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Abstract

We determine the optimum training strategy for a multiple-antenna wireless link in a
Rician fading channel using a training based lower bound on capacity. We consider the stan-
dard Rician block fading channel where the channel coefficients are modeled as independent
circular Gaussian random variables with non-zero means (the specular component). The
specular component is known to both the transmitter and receiver. The channel coefficients
of this model are constant over a block of T symbol periods but, independent over different
blocks. For such a model, it is shown that the training based capacity, the optimum training
signals, the training period, transmit and training energy are dependent on the Rician factor
r along with SNR ρ, the number of transmit antennas M , the number of receive antennas
N and the coherence interval T . Also, unlike in the case of Rayleigh fading channels, it can
be shown using the lower bound for Rician fading channels that for low SNR Rician fading
channels behave like a purely AWGN channel and the optimum strategy is to spend no effort
in learning the channel. When SNR is not low and training is required then the optimum
training period is equal to the number of transmit antennas.
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1 Introduction

Deploying multiple antennas at the transmitter and receiver has been demonstrated to be a

viable solution to the demand for high data rate in wireless communications [5, 6, 13, 16, 19].

A straightforward way for the transmitter and the receiver to transmit data would be for the

receiver to first learn the channel and then use the channel estimate to decode the transmitted

symbols. Such training methods are prevalent in wireless communication systems like IS-95

CDMA and GSM and have been investigated in [10, 12, 18, 19].

It is important to know whether training based signal schemes are practical and if they are

how much time can be spent in learning the channel and what the optimal training signal is

like. Hassibi and Hochwald [10] have addressed these issues for the popular case of Rayleigh

block fading channels. They used a capacity lower bound based on MMSE channel estimate

to find the optimum training strategy by maximizing the lower bound. They showed that 1)

pilot symbol training based communication schemes are highly suboptimal for low SNR and

practically optimal for high SNR; 2) when practical the optimal amount of time devoted, in

terms of symbol intervals, to training is equal to the number of transmitters, M when the

fraction of power devoted to training is allowed to vary and 3)the orthonormal signal is the

optimal signal for training.

In [18], the authors investigated the same problem for a more general fading model and

a more general training strategy using a generalized mutual information lower bound based

on Gaussian codebooks with modified nearest neighbor decoding. Also, unlike in [10], they

relaxed the assumption of identity transmit signal covariance matrix and included the co-

variance matrix to be one of the parameters to be optimized. The authors showed that for

the special case of piecewise block fading channels with Gaussian fading and additive Gaus-

sian noise the training based scheme as in [10] with minimum mean-squared error channel

estimator is optimal in the sense that it maximizes the generalized mutual information lower

bound. They showed that for low SNR the transmit signal covariance matrix has only one

non-zero eigenvalue. For high SNR, the results agree with the assumption on transmit signal

covariance matrix made in [10]. In this case, as expected, for Rayleigh block fading the

optimal lower bound based on generalized mutual information is equal to the lower bound
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derived in [10].

However, Rayleigh fading models are not sufficient to describe many channels found in

the real world. It is important to consider other models and investigate their performance

as well. Rician fading is one such model [1, 3, 4, 14, 15]. Rician fading model is applicable

when the wireless link between the transmitter and the receiver has a direct path component

in addition to the diffused Rayleigh component.

In this paper, we investigate how much training is necessary for a wireless link operating

in a Rician fading channel under the average energy constraint on the input signal. We

use the standard Rician fading channel throughout the paper, that is, we assume that the

specular component is deterministic, of general rank and known to both the transmitter and

the receiver. The Rayleigh component is never known to the transmitter. The capacity

when the receiver has complete knowledge about the channel will be referred to as coherent

capacity and the capacity when the receiver has no knowledge about the Rayleigh component

will be referred to as non-coherent capacity.

Keeping in mind the results obtained in [18], we use the same training signal based

approach as that of [10]. However, we relax the assumption of identity transmit signal

covariance matrix and we leave the matrix to be one of the parameters to be optimized. We

draw similar conclusions about training for non-coherent communications as in [10] with one

big difference in the regime of low SNR. For Rayleigh fading channels the optimum training

period is not zero for all values of SNR. However, for Rician fading channels there exists a

threshold dependent on the Rician factor r such that for all SNRs below the threshold the

optimum strategy is to have no training at all. An interesting find regarding the optimal

transmit strategy, in this paper, is that the optimum strategy for low SNR is to concentrate

all the available energy in the direction of strongest specular component whereas for high

SNR it is to spread the energy equally in all directions. Note that this finding, for high SNR,

is the same as that of [18] and [10] because the transmit signal covariance matrix in this region

is an identity matrix. However, for low SNR eventhough the optimum transmit covariance

matrix consists of a single non-zero eigenvalue as in [18] the eigenvector corresponding to

this eigenvalue can not be arbitrary. The eigenvector should point in the same direction as

the strongest specular component.

