance� is given

jL(XGm

n;b�nc)=(b�nc)
� � �L; expf�(1� �)R�)j < �

we obtain a selection rule for required partition resolution1=m

1=m �

�

(2 + C3)v
:

� Æ decreases to zero as a function of resolution1=m at overall rate
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O(m�d). Thus convergence rate in1=m is fastest for small.

� Conjecture: as

jE[LMST (Un)]� �LMST ;n
(d�)=dj = O
�

max(1; n(d��1)=d)
�

[Redmond&Yukich:96], rate of convergence in the limsup of

Theorem 2 is at bestO(1=n1=d) and this rate can be attained only

when � d� 1.

� k-minimal graph entropy estimator will have fastest convergence

when the Ŕenyi order parameter� is in the range1=d � � < 1.

� Theorem extends easily to I-divergence limit by measure

transformation.
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6. Application 1: MST Discrimination

� f(x) = (1� �)f1(x) + �f0(x): mixture density

� f1(x) is 2D separable triangle density on[0; 1]2

� f0(x) is 2D uniform density on[0; 1]2
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7. Application II: Nonuniform Outlier Rejection
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Figure 9. Left: A scatterplot of a 256 point sample from triangle-

uniform mixture density with� = 0:1. Labels ’o’ and ’*’ mark those

realizations from the uniform and triangular densities, respectively.

Right: superimposed is thek-MST implemented directly on the scat-

terplotXn with k = 230.
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