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Abstract—We introduce a group-sparsity penalized multi-class
classifier design that is parameterized by a set of biomarker
weight vectors that minimize miss-classification probability of er-
ror. The optimization is implemented by augmented Lagrangian
and variable splitting methods. This results in a classifier that
automatically designates the role of each biomarker included
in the classifier. Using our convex optimization approach a
multi-class classifier with group-sparsity constraints results in
significantly improved classifier performance.

Index Terms—Multi-class classification, variable selection,
sparsity, dimension reduction, augmented Lagrangian optimiza-
tion.

I. INTRODUCTION

High-dimensional applications, such as genomics expres-
sion analysis, require parsimonious modeling. By pruning the
total number of independent variables or features, variable
selection is a first step in building parsimonious models.
Accurate variable selection avoids the over fitting problem,
and provides interpretations of the most relevant variables for a
predictive model. It is important to understand which variables
are strongly relevant to the classification task, and how their
importance depends on time or subject in the population. For
example, sparsity penalized lasso techniques [1], [2] provide
a computationally tractable way to perform variable selection
driven by objective function minimization. Here we introduce
an objective function minimization approach for structured
variable selection that adds a mixed L1/L2 norm sparsity
penalty to the multi-class classification objective function.

The paper is organized as follows. We first present the
formulation of the optimization problem in the methods
section, including the loss function used as surrogates in
multi-class classification, the proper regularization that selects
variables relevant simultaneously to all classes and data blocks,
and followed by a discussion about the general algorithm
we propose to solve the optimization. Then we present the
performance of the sparse multi-class classifier applied to a
H3N2 flu challenge data set in the results section, with the
discussion about the advantages of the methods and biological
interpretation. The final section concludes this paper.

II. METHODS

Suppose we have a dataset with n samples, {xi,yi, si}ni=1,
in which xi ∈ Rrp are the independent variables, yi ∈
{1, 2, ...,K} is the dependent variable, and si ∈ {1, 2, ...,m}
represents the additional information about the generating

sources. All r, p,K,m are positive integers. For example, in
general serially sampled experiments, multiple measurements
are collected over time, contributing one p dimensional mea-
surement at each time point, then xi becomes a multi-block
data with r blocks. The data may have been collected from m
different individuals, labeled as si. We propose an algorithm
for learning the best classifier of the label yi given the data xi
in the high-dimensional case where the number m of subjects
is much less than the number p of variables, e.g., gene probes
on the microarray.

A. Sparse Multi-class Classifier

To generalize the current methods in binary classification [3]
to multi-class problems, we define a unified multi-class classi-
fier. We adopt the Support Vector Machine (SVM) approach.
The idea of maximizing the margin between two classes can
be extended to multi-class problems. There are two common
strategies that have been proposed: (1) solving the multi-class
problem by a series of binary SVM classifiers [4]–[6]; (2)
formulating a single unified multi-class SVM [7]–[12]. The
former approach has the advantage of building on the binary
SVM framework; the latter is more direct. We propose a
unified multiclass classifier with variable selection following
the latter approach, which provides us with the basis for doing
structured variable selection over classes and references.

When r = 1, the problem reduces to the standard multi-class
classification problem, whereas when r > 1, this is the multi-
block multi-class classification problem. One could reduce this
multi-class classification problem into pairs of binary classi-
fication problem. However, this does not capture multiway
correlations between the different classes. The unified K-
class classifier uses rp-dimensional hyperplanes to partition
the feature space,

F = {f1, f2, · · · , fK}, where fk(x) = wk
Tx+ bk

and the decision rule is to assign the label that gives the largest
score, argmax

k
{fk(x)}. Thus the problem can be formulated

as

min
F

1

n

n∑
i=1

V (F,xi) + λR(F ) (1)

where V denotes the convex loss function to upper bound the
0-1 loss, and R is a regularization function.



Crammer and Singer [10] introduced a generalized notion
of the margin for multi-class problems, and suggested solving
the above optimization by using the convex loss

V (F,xi) = [max
r

(1− δyi,r + fr(xi)− fyi(xi))]+ (2)

and the regularization function

R(F ) =
1

2

K∑
k=1

||wk||22.