3



The training based lower bound derived in [10] and adapted here for Rician fading chan-

nels is suboptimal for low SNR as the capacity for low SNR for block fading channels is a

linear function of SNR [17]. The training based lower bound for Rayleigh fading channels

turns out to be a quadratic function of SNR [10]. From this paper we find that for Rician

fading channels it is a linear function of SNR. However, the bound is still suboptimal since

the constant multiplying SNR in the capacity expression is purely a function of the specular

component instead of the whole channel. That is, if ρ denotes SNR, λmax(A) the largest

eigenvalue of matrix A, H the Rician fading channel and Hm the specular component of H

then for low SNR the capacity of block fading Rician channel behaves as ρλmax(E[HH†]) [8]

whereas the training based lower bound on capacity of block fading Rician channel behaves

as ρλmax(E[HmH†
m]) = ρλmax(HmH†

m). For high SNRs and large coherent periods, the ratio

of the training bound and the actual capacity tends to one and indicates that training based

schemes can achieve rates close to capacity.

This paper is organized as follows. First, in Section 2 the model used in the paper is

established and a simple training based lower bound is discussed. Then in Section 3, a more

general training based lower bound on capacity is established and its optimization is per-

formed over various parameters (choosing the parameters that maximize the lower bound).

More precisely, in Sub-section 3.1, optimization is performed for training over the transmit-

ting signal, energy distribution and the training period. This is followed by optimization

over the same parameters under the constraint of equal training and transmit signal powers

in Sub-section 3.2. Additional insights into the optimization problem are obtained from nu-

merical simulation in Section 4. Then in Section 5, optimization is performed in the regimes

of low and high SNR followed finally by Section 6 in which the results of this paper are

summarized.
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2 Signal Model and A Simple Training Based Lower

Bound

We adopt the following model, which is the same as the one used in [8], for the Rician fading

channel:

X = SH + W (2.1)

where X is the T × N matrix of received signals, H is the M × N matrix of propagation

coefficients, S is the T ×M matrix of transmitted signals, W is the T ×N matrix of additive

noise components. Note that T denotes the coherence interval, M denotes the number of

transmit antennas and N the number of receive antennas. The Rician fading channel H is

defined as

H =
√

rHm +
√

1 − rG

where Hm is the deterministic specular component of H and G denotes the Rayleigh compo-

nent. G and W consist of Gaussian circular independent random variables and the covariance

matrices of G and W are given by IMN and σ2ITN , respectively. Hm is a deterministic matrix

satisfying tr{HmH†
m} = MN . G satisfies E[tr{GG†}] = MN and r is the Rician parameter

between 0 and 1 so that E[tr{HH†}] = MN . We assume that both the transmitter and re-

ceiver have complete knowledge of the probability density function of H. This means that Hm

is known to both the transmitter and receiver. We also assume that communication is taking

place under the average energy constraint on the input signal given by E[tr{SS†}] ≤ MT .

The SNR of the channel, given by the ratio of the energy of the elements of SH to the energy

of the elements of W , is therefore ρ = M
σ2 when the constraint is satisfied with equality.

2.1 A Simple Training Based Lower Bound

In [19] the authors demonstrated a very simple training method that achieves the optimal rate

of increase with SNR. The same training method can also be easily applied to the Rician

fading model with deterministic specular component. The training signal is the M × M

diagonal matrix dIM . d is chosen such that the same power is used in the training and

the communication phase. Therefore, d =
√

M . Using S = dIM , the output of the MIMO
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channel in the training phase is given by

X =
√

M
√

rHm +
√

M
√

1 − rG + W.

The Rayleigh channel coefficients G can be estimated independently using scalar minimum

mean squared error (MMSE) estimates since the elements of W and G are i.i.d. Gaussian

random variables

Ĝ =

√
1 − r

√
M

(1 − r)M + σ2
[X −

√
M

√
rHm],

where we recall that σ2 is the variance of the components of W . The elements of the estimate

Ĝ are i.i.d. Gaussian with variance (1−r)M
(1−r)M+σ2 . Similarly, the estimation error matrix G− Ĝ

has i.i.d Gaussian distributed elements with zero mean and variance σ2

(1−r)M+σ2 .

The output of the channel in the communication phase is given by

X = SH + W

=
√

rSHm +
√

1 − rSĜ +
√

1 − rS(G − Ĝ) + W,

where S consists of zero mean i.i.d circular Gaussian random variables with zero mean and

unit variance. This choice of S is sub-optimal as this might not be the capacity achieving

signal, but this choice gives us a lower bound on capacity. Let Ŵ =
√

1 − rS(G − Ĝ) + W .

