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Abstract

The massive scale and variability of microarray gene data creates new and challenging problems of signal ex-
traction, gene clustering, and data mining, especially for temporal studies. Most data mining methods for �nding
interesting gene expression patterns are based on thresholding a single discriminant, e.g. a ratio of between-class to
within-class variation or correlation to a template. We introduce a di�erent approach for extracting information from
gene microarrays which is based on a Bayesian formulation of multi-objective optimization which we call posterior
Pareto front analysis. We will illustrate our methods by applying it to Fred Wright's GeneChip study.

I. Introduction

Microarray analysis of gene expression pro�les o�ers one of the most promising avenues for exploring genetic
factors underlying disease, regulatory pathways controlling cell function, organogenesis and development
[16], [13], [15], [5]. The promise of microarrays is that the technology could allow researchers to accurately
quantify expression in RNA levels of thousands of genes in a tissue sample, thereby providing valuable
information about complex gene expression patterns. Recent advances in bioinformatics have brought us
closer to realizing this promise. However, the massive scale and variability of microarray gene data creates
new and challenging problems of clustering and data mining: the so-called gene �ltering problem.

In [7], [8] we introduced a new approach to gene �ltering, called Pareto gene �ltering, which is based
on multicriterion optimization and cross-validation. Pareto gene �ltering allows the experimenter to isolate
genes that achieve a good compromise between several competing gene-ranking criteria. Such genes lie on
the so called Pareto front and are called non-dominated genes, see Sec. III for de�nitions. In this paper we
present a Bayes posterior analysis approach to Pareto gene �ltering which we call the method of posterior
Pareto fronts (PPF). The main advantage of the PPF approach over the Pareto gene �ltering approach is
that it ranks each gene according to its posterior probability that it belongs to the Pareto front.

The outline of the paper is as follows. In Sec. II we brie
y review and introduce our notation for microarray
data and in III we recall elements of the Pareto gene �ltering approach, in Sec. IV we introduce the general
PPF gene �ltering method and in Sec. V we consider speci�c contrast functions for PPF �ltering. Finally
in Sec. VII we apply PPF analysis to Fred Wright's A�ymetrix mixing data set.

II. Gene Filtering in Microarrays

The ability to perform accurate genetic di�erentiation between two or more biological populations is
a problem of great interest to geneticists and other researchers. For example, in a temporally sampled
population of mice one is frequently interested in identifying genes that have interesting patterns of gene
expression over time, called a gene expression pro�le. Gene microarrays, or chips, have revolutionized the
�eld of experimental genetics by o�ering to the experimenter the ability to simultaneously measure thousands
of gene sequences simultaneously. A gene chip consists of a large number N of known DNA probe sequences
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that are put in distinct locations, called wells, on a slide [11], [2], [6]. After hybridization of an unknown
tissue sample to the gene chip, the abundance of each probe present in the sample can be estimated from
the measured levels of hybridization (responses).

The study of di�erential gene expression between T populations requires hybridizing several (M) samples
from each population to reduce response variability. De�ne the measured response at the n-th gene chip
probe location for the m-th sample at time t

ytm(n); n = 1; : : : ; N; m = 1; : : : ;M; t = 1; : : : ; T:

When several gene chip experiments are performed over time they can be combined in order to �nd genes with
interesting expression pro�les. This is a data mining problem for which many methods have been proposed
including: multiple paired t-tests; linear discriminant analysis; self organizing (Kohonen) maps (SOM);
principal components analysis (PCA); K-means clustering; hierarchical clustering (kdb trees, CART, gene
shaving); and support vector machines (SVM) [10], [1], [3]. Validation methods have been widely used and
include [19], [12]: signi�cance analysis of microarrays (SAM); bootstrapping cluster analysis; and leave-
one-out cross-validation. Most of these methods are based on �ltering out pro�les that maximize some
criterion such as: the ratio of between-population-variation to within-population-variation; or the temporal
correlation between a measured pro�le and a pro�le template. As contrasted to maximizing such scalar

criteria, multi-objective gene �ltering seeks to simultaneously maximize gene pro�les [7]. This method is
closely related to multi-objective optimization which has been used in for many applications [18], [20].

