Renyi divergence and asymptotic theory of minimal K-point random graphs

Alfred Hero

Dept. of EECS,

The University of Michigan,

Summer 1999

Outline

- Rényi Entropy and Rényi Divergence
- Euclidean k-minimal graphs
- Asymptotics for tightly coverable graphs
- Asymptotics for greedy k-minimal graphs
- Influence function for greedy k-minimal graph
- Applications

1. Rényi Entropy and Rényi Divergence

- $X \sim f(x)$ a *d*-dimensional random vector.
- Rényi Entropy of order ν

$$H_{\nu}(f) = \frac{1}{1-\nu} \ln \int f^{\nu}(x) dx$$
 (1)

• Rényi Divergence of order ν

$$I_{\nu}(f, f_o) = \frac{1}{1-\nu} \ln \int \left(\frac{f(x)}{f_o(x)}\right)^{\nu} f_o(x) dx \tag{2}$$

• f_o a dominating Lebesgue density

Examples:

• Hellinger distance squared

$$I_{\frac{1}{2}}(f, f_o) = \ln\left(\int \sqrt{f(x)f_o(x)}dx\right)^2$$

• Kullback-Liebler divergence

$$\lim_{\nu \to 1} I_{\nu}(f, f_o) = \int f_o(x) \ln \frac{f_o(x)}{f(x)} dx.$$

2. k-Minimal graphs

A graph G of degree l consists of vertices and edges

- vertices are subset of $\mathcal{X}_n = \{x_i\}_{i=1}^n$: *n* points in \mathbb{R}^d
- edges are denoted $\{e_{ij}\}$
- for any $i: card\{e_{ij}\}_j \leq l$

Weight (with power exponent γ) of G

$$L_{\mathbf{G}}(\mathcal{X}_n) = \sum_{e \in \mathbf{G}} \|e\|^{\gamma}$$

Examples:

n-point Minimal Spanning Tree (MST)

Let $\mathcal{M}(\mathcal{X}_n)$ denote the possible sets of edges in the class of acyclic graphs spanning \mathcal{X}_n (spanning trees).

The Euclidean Power Weighted MST achieves

$$L_{\text{MST}}(\mathcal{X}_n) = \min_{\mathcal{M}(\mathcal{X}_n)} \sum_{e \in \mathcal{M}(\mathcal{X}_n)} \|e\|^{\gamma}.$$

n-point Traveling Salesman Problem (TSP)

Let $T(X_n)$ be sets of edges in the class of graphs of degree 2 spanning X_n . The minimal power-weighted TSP tour achieves

$$L_{\text{TSP}}(\mathcal{X}_n) = \min_{\mathbf{T}(\mathcal{X}_n)} \sum_{e \in \mathbf{T}(\mathcal{X}_n)} \|e\|^{\gamma}.$$

2.1. Quasi-additive Euclidean Functionals

L is a continuous subadditive functional if it satisfies

Null Condition: $L(\phi) = 0$, where ϕ is the null set.

Subadditivity: There exists a constant C_1 with the following property: For any uniform resolution 1/m-partition \mathcal{Q}^m

$$L(F) \le m^{-1} \sum_{i=1}^{m^d} L(m[(F \cap Q_i) - q_i]) + C_1 m^{d-\gamma}$$

Superadditivity: There exists a constant C_2 with the following property:

$$L(F) \ge m^{-1} \sum_{i=1}^{m^d} L(m[(F \cap Q_i) - q_i]) - C_2 m^{d-\gamma}$$

Continuity: There exists a constant C_3 such that for all finite subsets F and G of $[0, 1]^d$

$$|L(F \cup G) - L(F)| \le C_3 \left(\operatorname{card}(G) \right)^{(d-\gamma)/d}$$

Definition 1 A continuous subadditive functional L is said to be a quasi-additive functional when there exists a continuous superadditive functional L^* which satisfies $L(F) + 1 \ge L^*(F)$ and the approximation property

$$|E[L(U_1, \dots, U_n)] - E[L^*(U_1, \dots, U_n)]| \le C_4 n^{(d-\gamma-1)/d}$$
(3)

where U_1, \ldots, U_n are i.i.d. uniform random vectors in $[0, 1]^d$.