For the choice of S given above the entries of Ŵ are uncorrelated with each other and also

with S(
√

rHm +
√

1 − rĜ). The variance of each of the entries of Ŵ is given by σ2 + (1 −
r)M σ2

(1−r)M+σ2 . If Ŵ is replaced with a white Gaussian noise with the same covariance matrix

then the resulting mutual information is a lower bound on the actual mutual information [2,

p. 263], [10, Theorem 1]. In this section we deal with normalized capacity C/T instead of

capacity C. The lower bound on the normalized capacity is given by

C/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1H

†
1

)
(2.2)

where Tt is number of symbol intervals devoted to training and ρeff in the expression above is

the effective SNR at the output (explained at the end of this paragraph), and H1 is a Rician

channel with a new Rician parameter reff where reff = r

r+(1−r)
(1−r)M

(1−r)M+σ2

. Note that reff > r

in the effective channel because part of the energy from the unknown Rayleigh component

has been diverted to the additive noise in the new effective channel model. This lower bound
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can be easily calculated because the lower bound is essentially the coherent capacity with

H replaced by
√

reffHm +
√

1 − reff Ĝ. The signal covariance structure was chosen to be

an identity matrix as this is the optimum covariance matrix for high SNR (refer to Result 2

in the following section). The effective SNR is now given by the ratio of the energy of the

elements of S(
√

rHm +
√

1 − rĜ) to the energy of the elements of Ŵ . The energy in the

elements of S(
√

rHm +
√

1 − rĜ) is given by M(r + (1 − r)2 M
(1−r)M+σ2 ) and the energy in

the elements of Ŵ are given by σ2 + (1−r)Mσ2

(1−r)M+σ2 . Therefore, the effective SNR, ρeff is given

by ρ[r+r(1−r)ρ+(1−r)2ρ]
[1+2(1−r)ρ]

where ρ = M
σ2 is the actual SNR. Note, for r = 1 no training is required

since the channel is completely known.

This simple scheme achieves the optimum increase of capacity with SNR and uses only

M of the T symbols for training. The performance of this scheme is plotted with respect

to different SNR values for comparison with the following asymptotic upper bound on non-

coherent capacity as ρ → ∞ [8]

C ≤ log |G(T, M)| + (T − M)E[log det H†H] + M(T − M) log
Tρ

Mπe
− (2.3)

M2 log(1 − r).

where |G(T, M)| is the volume of the Grassmann manifold [19] and is equal to

∏T
i=T−M+1

2πi

(i−1)!∏M
i=1

2πi

(i−1)!

.

As can be seen the lower bound and the asymptotic upper bound agree well with each other

for large SNR values. The plots are for M = N = 5, r = 0.9 and T = 50 in Figure 1. The

specular component is a rank-one specular component given by

Hm =




1
0
...
0


 [1 0 . . . 0].

3 Training Based Lower Bound and Optimization

In this section, instead of fixing the training signal and the amount of training as done in the

previous section we optimize over these parameters using the techniques in [10]. In [10], the
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authors use the optimization of the lower bound on capacity to find the optimal allocation

of training as compared to communication. Let Tt denote the amount of time, in terms of

number of symbol intervals, devoted to training and Tc the amount of time devoted to actual

communication. Let St be the Tt ×M signal used for training and Sc the Tc ×M signal used

for communication.

Let the “energy allocation factor” κ denote the fraction of the energy used for commu-

nication. Then T = Tt + Tc and tr{StS
†
t } = (1 − κ)TM and tr{ScS

†
c} = κTM .

Xt = St(
√

rHm +
√

1 − rG) + Wt

Xc = Sc(
√

rHm +
√

1 − rG) + Wc

where Xt is Tt × N and Xc is Tc × N . G is estimated from the training phase. For that

we need Tt ≥ M . Since G and Wt are Gaussian the MMSE estimate of G is also the linear

MMSE estimate conditioned on S. The optimal estimate is given by

Ĝ =
√

1 − r(σ2IM + (1 − r)S†
t St)

−1S†
t (Xt −

√
rStHm).

Let Ḡ = G − Ĝ then

Xc = Sc(
√

rHm +
√

1 − rĜ) +
√

1 − rScḠ + Wc.

Let Ŵc =
√

1 − rStḠ + W . Note that elements of Ŵc are uncorrelated with each other and

have the same marginal densities when the elements of Sc are chosen to be i.i.d Gaussian. If

we replace Ŵc with Gaussian noise that is zero-mean and spatially and temporally indepen-

dent the elements of which have the same variance as the elements of Ŵc then the resulting

mutual information is a lower bound to the actual mutual information in the above channel

[10, Theorem 1]. The variance of the elements of Ŵc is given by

σ2
wc

= σ2 +
1 − r

NTc

tr{E[ḠḠ†]κTIM} (3.1)

= σ2 +
(1 − r)κTM

Tc

1

NM
tr{E[ḠḠ†]}

= σ2 +
(1 − r)κTM

Tc

σ2
Ḡ

and the lower bound is

Ct/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
, (3.2)

8



where the “post training SNR” ρeff , is the ratio of the energies in the elements of ScĤ and

energies in the elements of Ŵc and H1 =
√

reffHm +
√

1 − reff Ĝ where reff = r
r+(1−r)σ2

Ĝ

.