III. Multi-objective Gene Filtering

Multi-objective gene �ltering can be motivated by the following simple example. Let there be T = 2 time
points and de�ne �(i) = [�1(i); �2(i)]

T the true unobserved expression levels of the i-th gene at each of these
times. Let an experimenter have P gene selection criteria which, when applied to this gene response, gives
the vector criterion:

�(i) = [�1(�(i)); : : : ; �P (�(i))]
T :

Gene i is said to be better than gene j in the p-th criterion if �p(i) > �p(j).

When it is desired to �lter out strongly increasing gene pro�les, one set of selection criteria might be
(P = 2):

�1(�) = �2 � �1; �2(�) = �2 + �1: (1)

If �1and �2 are positive valued and a proportional increase in the pro�le is more meaningful to the experi-
menter then she might prefer the criteria

�1(�) = log�2=�1; �2(�) = log
p
�2�1: (2)

If the measured pro�le of the i-th gene has vector mean � = �(i) for which �1 and �2 are both large
then this gene would be of interest to the experimenter. For �ltering out such genes one might consider
thresholding a compound scalar �ltering criterion, e.g. the weighted arithmetic average of (1)

J�(�) = �(�2 � �1) + (1� �)(�2 + �1); (3)

or of (2)

J�(�) = � log(�2=�1) + (1� �) log
p
�2�1; (4)

where 0 < � < 1. An obvious issue that arises in selecting such a scalar criteria is: what is the most suitable
choice of the weight �? One way out of this dilemma is to �lter out all genes which maximize J� for some
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choice of �. It turns out that this set of genes are on the �rst Pareto front resulting from multiple-criterion
optimization of the pair [�1(�i); �2(�i)]

T [4].

Multi-criterion optimization captures the intrinsic compromises among possibly con
icting objectives.
Consider Fig. 1 and suppose that �1 and �2 are to be maximized. It is obvious that genes A, B and C are
\better" than genes D and E because both criteria are higher for the former than for the latter. Note that
no gene among A, B and C dominates the other in both criteria �1 and �2. Multi-objective �ltering uses this
"non-dominated" property as a way to establish a preference relation among genes A, B, C, D and E. More
formally, we say gene i is dominated if there exists some other gene g 6= i such that for some p = po

�p(i) < �po(g) and �p(i) � �p(g); p 6= po:

The set of non-dominated genes are de�ned as those genes that are not dominated. All the genes which are
non-dominated constitute a curve which is called the Pareto front. A second Pareto front can obtained by
stripping o� points on the �rst front and computing the Pareto front of the remaining points - which for the
example in Fig. 1 would be genes D and E.

o  A

o B

o D

o C
o E

ξ

ξ

2

1

Fig. 1. A, B, C are non-dominated genes relative to criteria �1 and �2.

These methods are applicable when the criteria �1 through �P are observable. However, as these crite-
ria depend on the true mean values �(i) of the i-th gene pro�le, the criteria are not observable. In [7],
[8] we applied a non-parametric Pareto analysis for detecting interesting gene temporal pro�les based on
fytm(i)gt;m;i, the measured abundances for each probe i, time point t and random sample m. First a set
of TM time trajectories were de�ned for each gene, corresponding to all possible time paths through the
sets of M samples at each of T time points. For each trajectory we extracted the sign of the slope between
each time point to capture instantaneous increase or decrease of each gene trajectory. The set of TM sign
pro�les summarized the monotonic properties of a gene's temporal evolution pattern. For each gene several
criteria were then computed including: the proportion of the TM trajectories satisfying a speci�c evolution
pattern, e.g. monotonicity of gene pro�le; the strength of the evolution pattern, e.g. the gene response
di�erence between �rst and last time points; or the negative curvature of the pro�le. The Pareto fronts were
cross-validated using simple leave-one-out resampling methods. The cross-validation was used for ranking
the genes according to the number of resampling sets in which a speci�c gene appears on the �rst Pareto
front.
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Fig. 2. Graphical illustration of Posterior Pareto fronts analysis for a simulated population of genes having 3 time-point
expression pro�les with equal variances at each time. �1 and �2 correspond to slope and curvature of each pro�le. Spherical
contours indicate inherent uncertainty in a given gene's placement on the �1; �2 plane (determined by pooled variance
estimates of �1 and �2 for each gene). Number label to right of each gene location is posterior probability that given gene
belongs to the �rst Pareto front.