2.2. Asymptotics: the BHH Theorem and entropy estimation

Theorem 1 [Redmond&Yukich:96] Let L be a quasi-additive Euclidean functional with power-exponent γ , and let $\mathcal{X}_n = \{x_1, \ldots, x_n\}$ be an i.i.d. sample drawn from a distribution on $[0, 1]^d$ with an absolutely continuous component having (Lebesgue) density f(x). Then

(4)

$$\lim_{n \to \infty} L(\mathcal{X}_n) / n^{(d-\gamma)/d} = \beta_{L,\gamma} \int f(x)^{(d-\gamma)/d} dx, \qquad (a.s.)$$

Or, letting $\nu = (d - \gamma)/d$

$$\lim_{n \to \infty} L(\mathcal{X}_n) / n^{\nu} = \beta_{L,\gamma} \exp\left((1-\nu)H_{\nu}(f)\right), \qquad (a.s.)$$

Figure 2. 2D Triangular vs. Uniform sample study for MST.

Figure 3. *MST and log MST weights as function of number of samples for 2D uniform vs. triangular study.*

2.3. I-Divergence and Quasi-additive functions

- g(x): a reference density on \mathbb{R}^d
- Assume $f \ll g$, i.e. for all x such that g(x) = 0 we have f(x) = 0.
- Make measure transformation $dx \to g(x)dx$ on $[0, 1]^d$. Then for \mathcal{Y}_n = transformed data [Hero&Michel:HOS99]

$$\lim_{n \to \infty} L(\mathcal{Y}_n)/n^{\nu} = \beta_{L,\gamma} \exp\left((1-\nu)I_{\nu}(f,g)\right), \qquad (a.s.)$$

Proof

1. Make transformation of variables $x = [x^{1}, \dots, x^{d}]^{T} \rightarrow y = [y^{1}, \dots, y^{d}]^{T}$ $y^{1} = G(x^{1})$ $y^{2} = G(x^{2}|x^{1})$ \vdots $y^{d} = G(x^{d}|x^{d-1}, \dots, x^{1})$ where $G(x^{k}|x^{k-1}, \dots, x^{1}) = \int_{-\infty}^{x^{k}} g(\tilde{x}^{k}|x^{k-1}, \dots, x^{1}) d\tilde{x}^{k}$ 2. Induced density h(y), of the vector y, takes the form:

$$h(y) = \frac{f(G^{-1}(y^1), \dots, G^{-1}(y^d | y^{d-1}, \dots, y^1))}{g(G^{-1}(y^1), \dots, G^{-1}(y^d | y^{d-1}, \dots, y^1))}$$
(6)

where G^{-1} is inverse CDF and $x^k = G^{-1}(y^k | x^{k-1}, \dots, x^1)$.

3. Then we know

$$\hat{H}_{\nu}(\mathcal{Y}_n) \to \frac{1}{1-\nu} \ln \int h^{\nu}(y) dy \quad (a.s.)$$

4. By Jacobian formula: $dy = \left| \frac{dy}{dx} \right| dx = g(x)dx$ and

$$\frac{1}{1-\nu} \ln \int h^{\nu}(y) dy = \frac{1}{1-\nu} \ln \int \left(\frac{f(x)}{g(x)}\right)^{\nu} g(x) dx = I(f,g)$$

3. Outlier Sensitivity of minimal *n***-point graphs**

Assume f is a mixture density of the form

$$f = (1 - \epsilon)f_1 + \epsilon f_o, \tag{7}$$

where

- f_o is a known outlier density
- f_1 is an unknown target density
- $\epsilon \in [0, 1]$ is unknown mixture parameter

of uniform "outliers." 2nd row: corresponding MST's.

3.1. Minimal *k*-point Euclidean Graphs

Fix $k, 1 \leq k \leq n$.

Let $T_{n,k} = T(x_{i_1}, \ldots, x_{i_k})$ be a minimal graph connecting k distinct vertices x_{i_1}, \ldots, x_{i_k} .