Λ is the optimum signal covariance matrix the structure of which is determined from the

following results obtained from [8].

Result 1 [8, Proposition 1] Let H be Rician (2.1) and let the receiver have complete knowl-

edge of the Rayleigh component G. For low SNR, the coherent capacity CH , is attained by

the same signal covariance matrix that attains capacity when r = 1 and

CH = Tρ[rλmax(HmH†
m) + (1 − r)N ] + O(ρ2).

Result 2 [8, Theorem 2] Let H be Rician (2.1) then as ρ → ∞, the coherent capacity CH ,

is attained by an identity signal covariance matrix and

CH

T · E log det[ ρ
M

HH†]
→ 1.

Thefore, For low SNR, Λ has only one non-zero eigenvalue such that all energy is concentrated

in the direction of the largest eigenvalue of Hm and for high SNR Λ is an identity matrix.

To calculate ρeff , the energy in the elements of SĤ is given by

σ2
SH =

1

NTc

[rtr{HmH†
mκTIM} + (1 − r)tr{ĜĜ†κTIM}]

=
κTM

Tc

1

NM
[rNM + (1 − r)tr{ĜĜ†}]

=
κTM

Tc

[r + (1 − r)σ2
Ĝ
],

which gives us

ρeff =
κTρ[r + (1 − r)σ2

Ĝ
]

Tc + (1 − r)κTρσ2
Ḡ

. (3.3)

3.1 Optimization of St, κ and Tt

We will optimize St, κ and Tt to maximize the lower bound (3.2).

Optimization of the lower bound over St is difficult as St effects the distribution of Ĥ,

the form of Λ as well as ρeff . To make the problem simpler we will just find the value of St

that maximizes ρeff .
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Proposition 1 The signal St that maximizes ρeff satisfies the following condition

S†
t St = (1 − κ)TIM (3.4)

and the corresponding ρeff is

ρ∗
eff =

κTρ[Mr + ρ(1 − r)(1 − κ)T ]

Tc(M + ρ(1 − r)(1 − κ)T ) + (1 − r)κTρM
. (3.5)

Proof: First we note that σ2
Ĝ

= 1 − σ2
Ḡ. This means that

ρeff =
κTρ + Tc

(1 − r)κTρσ2
Ḡ

+ Tc

− 1. (3.6)

Therefore, to maximize ρeff we just need to minimize σ2
Ḡ. Now,

σ2
Ḡ =

1

NM
tr{E[vec(Ḡ)vec(Ḡ)†]}

where vec(Ḡ) is a column vector obtained by stacking the columns of Ḡ one on top of the

other. Therefore,

E[vec(Ḡ)vec(Ḡ)†] = (IM + (1 − r)
ρ

M
S†

t St)
−1 ⊗ IN

where ρ = M
σ2 . Therefore, the problem is the following

min
St:tr{S†

t St}≤(1−κ)TM

1

M
tr{
(
IM + (1 − r)

ρ

M
S†

t St

)−1

}.

The problem above can be restated as

min
λ1,...,λM :

∑
λm≤(1−κ)TM

1

M

M∑
m=1

1

1 + (1 − r) ρ
M

λm

(3.7)

where λm, m = 1, . . . , M are the eigenvalues of S†
t St. The solution to the above problem is

λ1 = . . . = λM = (1 − κ)T . Therefore, the optimum St satisfies S†
t St = (1 − κ)TIM .

This gives σ2
Ḡ = 1

1+(1−r) ρ
M

(1−κ)T
. Also, for this choice of St we obtain the elements of Ĝ

to be zero mean independent with Gaussian distribution. This gives

ρeff =
κTρ[Mr + ρ(1 − r)(1 − κ)T ]

Tc(M + ρ(1 − r)(1 − κ)T ) + (1 − r)κTρM
. (3.8)

�
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The optimum signal derived above is the same as the optimum signal derived in [10].

The corresponding capacity lower bound using the St obtained above is

Ct/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
, (3.9)

where ρeff is as given above and H1 =
√

reffHm +
√

1 − reffG where reff = r
1+(1−r)(1−κ) ρ

M
T

r+(1−r)(1−κ) ρ
M

T

and as before G is a matrix consisting of i.i.d. Gaussian circular random variables with mean

zero and unit variance. Now, Λ is the covariance matrix of the source Sc when the channel

is Rician and known to the receiver. Therefore from Results 1 and 2, Λ is an identity matrix

for ρeff → ∞ and is a diagonal matrix with only one non-zero diagonal element for ρeff → 0.

Optimization of (3.2) over the energy allocation factor κ, is straightforward as κ affects

the lower bound only through the post training SNR ρeff , and can be stated as the following

proposition.