IV. Posterior Pareto Filtering

The posterior Pareto front analysis introduced here casts the ranking procedure of [7] in a Bayesian
framework. Figures 2 and 3 illustrate the utility of our analysis.

The posterior probability p(ijY ) that a particular gene i is on the �rst Pareto front is easily expressed
using [17, Prop. 4.4]:

p(ijY ) (5)

= P (�1(i) � max
j

�1(j) or : : : or �P (i) � max
j

�P (j)jY ) (6)

=

PX
k=1

P (Ek(i)jY )�
X
k1<k2

P (Ek1(i); Ek2(i)jY ) + : : : (7)

+(�1)p+1
X

k1<:::<kp

P (Ek1 (i); : : : ; Ekp(i)jY ) (8)

+(�1)P+1P (Ek1(i); : : : ; EkP (i)jY )

where the summation
P

k1<:::<kp�p
is taken over the

�
P
p

�
subsets of size p in f1; : : : ; Pg, Ei denotes the event

�1(i) � maxj �1(j) and Y = fymt(i)gmti is the entire observation extracted from the gene chip set.



SUBMITTED TO GENSIPS, 2002 5

−3 −2 −1 0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

8

5.5e−05

0.4

0.01

0.5

0.0014

0.95

0.0066
0.97

0.0082

0.62

First Pareto front Posterior probability

Criterion 1 (ξ
1
)

C
rit

er
io

n 
2 

(ξ
2)

Fig. 3. Same as in Fig. 2 except that the gene pro�le time samples have unequal variances.

For P = 2 the expression (5) simpli�es to:

p(ijY )
= P (�1(i) � max

j
�1(j) or �2(i) � max

j
�2(j)jY )

= P (�1(i) � max
j

�1(j)jY ) + P (�2(i) � max
j

�2(j)jY )
�P (�1(i) � max

j
�1(j); �2(i) � max

j
�2(j)jY )

In principle these probabilities can be computed when joint distributions of f�1(i); �2(j)gi;j are available.
In the special case that f�p(i)gip are conditionally independent given Y and that �p(i) has conditional

(lebesgue) probability density function (p.d.f.) f�k(i)jY (u). Then in (5) P (Ek1(i); : : : ; Ekp(i)jY ) =
Qp

j=1 P (Ekj (i)jY )
and

P (Ek(i)jY ) =
Z

f�k(i)jY (u)
Y
j 6=k

F�j (i)jY (u)du (9)

where F�j (i)jY (u) is the conditional cumulative distribution function (c.d.f.) of �j(i).

A. Application to Filtering of Gene Expression Pro�les

We start with an additive model for the (log) gene pro�le measurement:

ymt(i) = �t(i) + �mt(i)

where �mt(i) are zero mean noise samples and m = 1; : : : ;M , t = 1; : : : ; T and i = 1; : : : ; N . Given a prior
f(�t(i); �t(i)

2) on the mean �t(i) and the variance �2t (i) of ymt(i) the posterior probabilities (5) can be
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computed. In the sequel we adopt the non-informative prior [9]

f�t(i);�2t (i)(u; s) =
c

sa=2
; u 2 IR; s 2 IR+

where c is a positive normalizing constant and a > 0.