R can be chosen as a sparsity inducing penalty [13] [14]. We
formulate our reference-based classification problem with the
same loss function, but with different regularization to induce
sparsity in the weights and perform variable selection.

Define W = [ w1 w2 · · · wK ]T =

[ w(1) w(2) · · · w(rp) ], i.e. w(j) is the jth column
in the matrix W , and wk represents the kth row. Given
j ∈ {1, 2, ...p}, any elements in the ith column of W , such
that mod(i, p) = j, are related to the same variable j, and the
elements in the kth row of W are weights assigned to class
k. In multi-class classification problems (r = 1), in order to
ensure that the predictor variables are shared over all classes,
the columns of W should satisfy a coupled sparsity condition:
the number of non-zero terms should be small. Variable
selection under this framework becomes more complicated
than that in binary classification, because one would expect
that an unrelated variable corresponds to a zero column in
W rather than a zero scalar. Wang and Shen extended L1

SVM to L1 MSVM by imposing a penalty with q = 1 on the
coefficients. They solved a problem of the form [15]:

min
b,W

1

n

n∑
i=1

K∑
k=1

I(yi 6= k)[bk +wk
Txi + 1]+ + λ

K∑
k=1

p∑
j=1

|wkj |.

Although L1 has the advantage of being directly related to
lasso, it treats all the wkj’s equally, which does not guarantee
the variable sharing condition. Zhang et al accounted for
variable sharing by treating the coefficients in groups by
imposing a L∞ penalty as follows [16]

min
b,W

1

n

n∑
i=1

K∑
k=1

I(yi 6= k)[bk +wk
Txi + 1]+ + λ

p∑
j=1

||w(j)||∞.

When there are more than one block, we propose a regu-
larization of the form:

R(F ) =
p∑
j=1

∣∣∣∣w̃(j)

∣∣∣∣
2

w̃(j) = [w(j);w(j+p); ...;w(j+(r−1)p)].
(3)

This ensures that coefficients corresponding to a shared vari-
able over the measurements under r conditions and over all
classes are grouped together, as shown in Figure 1. The L2

norm instead of the L∞ norm is chosen in our formulation,
because the L∞ ball tends to favor solution with the scaled
version of hadamard matrix, whereas L2 norm penalizes any
direction uniformly.

The adaptive lasso [17], [18] can be applied to our multi-
block multi-class formulation to reduce over-fitting. Suppose
we have an initial estimation Finit. Then adaptive lasso refines
this estimate by solving

min
F

1

n

n∑
i=1

V (F,xi) + λadaptRadapt(F, Finit) (4)

in which V is defined as the same generalized hinge loss
function and

Radapt(F, Finit) =

p∑
j=1

||w̃(j)||2
||w̃init,(j)||2

.

An interesting property of adaptive lasso is that if the coeffi-
cients in the initial estimate are equal to zero, then the new
estimate will also be zero. In other words, adaptive lasso is a
stage-wise screening process that limits the number of features
to be less than or equal to the initial stage, avoiding over-
estimation problems. The process can be recursively repeated
over multiple stages to successively reduce the number of non-
zero weights.

B. Algorithmic Implementation
We solve the optimization problem (1) with the combination

of loss function (2) and regularization (3) using variable
splitting. Variable splitting is a general approach to solving
optimization problems of the form [19]:

min
v
f1(v) + f2(v). (5)

Variable splitting replaces the argument v of f2 by an-
other variable w. Then the variable splitting optimization
min
v,w

f1(v) + f2(w) becomes equivalent to (5) when one

enforces a constraint v = w. This constrained problem can
be solved as an augmented Lagrangian optimization of the
form:

min
v,w

f1(v) + f2(w) +
µ

2
||v − w||22

which suggests the alternating splitting algorithm (Algorithm
1).