Proposition 2 For given Tt and Tc the optimal power allocation κ in a training based scheme

is given by

κ =




min{γ −
√

γ(γ − 1 − η), 1} for Tc > (1 − r)M

min{1
2

+ rM
2Tρ

, 1} for Tc = (1 − r)M

min{γ +
√

γ(γ − 1 − η), 1} for Tc < (1 − r)M

(3.10)

where γ = MTc+TρTc

Tρ[Tc−(1−r)M ]
and η = rM

Tρ
. The corresponding lower bound is given by

Ct/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
(3.11)

where for Tc > (1 − r)M

ρeff =




Tρ
Tc−(1−r)M

(
√

γ −√
γ − 1 − η)2 when κ = γ −

√
γ(γ − 1 − η)

rρ
1+(1−r)ρ

when κ = 1
(3.12)

for Tc = (1 − r)M

ρeff =




T 2ρ2

4(1−r)M(M+Tρ)
(1 + rM

Tρ
)2 when κ = 1

2
+ rM

2Tρ
rTρ

(1−r)(M+Tρ)
when κ = 1

(3.13)

and for Tc < (1 − r)M

ρeff =




Tρ
(1−r)M−Tc

(
√−γ −√−γ + 1 + η)2 when κ = γ +

√
γ(γ − 1 − η)

rρ
1+(1−r)ρ

when κ = 1
(3.14)
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and reff is given by substituting the appropriate value of κ in the expression

r
1 + (1 − r)(1 − κ) ρ

M
T

r + (1 − r)(1 − κ) ρ
M

T
.

Proof: First, from Proposition 1

ρeff =
κTρ[Mr + ρ(1 − κ)T ]

Tc(M + ρ(1 − κ)T ) + (1 − r)κTρM

=
Tρ

Tc − (1 − r)M

(1 − κ)κ + κ rM
Tρ

MTc+TρTc

Tρ[Tc−(1−r)M ]
− κ

Tc �= (1 − r)M

=
T 2ρ2

Tc(M + Tρ)
[(1 − κ)κ + κ

rM

Tρ
] Tc = (1 − r)M.

Consider the following three cases for the maximization of ρeff over 0 ≤ κ ≤ 1.

Case 1. Tc = (1 − r)M :

We need to maximize (1−κ)κ+κ rM
Tρ

over 0 ≤ κ < 1. The maximum occurs at κ = κ0 =

min{1
2

+ rM
2Tρ

, 1}. In this case

ρeff =
T 2ρ2

(1 − r)M(M + Tρ)
[κ0

rM

Tρ
+ κ0(1 − κ0)]. (3.15)

Case 2. Tc > (1 − r)M :

In this case,

ρeff =
Tρ

Tc − (1 − r)M

(1 − κ)κ + κη

γ − κ
(3.16)

where η = rM
Tρ

and γ = MTc+TρTc

Tρ[Tc−(1−r)M ]
> 1. We need to maximize (1−κ)κ+κη

γ−κ
over 0 ≤ κ ≤ 1

which occurs at κ = min{γ −√
γ2 − γ − ηγ, 1}. Therefore,

ρeff =
Tρ

Tc − (1 − r)M
(
√

γ −
√

γ − 1 − η)2 (3.17)

when κ < 1. When κ = 1 we obtain Tc = T . Substituting κ = 1 in the expression for ρeff

ρeff =
κTρ[Mr + ρ(1 − κ)T ]

Tc(M + ρ(1 − κ)T ) + (1 − r)κTρM
(3.18)

we obtain ρeff = rTρ
T+(1−r)Tρ

.
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Case 3. Tc < (1 − r)M :

In this case,

ρeff =
Tρ

(1 − r)M − Tc

(1 − κ)κ + κη

κ − γ
(3.19)

where γ = MTc+TρTc

Tρ[Tc−(1−r)M ]
< 0. Maximizing (1−κ)κ+κη

γ−κ
over 0 ≤ κ ≤ 1 we obtain κ = min{γ +

√
γ2 − γ − γη, 1}. Therefore, when κ < 1

ρeff =
Tρ

Tc − (1 − r)M
(
√−γ −

√
−γ + 1 + η)2 (3.20)

Similar to the case Tc < (1 − r)M , when κ = 1 we obtain Tc = T and ρeff = rTρ
T+(1−r)Tρ

. �

We see from Proposition 2 that for ρ < rM
T

the optimal setting for κ is κ = 1. That

is, rM
T

is the threshold such that for all SNRs below it the optimal strategy is to have no

training at all. Note that eventhough the threshold increases with r it is not tight as can be

gauged from the case r = 1. For r = 1, the threshold should actually be ∞ as it is obvious

that κ = 1 for all ρ whereas the threshold turns out to be only M
T

.

For optimization over Tt we draw similar conclusions as in [10]. In [10] the optimal

setting for Tt was shown to be Tt = M for all values of SNR. However, in this paper for

ρ < rM
T

the optimal setting is Tt = 0. The argument follows from the fact that for these

values of ρ we have κ = 1 i.e., all energy is allocated to communications. It is clear that

optimization of Tt makes sense only when κ is strictly less than 1. When κ = 1 no power is

devoted to training and Tt can be made as small as possible which is zero. When training is

required, the intuition is that increasing Tt linearly decreases the capacity through the term

(T −Tt)/T , but only logarithmically increases the capacity through the higher effective SNR

ρeff [10]. Therefore, it makes sense to make Tt as small as possible. Therefore, when κ < 1

the smallest value Tt can be is M since it takes at least that many intervals to completely

determine the unknowns.