Two special cases are of interest to us: (i) time varying variances f�2t (i)gt; and (ii) non-time varying
variances �2t (i) = �2� (i), t; � = 1; : : : ; T . The former case is easier to treat than the latter.

A.1 Time varying variances

Consider the following model for �t(i) and �mt(i): (i) f�t(i)gti and f�2t (i)gti are independent sets of i.i.d.
random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian random
variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally i.i.d.

It is easily shown that under the above assumptions the means f�t(i)gti are conditionally independent
given Y with marginal posterior p.d.f. equal to the Student-t density

f�t(i)jY (u) = k(Yti)

�
1 +

1

M + 1

(u� �̂t(i))
2

�̂2t (i)

��(M�a+2)=2

; (10)

where �̂t(i) = M�1
P

m ytm(i), �̂
2
t (i) = M�1

P
m(ytm(i) � �̂t(i))

2, Yti = fytm(i)gm, and k(Yti) is the
measurement-dependent normalizing factor [9]:

k(Yti) =
1

�̂t(i)
p
�

�( 1
2
(M � a+ 2))

�( 1
2
(M � a+ 1))

: (11)

The associated c.d.f. can be approximated using either the large M Gaussian approximation to the

student-t or the L1 approximation
�R u
�1

gq(v)dv
�1=q

� supv�u g(v), where q > 0. The latter approximation

improves as q gets large. The L1 approach has computational advantages as it yields a closed form expression
- as contrasted with the Gaussian approximation that gives an expression involving integrals of the Gaussian
density. Applying the L1 approximation to the integral of (10) yields

F�t(i)jY (u) �
�
1 +

(�̂t(i)� u)2+
�̂2t (i)

��(M�a+2)=2

:

where (x)+ equals x when x > 0 and equals zero otherwise.

A.2 Non-time varying variances

Next consider the following model: (i) �2t (i) = �2(i); (ii) f�t(i)gti and f�2(i)gi are independent sets of
i.i.d. random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian
random variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally
i.i.d.

Due to (i) the mean pro�le f�t(i)gt is no longer a conditionally independent sequence given Y . The joint
posterior p.d.f. of �(i) = [�1(i); : : : ; �T (i)]

T takes the form of a multivariate Student-t

f�(i)jY (u1; : : : ; uT ) = k(Yi)

 
1 +

TX
t=1

(ut � �̂t(i))
2

�̂2(i)

!�(TM�a+2)=2

;
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where �̂2(i) = T�1M�1
P

t

P
m(ytm(i)� �̂t(i))

2, Yi = fytm(i)gtm, and k(Yi) is a similar scale factor to (11).

Analogously to the case of unequal variances, we can approximate the associated c.d.f. by a multivariate
L1 approximation to (12):

F�(i)jY (u1; : : : ; uT ) �
 
1 +

X
t

(�̂t(i)� ut)
2
+

�̂2(i)

!�(TM�a+2)=2

: (12)

V. Application to Profile Contrasts

A. Pro�le Amplitude Criterion

For ease of discussion we �rst adopt the time sampled means themselves �p(i) = �p(i), p = 1; : : : T , as the
criteria of interest. We call this the pro�le amplitude criterion. We treat the case of time varying variances
for concreteness. We generalize this to a set of contrast functions applied to the means in the next subsection.
Using the expressions (10) and (12) in (9) gives an expression for P (Ek(i)jY ) which only requires numerical
evaluation of T one-dimensional integrals (as compared with T -dimensional integrals if we used the exact
non-asymptotic c.d.f.).