Algorithm 1: Alternating Splitting Method

1 Set t = 0, choose µ > 0, v0, w0, and d0;
2 while stopping criterion is not satisfied do
3 vt+1 ∈ argmin

v
f1(v) +

µ
2 ||v − wt − dt||

2
2;

4 wt+1 ∈ argmin
w

f2(w) +
µ
2 ||vt+1 − w − dt||22;

5 dt+1 = dt − vt+1 + wt+1;
6 t = t+ 1;

Applying these ideas to (1), we split W into two parts W
and M , constrained such that M = W , and the row vectors
mk of M obey the same structural pattern as the rows of W .
This then leads to the optimization problem

min
W,M

1

n

n∑
i=1

ξi + λ

p∑
j=1

||m̃(j)||2, subject to (6)



∀i, k (w′yixi+byi)+δyi,k−(w
′
kxi+bk) ≥ 1−ξi, M =W.

The ξi’s are slack variables that depend on W through the
constraint M = W . The optimization of (6) is performed by
alternating algorithm 2.

Algorithm 2: Sparse Multi-class Classifier implementation
using variable splitting

1 set τ = 0, choose µ > 0, M0, W0, D0

2 while stopping criterion is not satisfied do

3 Wτ+1 = argmin
W

1
n

n∑
i=1

ξi +
µ
2
||W −Mτ −Dτ ||2F

4 s.t. ∀i, k (w′
yixi + byi) + δyi,k − (w′

kxi + bk) ≥ 1− ξi
5 Mτ+1 = argmin

M

λ
p∑
j=1

||m̃(j)||2 + µ
2
||Wτ+1 −M −Dτ ||2F

6 Dτ+1 = Dτ −Wτ+1 +Mτ+1

7 τ = τ + 1

In each iteration, optimization over W is exactly a quadratic
programming problem and there exits fast algorithm tailored
to SVM classification problems. We adopt the sequential dual
method [20], [21]. The dual of line 3 in Algorithm 2 can be
written as

min
α

1
2

K∑
k=1

||wk||22 +
n∑
i=1

K∑
k=1

αki e
k
i

s.t.
K∑
k=1

αki = 0, αki ≤ 1
nµδyi,k, ∀i, k

in which wk =
n∑
i=1

αki xi +mτ,k + dτ,k and eki = 1 − δyi,k.

Coordinate descent method can be extended to decompose
the dual problem into n subproblems, and each problem
corresponds to one of the n samples.

min
α1

i
,...,αK

i

K∑
k=1

1
2A(α

k
i )

2 +Bkα
k
i

s.t.
K∑
k=1

αki = 0, αki ≤ 1
nµδyi,k, ∀k

where A = xix
′
i and B = w′kxi + eki − Aαki . This is the

same optimization problem discussed in [20], [21] except the
representation of wk. We can adopt the subproblem solver
based on coordinate descent method.

In the second step, M has a close form solution. Let C =
Wτ+1 − Dτ , then the solution of each concatenated column
of M is given as m̃(j) = [||c̃(j)||2 − λ

µ ]+
c̃(j)

||c̃(j)||2
, [22].

Given that we can solve the multi-block multi-class classi-
fication with group structured sparsity, we can also find the
solution for adaptive lasso formulation. We can reformulate
problem (4) as the initial estimation problem [18]. Define

xnew,l,i = xl||w̃init,( mod (l,p))||2, l = 1, .., rp, i = 1, ..., n

w̃new,(j) =
w̃(j)

||w̃init,(j)||2
, j = 1, ..., p

then the adaptive lasso for sparse multi-block multi-class
classification can be formulated as

min
Fnew

1

n

n∑
i=1

V (Fnew,xnew,i) + λadaptR(Fnew).

TABLE I
SIMULATION MODEL 1, FIVE-CLASS EXAMPLE, WITH p = 1000. CZ:
NUMBER OF CORRECT ZEROS IN THE MULTI-CLASS CLASSIFIER, IZ:

NUMBER OF INCORRECT ZEROS IN THE CLASSIFIER.

method error rate number of var. (CZ,IZ)
the ideal classifier 0 2 (998,0)
1. unified linear SVM 0.61 1000 (0,0)
2. sparse multi-class SVM 0.57 47 (952.5,0.5)
3. sparse multi-class SVM, prescreen 0.50 13.95 (985.8, 0.25)

The algorithm for sparse multi-block multi-class classification
can be applied to this problem.