Proposition 3 The optimal length of the training interval is Tt = M whenever κ < 1 for

all values of ρ and T > M , and the capacity lower bound is

Ct/T ≥ T − M

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
(3.21)
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where

ρeff =




Tρ
T−(2−r)M

(
√

γ −√
γ − 1 − η)2 for T > (2 − r)M

T 2ρ2

4(1−r)M(M+Tρ)
(1 + rM

Tρ
)2 for T = (2 − r)M

Tρ
T−(2−r)M

(
√−γ −√−γ + 1 + η)2 for T < (2 − r)M

The optimal power allocations are easily obtained from Proposition 2 by simply setting Tc =

T − M .

Proof: Note that optimization over Tc makes sense only when κ < 1. If κ = 1 then Tc

obviously has to be set equal to T . First, we examine the case Tc > (1 − r)M . The other

two cases are similar. Let Q = min{M, N} and let λi denote the ith non-zero eigenvalue of
H1H†

1

M
, i = 1, . . . , Q. Then we have

Ct ≥
Q∑

i=1

Tc

T
E log(1 + ρeffλi).

Let Cl denote the RHS in the expression above. The idea is to maximize Cl as a function of

Tc. We have

dCl

dTc

=
Q∑

i=1

{
1

T
E log(1 + ρeffλi) +

Tc

T

dρeff

dTc

E

[
λi

1 + ρeffλi

]}
. (3.22)

Now, ρeff for Tc > (1 − r)M is given by

ρeff =
Tρ

Tc − (1 − r)M
(
√

γ −
√

γ − 1 − η)2

where γ = MTc+TρTc

Tρ[Tc−(1−r)M ]
and η = rM

Tρ
. It can be easily verified that

dρeff

dTc

=
Tρ(

√
γ −√

γ − 1 − η)2

[Tc − (1 − r)M ]2



√√√√(1 − r)M(M + Tρ)

Tc(Tc + Tρ + rM)
− 1


 .

Therefore,

dCl

dTc

=
1

T

Q∑
i=1

E

[
log(1 + ρeffλi) − (3.23)

ρeffλi

1 + ρeffλi

Tc

Tc − (1 − r)M


1 −

√√√√(1 − r)M(M + Tρ)

Tc(Tc + Tρ + rM)


 ].

Since, Tc

Tc−(1−r)M

[
1 −

√
(1−r)M(M+Tρ)
Tc(Tc+Tρ+rM)

]
< 1 and log(1 + x) − x/(1 + x) ≥ 0 for all x ≥ 0 we

have dCl

dTc
> 0. Therefore, we need to increase Tc as much as possible to maximize Cl or

Tc = T − M . �
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3.2 Equal training and data power

As stated in [10], sometimes it is difficult for the transmitter to assign different powers

for training and communication phases. In this section, we will concentrate on setting the

training and communication powers equal to each other in the following sense

(1 − κ)T

Tt

=
κT

Tc

=
κT

T − Tt

= 1

this means κ = 1 − Tt/T and that the power transmitted in Tt and Tc are equal.

In this case,

ρeff =
ρ[r + ρ Tt

M
]

1 + ρ[ Tt

M
+ (1 − r)]

and the capacity lower bound is

Ct/T ≥ T − Tt

T
E log det(IM +

ρeff

M
H1ΛH†

1) (3.24)

where ρeff is as given above and H1 =
√

reffHm +
√

1 − reffG where reff = r
1+(1−r) ρ

M
Tt

r+(1−r) ρ
M

Tt
.

We can derive the optimum training period using the same procedure as in the proof of

Proposition 3. Consider the following

dCl

dTc

=
Q∑

i=1

{
1

T
E log(1 + ρeffλi) +

Tc

T

dρeff

dTc

E

[
λi

1 + ρeffλi

]}
. (3.25)

However, since

ρeff =
ρ
(
r + ρT−Tc

M

)
1 + ρ

[
T−Tc

M
+ (1 − r)

]
we have

dρeff

dTc

= −
ρ2

M
(1 − r)(1 + ρ)[

1 + ρ
(

T−Tc

M
+ (1 − r)

)]2 . (3.26)

Therefore,

dCl

dTc

=
1

T

Q∑
i=1

E

[
log(1 + ρeffλi) − (3.27)

ρeffλi

1 + ρeffλi

(1 + ρ) ρ
M

(1 − r)(
r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M
+ (1 − r)

)]
]
.
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Note that for large ρ,

(1 + ρ) ρ
M

(1 − r)(
r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M
+ (1 − r)

)] < 1 (3.28)

if T − Tc ≥ M . This means that dCl

dTc
> 0 and Cl is maximized by choosing Tc = M . And if

ρ is made small enough,

(1 + ρ) ρ
M

(1 − r)(
r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M
+ (1 − r)

)] < 1 (3.29)

even for Tc = T . Therefore, for low SNR Cl is maximimized by choosing Tc = T .