The power weighted *k*-minimal graph $T_{n,k}^* = T^*(x_{i_1^*}, \ldots, x_{i_k^*})$ is the overall minimum weight *k*-point graph

$$L_{n,k}^{*} = L^{*}(\mathcal{X}_{n,k}) = \min_{i_{1},...,i_{k}} \min_{\mathbf{T}_{n,k}} \sum_{e \in \mathbf{T}_{n,k}} \|e\|^{\gamma}$$

Figure 5. *k*-*MST for 2D torus density with and without the addition of uniform "outliers".*

4. Extended BHH Thm for k-Minimal Graphs

Fix $\alpha \in [0, 1]$ and assume that the *k*-minimal graph is *tightly coverable*. If $k = \lfloor \alpha n \rfloor$, as $n \to \infty$ we have (Hero&Michel:IT99)

$$L(\mathcal{X}_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\nu} \to \beta_{L,\gamma} \min_{A:P(A) \ge \alpha} \int f^{\nu}(x|x \in A) dx \qquad (a.s.)$$

or, alternatively, with

$$H_{\nu}(f|x \in A) = \frac{1}{1-\nu} \ln \int f^{\nu}(x|x \in A) dx$$

$$L(\mathcal{X}_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\nu} \to \beta_{L,\gamma} \exp\left((1-\nu) \min_{A:P(A) \ge \alpha} H_{\nu}(f|x \in A)\right) \qquad (a.s)$$

Definition 2 (Tightly Coverable Graphs) Let Q^m , m = 1, 2, ..., be a sequence of uniform partitions of $[0, 1]^d$ of resolution 1/m. Let G be an algorithm which constructs a graph with with $k = \lfloor \alpha n \rfloor$ vertices $\mathcal{U}_{n,k} \subset \mathcal{U}_n$, an i.i.d. uniform sample over $[0, 1]^d$. Define $D_k^m = \bigcap_{\{C \in \sigma(Q^m): \mathcal{U}_{n,k} \in C\}} C$ the minimum volume set in $\sigma(\mathcal{A}^m)$ which covers $\mathcal{U}_{n,k}$. The algorithm G is said to generate tightly coverable subgraphs if for any $\epsilon > 0$ there exists an M such that for all m > M

$$\limsup_{n \to \infty} \left| \frac{\operatorname{card}(\mathcal{U}_n \cap D^m_{\lfloor \alpha n \rfloor}) - \lfloor \alpha n \rfloor}{n} \right| \le \epsilon, \quad (a.s.)$$

5. Greedy Partition Algorithm

Greedy approximation to k-minimal graph (Ravi&etal:94)

0) specify a uniform partition Q^m of $[0, 1]^d$ having m^d cells Q_i of resolution 1/m;

1) find the smallest subset $B_k^m = \bigcup_i Q_i$ of partition elements containing at least k points

2) out of $\mathcal{X}_n \cap B_k^m$ select k points $\mathcal{X}_{n,k}$ which minimize $L(\mathcal{X}_{n,k})$.

Properties:

- Greedy algorithm is polynomial time unlike exponential time exact k-minimal algorithm.
- Greedy algorithm yields tightly coverable graphs by construction

Figure 6. A sample of 75 points from the mixture density $f(x) = 0.25 f_1(x) + 0.75 f_0(x)$ where f_0 is a uniform density over $[0, 1]^2$ and f_1 is a bivariate Gaussian density with mean (1/2, 1/2) and diagonal covariance diag(0.01). A smallest subset B_k^m is the union of the two cross hatched cells shown for the case of m = 5 and k = 17.

Figure 7. Another smallest subset B_k^m containing at least k = 17 points for the mixture sample shown in Fig 6.

Minimal 1/m-Cover of Probability at least α If for any $C \in \sigma(\mathcal{Q}^m)$ satisfying $P(C) \ge \alpha$ the set $A \in \sigma(\mathcal{Q}^m)$ satisfies $P(C) \ge P(A) \ge \alpha$,

then A is called a minimal resolution-1/m set of probability at least α . The class of all such sets is denoted \mathcal{A}^m_{α} .