III. RESULTS

Fist, we implement a simulation model in [16], the five-class
example. The model has independent variables with dimension
p, and the first two variables are generated according to
N(µk, σ

2
1I2), where

µk = 2(cos([2k− 1]π/5), sin([2k− 1]π/5)), k = 1, 2, 3, 4, 5.

The remaining p − 2 variables are generated independently
from N(0, σ2

2), and σ1 =
√
2, σ2 = 1. 250 samples are

generated evenly from the model for training, another 250
samples for tunning the regularization parameter, and 50,000
samples for the test set. We compare the proposed sparse
multi-class classification with the unified multi-class classifier
in [10]. We also test the proposed algorithm with prescreening
each pairwise binary classifications, i.e., the input variables
to the multi-class classifier are the union of the variables
selected by any pairwise binary classification. The entire
experiment is repeated for 20 trials. We find that when p < n,
the unified multi-class classifier without variable selection
performs the best. However, when p > n, the multi-class
classifier with structured variable selection outperforms the
non-sparse classifiers. The results for p = 1000 are listed in
Table I.

We the apply the sparse multi-class classification to classify
gene expression of subjects over time. The data was collected
from a challenge study where serial peripheral blood samples
were acquired from a population of subjects inoculated with
live (H3N2) flu virus [23]. The objective is to classify a
sample (Affymetrix gene chip) into one of the three post-
inoculation classes: the uninfected, the pre-infection and the
acute-infection. The measurements right before inoculation
are treated as the reference chips, whereas the ones after
inoculation are the target chips . This is a two-block data,
in which p = 12023, and r = 2. We prescreen the genes
by pairwise classifications, and test the sparse multi-class
classifiers, Figure 1. The majority classes are down sampled
by limiting the number of samples per class per subject to be
the same for all classes to overcome the imbalanced difficulty.

The performance of the proposed method is presented in
Table II, compared with some classic classification methods.
One subject is left out as the test set, and the rest as the training



The reference chip 

Score of class 1 
Score of class 2 
Score of class 3 

Zero columns: These genes are not selected. 

The target chip 

W(ref) W(target) 

Fig. 1. Multi-block group structures for multi-class classification. The figure
shows a multi-class classifier (K=3) matrix W, and the 2 block molecular
data. The classifier matrix is divided into two blocks, denoted as W(ref)
and W(target), which are associated with the reference sample and the target
sample respectively.

TABLE II
CLASSIFICATION RESULTS BY CLASSIC METHODS AND THE PROPOSED

SPARSE MULTI-CLASS SVM.

methods error rate number of genes
linear SVM, one v.s. one 0.47 12023
unified linear SVM 0.38 12023
sparse multi-class SVM, prescreen 0.189 90.122

set. The parameters for all the methods are selected by 2-fold
cross validation, and the samples are grouped by subjects, i.e.,
samples from the same subject should exist in the same set for
cross validation. We take the z-scores on the training set, and
standardize the variables in the test set accordingly. All the
results are presented as averages over 4 repeated trials. Each
trial evaluates the performance by leaving one subject out as
the test set until all the subjects have been tested. Our results
on the sparse multi-block multi-class problem show better
performance than the classic approaches. This demonstrates
the importance of the sparsity constraints.

IV. CONCLUSIONS

This paper develops a new framework for learning a
classifier from a population of personalized serial samples.
We derive a new variable splitting method for training a
multi-class support vector machine with mixed L1 and L2

norm penalties that performs variable selection for optimal
classification. Application of the classifier in the previous
section shows significant improvement in the accuracy of
classification of stages of host immune response of infected
and uninfected subjects. The group sparsity penalty greatly
reduces the number of variables and selects the most important
ones for the classification task.

The method can be applied to other high-dimensional multi-
block multi-class classification problems in bioinformatics and
predictive health and disease tasks. By quantitative comparison
of a person’s current expression profile to that observed at
previous times a more accurate health assessment can be made
and more interpretable biomarkers can be discovered.
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