In this section we have seen that the optimum training period for low SNR is zero. This

can be contrasted against the result for Rayleigh fading channels [10] where the optimum

training period is equal to T/2 for small ρ. But for large ρ the optimum training period here

is M like in [10].

4 Numerical Comparisons

Throughout the section we have chosen the number of transmit antennas M, and receive

antennas N, to be equal and Hm = IM .

The Figures 2 and 3 show reff and κ respectively as a function of r for different values

of SNR. The plots have been calculated for a block length given by T = 40 and the number

of transmit and receive antennas given by M = N = 5. Figure 2 shows that for low SNR

values the channel behaves like a purely AWGN channel given by
√

rHm and for high SNR

values the channel behaves exactly like the original Rician fading channel. Figure 3 shows

that as the SNR goes to zero less and less power is allocated for training. This agrees with

the plot in Figure 2.

In Figure 4 we plot the training and communication powers as a function of block length

T for a fixed Tt = M , given by (1−κ)ρT
Tt

and κρT
Tc

respectively, for M = N = 10 and ρ = 18dB

for different values of r. The dependence of the powers on T is essentially driven by the

dependence of κ on Tc as derived in Proposition 2. Therefore, the minimum for the amount

of power devoted to training occurs at T = Tt +Tc = M +(1− r)M = (2− r)M . We plotted

16



the graph this way to demonstrate the effect of r in the behavior of Rician channels which

is not present in Rayleigh channels as shown in Figure 4 of [10]. We see that as r goes to

1 less and less power is allocated to the training phase. This makes sense because as the

proportion of signal energy transmitted through the specular component increases there is

a lesser need for the system to estimate the unknown Rayleigh component.

Figure 5 shows capacity as a function of the number of transmit antennas for a fixed

block length T = 40 when ρ = 0dB and N = 40. We can easily calculate the optimum

number of transmit antennas from the figure. In this case, we see that for a fixed T the

optimum number of transmit antennas increases as r increases. This shows that as r goes to

1, for a fixed T , we can get away with having larger number of uncertainties in the channel.

In other words, fewer resources can be devoted to estimate the unknown Rayleigh part of

the channel because as pointed out in the previous paragraph in regards to Figure 4 there

is less need to estimate the unknown Rayleigh part.

5 Optimization in the low SNR and high SNR regimes

Let’s consider the effect of low SNR on the optimization of κ when r �= 0. For Tc > (1−r)M ,

as ρ → 0 it is easy to see that γ −
√

γ(γ − 1 − η) → ∞. Therefore, we conclude that for

small ρ we have κ = 1. Similarly, for Tc = (1 − r)M and Tc < (1 − r)M . Therefore, the

lower bound tells us that no energy need be spent on training for small ρ. Also, the form of

Λ is that of a diagonal matrix with only one non-zero diagonal element.

Evaluating the case where the training and transmission powers are equal we come to a

similar conclusion. For small ρ, ρeff ≈ rρ which is independent of Tt. Therefore, the best

value of Tt is Tt = 0. Which also means that we spend absolutely no time on training. This

is in stark contrast to the case when r = 0. In this case, for low SNR Tt = T/2 [10] and ρeff

behaves as O(ρ2).

Note that in both cases of equal and unequal power distribution between training and

communication phases the signal distribution during data transmission phase is Gaussian.

Therefore, the lower bound behaves as rρλmax{HmH†
m}. Also, reff = 1 for small ρ showing

that the channel behaves as a purely Gaussian channel.
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These conclusions mimic those of Proposition 3 in Section 3.1 of [8] for non-coherent

capacity results with Gaussian input. The low SNR non-coherent capacity results in Section

3.1 of [8] for the case of a Gaussian input signal tell us that the capacity behaves as rρλmax

for Rician fading and behaves as ρ2 for Rayleigh fading which is what the lower bound results

in [10] also show. We would expect the general behavior of the results obtained here to agree

with those of [8] as both sets of results are obtained under the same assumption of Gaussian

probability distribution on the input signal.

Next consider the case of high SNR. Now, γ becomes Tc

Tc−(1−r)M
and the optimal power

allocation κ becomes

κ =

√
Tc√

Tc +
√

(1 − r)M
(5.1)

and

ρeff =
T

(
√

Tc +
√

(1 − r)M)2
ρ. (5.2)

In the case of equal training and transmit powers, we have for high ρ

ρeff = ρ
Tt

Tt + M(1 − r)
. (5.3)

For high SNR, the channel behaves as if it is completely known to the receiver. Note that

in this case reff = r and Λ is an identity matrix for the case M ≤ N . From the expressions

for ρeff given above we conclude that unlike the case of low SNR the value of r does affect

the amount of time and power devoted for training.