 \Rightarrow all sets in \mathcal{A}^m_{α} have identical coverage probabilities $p_{\mathcal{A}^m_{\alpha}} \geq \alpha$.

Theorem 2 Let \mathcal{X}_n be an i.i.d. sample from a distribution having Lebesgue density f(x). Fix $\alpha \in [0, 1]$, $\gamma \in (0, d)$. Let $f^{(d-\gamma)/d}$ be of bounded variation over $[0, 1]^d$ and denote by v(A) its total variation over a subset $A \subset [0, 1]^d$. Let L be a quasi-additive functional with power exponent γ as in Theorem 1. Then,

$$\limsup_{n \to \infty} \left| L(\mathcal{X}_{n, \lfloor \alpha n \rfloor}^{G_m}) / n^{\nu} - \beta_{L, \gamma} \min_{A: P(A) \ge \alpha} \int f^{\nu}(x|A) dx \right| \qquad < \delta, \qquad (a.s.),$$

where

$$\delta = 2m^{-d}\beta_{L,\gamma} \sum_{i=1}^{m^d} v(Q_i \cap \partial \mathcal{A}^m_\alpha) + C_3(p_{\mathcal{A}^m_\alpha} - \alpha)^{(d-\gamma)/d}$$
$$= O(m^{\gamma-d}),$$

and $p_{\mathcal{A}^m_{\alpha}}$ is the coverage probability of minimizing set $A = \mathcal{A}^m_{\alpha}$.

Main idea behind proof: for large n can index over $\mathcal{X}_{n,k} \subset \mathcal{X}_n$ by indexing over $A \subset \text{Borel}$ in $[0, 1]^d$.

$$E[\min_{\mathcal{X}_{n,\lfloor\alpha n\rfloor}} L(\mathcal{X}_{n,\lfloor\alpha n\rfloor})] \approx \inf_{A:P(A) \ge \alpha} E[L(\mathcal{X}_{n} \cap A)],$$

Proof of Theorem uses following lemmas:

Lemma 1 For given $\alpha \in [0, 1]$ and a set of n i.i.d. points $\mathcal{X}_n = [x_1, \dots, x_n]^T$ let B_n^m be the minimal cover of $\lfloor \alpha n \rfloor$ points with resolution-1/m produced by the greedy subset selection algorithm. Then

$$P\left(\liminf_{n\to\infty}\left\{\mathcal{X}_n: B_n^m \in \mathcal{A}_\alpha^m\right\}\right) = 1.$$

Lemma 2 For $\nu \in [0, 1]$ let f^{ν} be of bounded variation over $[0, 1]^d$ and denote by v(A) its total variation over any subset $A \in [0, 1]^d$. Define the resolution 1/m block density approximation $\tilde{f}(x) = \sum_{i=1}^{m^d} \theta_i I_{Q_i}(x)$ where $\theta_i = m^d \int_{Q_i} f(x) dx$. Then for any $A \in \sigma(\mathcal{Q}^m)$

$$0 \le \int_{A} [\tilde{f}^{\nu}(x) - f^{\nu}(x)] dx \le m^{-d} \sum_{i=1}^{m^{d}} v(Q_{i} \cap A).$$

Lemma 3 Assume f is of bounded total variation $v(Q_i)$ in each partition cell $Q_i \in Q^m$. Let A be any set in the class \mathcal{A}^m_{α} . Then for any quasi-additive functional $L_n(B^m_{\lfloor \alpha n \rfloor}) \stackrel{\text{def}}{=} L(\mathcal{X}_n \cap B^m_{\lfloor \alpha n \rfloor})$

$$\limsup_{n \to \infty} \left| L_n(B^m_{\lfloor \alpha n \rfloor}) / n^{(d-\gamma)/d} - \beta_{L,\gamma} \int_A f^{(d-\gamma)/d}(x) dx \right|$$

$$< 2m^{-d}\beta_{L,\gamma}\sum_{i=1}^{m^d} v(Q_i \cap \partial \mathcal{A}^m_{\alpha}), \quad (a.s).$$