Next consider the capacity lower bound for high SNR. The optimizing signal covariance

matrix Λ, in this regime is an identity matrix. We know that at high SNR the optimal

training period is M . Therefore, the resulting lower bound is given by

Ct/T ≥ T − M

T
E log det


IM +

ρ(√
1 − M

T
+
√

(1−r)M
T

)2

HH†

M


 . (5.4)

Note that the lower bound has H appearing in it instead of H1. That is so because for high

SNR, reff = r. This lower bound can be optimized over the number of transmit antennas
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used in which case the lower bound can be rewritten as

Ct/T ≥ max
M ′≤M

max

n≤
(

M
M ′

) T − M ′

T
E log det


IM ′ +

ρ(√
1 − M ′

T
+
√

(1−r)M ′
T

)2

HnHn†

M ′


 , (5.5)

where now Hn is the nth matrix out of a possible M choose M ′ (the number of ways to

choose M ′ transmit elements out of a maximum M elements) matrices of size M ′ × N . Let

Q = min{M ′, N} and λn
i be an arbitrary nonzero eigenvalue of 1(√

1−M′
T

+

√
(1−r)M′

T

)2
HnHn†

M ′

then we have

Ct/T ≥ max
M ′≤M

max

n≤
(

M
M ′

)
(

1 − M ′

T

) Q∑
i=1

E log(1 + ρλn
i ). (5.6)

At high SNR, the leading term involving ρ in
∑Q

i=1 E log(1 + ρλi) is Q log ρ which is inde-

pendent of n. Therefore,

Ct/T ≥ max
M ′≤M

{
(1 − M ′

T
)M ′ log ρ ifM ′ ≤ N

(1 − M ′
T

)N log ρ ifM > N.
(5.7)

The expression (1 − M ′
T

)M ′, is maximized by choosing M ′ = T/2 when min{M, N} ≥ T/2

and by choosing M ′ = min{M, N} when min{M, N} ≤ T/2. This means that the expression

is maximized when M ′ = min{M, N, T/2}. This is a similar conclusion drawn in [10] and

[19]. Also, the leading term in ρ for high SNR in the lower bound is given by

Ct/T ≥ (1 − K

T
)K log ρ (5.8)

where K = min{M, N, T/2}. This result suggests that the number of degrees of freedom

available for communication is limited by the minimum of the number of transmit antennas,

receive antennas and half the length of the coherence interval. Moreover, the results obtained

in Section 3.4 of [8] for the case when M ≤ N and large T show that the asymptotic capacity

behaves as M(T −M) log ρ from which we see that the lower bound is tight in the sense that

the leading term involving ρ in the lower bound is the same as the one in the expression for

capacity.
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6 Conclusions and Future Work

In this paper, we investigated the utility of training based communication schemes in non-

coherent communications over Rician fading channels. The findings in this paper can be

compared with the findings on Rayleigh fading channels from [18] and [10]. The similarities

and differences are summarized below:

• Our study showed that for Rician fading channels, similar to Rayleigh fading, at low

SNR training based schemes are suboptimal whereas for high SNRs training can attain

capacity.

• For high SNR and large coherence interval Rayleigh and Rician channels behave in a

similar manner both in terms of the parameters maximizing the training based lower

bound and the lower bound itself. This means that the number of degrees of freedom

of a training based scheme over a Rician fading channel (Section 5) is the same as that

of a Rayleigh fading channel which is min{M, N, T/2} [19, 10].

• The differences between Rayleigh fading and Rician fading show up at low SNR. For

low SNR from the analysis itself we conclude that for Rician fading channels no time

or energy should be spent in training the receiver to learn the channel. More precisely,

for Rician fading channels there exists a threshold that is an increasing function of the

Rician factor r such that for all SNRs below the threshold the best strategy is not to

spend any effort in learning the channel.

• Another difference between Rayleigh and Rician fading channels is that the lower bound

on training based capacity for Rayleigh fading channels is a quadratic function of SNR

whereas for Rician fading it is a linear function. This linear function of SNR is still

suboptimal except when r = 1 at which point the Rician fading channel is simply an

AWGN channel.

• Finally, there exists a difference between Rician and Rayleigh fading in the optimum

transmit signal covariance matrix structure for low SNR. Eventhough, for low SNR the

optimum transmit signal covariance matrix consists of a single non-zero eigenvalue in

both cases; for the case of Rician fading the eigenvector corresponding to the non-zero
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eigenvalue has to point in the same direction as the specular component of maximum

strength.

In the future, it would be very useful to obtain a solution to the problem of finding

maximum achievable rates on non-coherent block fading Rician channels without explicit

channel estimation along the lines of [11]. Some progress in this regard was made in [7, 9]. In

addition, the assumption of deterministic specular component was relaxed and the specular

component was treated as unknown. However, research along these lines is challenging

and a breakthrough would require considerable efforts from the communications research

community.
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