Lemma 4 Let $\mathcal{X}_{n,\lfloor\alpha n\rfloor}$ be any $\lfloor\alpha n\rfloor$ points selected from $B_{\lfloor\alpha n\rfloor}^m$. Then, for any quasi-additive functional $L_n(B_{\lfloor\alpha n\rfloor}^m) \stackrel{\text{def}}{=} L_n(\mathcal{X}_n \cap B_{\lfloor\alpha n\rfloor}^m)$ $\limsup_{n \to \infty} \left| L_n(B_{\lfloor\alpha n\rfloor}^m) - L(\mathcal{X}_{n,\lfloor\alpha n\rfloor}) \right| / n^{(d-\gamma)/d}$ $< C_3(p_{\mathcal{A}_n^m} - \alpha)^{(d-\gamma)/d}, \quad (a.s.)$

where $p_{\mathcal{A}^m_{\alpha}} = P(A^m_{\alpha})$ is the coverage probability of sets A^m_{α} in \mathcal{A}^m_{α} .

Interpretations of Theorem 2:

- Bound δ is tight: $\lim_{\alpha \to 1} \delta = 0$ and theorem reduces to BHH.
- Since $\sup_{x \in Q_{(q)}} f^{(d-\gamma)/d}(x) \leq v([0,1]^d)$ and $\sum_{i=1}^{m^d} v(Q_i \cap \partial \mathcal{A}^m_{\alpha}) \leq v([0,1]^d)$,
 - δ can be upper bounded by

$$\delta \leq \left[2\beta_{L,\gamma}m^{-d} + C_3m^{\gamma-d}\right]v([0,1]^d).$$

Thus if an upper bound \overline{v} on the total variation of f is available and the tolerance ϵ is given

$$|L(\mathcal{X}_{n,\lfloor\alpha n\rfloor}^{G_m})/(\lfloor\alpha n\rfloor)^{\nu} - \beta_{L,\gamma} \exp\{-(1-\nu)R_{\nu})| < \epsilon$$

we obtain a selection rule for required partition resolution 1/m

$$1/m \le \frac{\epsilon}{(2+C_3)\overline{v}}.$$

• δ decreases to zero as a function of resolution 1/m at overall rate

 $O(m^{\gamma-d})$. Thus convergence rate in 1/m is fastest for small γ .

• Conjecture: as

 $|E[L_{MST}(\mathcal{U}_n)] - \beta_{L_{MST},\gamma} n^{(d-\gamma)/d}| = O\left(\max(1, n^{(d-\gamma-1)/d})\right)$ [Redmond&Yukich:96], rate of convergence in the limsup of Theorem 2 is at best $O(1/n^{1/d})$ and this rate can be attained only when $\gamma \leq d-1$.

- k-minimal graph entropy estimator will have fastest convergence when the Rényi order parameter ν is in the range $1/d \le \nu < 1$.
- Theorem extends easily to I-divergence limit by measure transformation.

6. Application 1: MST Discrimination

- $f(x) = (1 \epsilon)f_1(x) + \epsilon f_0(x)$: mixture density
- $f_1(x)$ is 2D separable triangle density on $[0, 1]^2$
- $f_0(x)$ is 2D uniform density on $[0,1]^2$

Figure 8. ROC curves for the Rényi information divergence test for detecting triangle-uniform mixture density $f = (1 - \epsilon)f_1 + \epsilon f_0 (H_1)$ against triangular hypothesis $f = f_1 (H_0)$. Curves are increasing in $\epsilon \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$.

7. Application II: Nonuniform Outlier Rejection

Figure 9. Left: A scatterplot of a 256 point sample from triangleuniform mixture density with $\epsilon = 0.1$. Labels 'o' and '*' mark those realizations from the uniform and triangular densities, respectively. Right: superimposed is the k-MST implemented directly on the scatterplot \mathcal{X}_n with k = 230.

Figure 10. Left: A sample from triangle-uniform mixture density with $\epsilon = 0.9$ in the transformed domain \mathcal{Y}_n . Labels 'o' and '*' mark those realizations from the uniform and triangular densities, respectively. Right: transformed coordinates.

Figure 11. Left: the k-MST implemented on the transformed scatterplot \mathcal{Y}_n with k = 230. Right: same k-MST displayed in the original data domain.