By using the simple exponential lower bound e�u
2 � 1=(1+ u2), it is possible to obtain a lower bound on

P (Ep(i)jY ), which, as p(ijY ) is monotonic increasing in P (Ep(i)jY ). k = 1; : : : ; P , yields lower bounds on
the posterior Pareto front probabilities fp(ijY )gi. Speci�cally, for �xed i and t, let �̂t(r1) � : : : � �̂t(rN�1)
denote the rank ordered sample means from the set f�̂t(n)gn6=i and de�ne �̂t(rN ) =1. Then

P (Et(i)jY ) �
N�1X
n=1

1

�̂2t (i)
p
�tn

h
�([�̂t(rn+1)� 
tn]

p
q�tn)

��([�̂t(rn)� 
tn]
p
q�tn)

i
exp

�
�q

2
(�tn � 
2tn=�tn)

�
where q = m� a+ 2 and

�tn =
1

�̂2t (i)
+

nX
k=1

1

�̂2t (rk)


tn =

 
�̂t(i)

�̂2t (i)
+

nX
k=1

�̂t(rk)

�̂2t (rk)

!
=�tn

�tn =
�̂2t (i)

�̂2t (i)
+

nX
k=1

�̂2t (rk)

�̂2t (rk)
:

In the above �(u) = (
p
2�)�1

R u
�1

e�u
2=2du.

For the case of equal variances, neither the joint p.d.f. (12) nor the joint c.d.f. (12) are separable functions
and this complicates computation of P (Ek(i)jY ) due to the need for T -dimensional integration. However, as
above a multivariate Gaussian approximation can be applied to the c.d.f. and p.d.f. yielding a lower bound
on P (Et(i) and hence on p(ijY ).

B. Pro�le Constrast Criteria

Let the vector criterion �(i) = [�1(i); : : : ; �P (i)]
T be de�ned as a linear function of the mean pro�le vector:

�(i) = A�(i);
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where A = ((aij)) is a P � T contrast matrix. We call �(i) a vector of pro�le contrasts for gene i. To
retain the simplicity of our approximations to p(ijY ), it is necessary that the component criteria in �(i) be
statistically independent when conditioned on Y . At a minimum this requires P � T . Assume as above
that the components of � are conditionally independent. A suÆcient condition for independent �p's is that
non-zero elements of each of the rows of A do not overlap each other, i.e. aikajk = 0, for all i 6= j and all
k. When the variances are not time varying a weaker suÆcient condition is that A be an orthogonal matrix,
AAT = I since the joint p.d.f. f�(i)jY (u) in (12) is invariant to orthogonal transformations of u � �̂(i).
Furthermore, as the Pareto fronts are invariant to monotonic increasing transformations of the �p's, an even
weaker suÆcient condition is AAT = diag(aii)= a diagonal matrix. We illustrate this latter case below.

A Sampling of Pro�le Contrasts:

We specialize to the case of non-time-varying variances and T = 2, T = 3 and T = 4 for concreteness.
Consider the corresponding candidate T � T contrast matrices

A2 =

� �1 1
1 1

�
;

A
0

2 =

�
1 �1
1 1

�
;

A3 =

2
4 �1 0 1

1 �2 1
1 1 1

3
5 ;

A
0

3 =

2
4 �1 1 0
�1 �1 2
1 1 1

3
5 ;

A4 =

2
664
�1 1 0 0
�1 �1 2 0
�1 �1 �1 3
1 1 1 1

3
775 ;

A
0

4 =

2
664

1 0 0 �1
0 �1 1 0
1 0 0 1
0 1 1 0

3
775 :

As all of these matrices satisfy AAT = diagonal, we can apply the posterior Pareto analysis to any subset
of �p's in the vector � = A� depending on the problem at hand. Applying the posterior Pareto front analysis
to �(i) = A2�(i) will extract 2 time-point gene pro�les which are monotonic increasing (large �1) and/or have

strong average expression levels (large �2). When applied to �(i) = A
0

2�(i) the analysis will extract strong
monotonic decreasing genes from the 2 time-point pro�les. Applying the posterior Pareto front analysis to
�(i) = A3�(i) will extract strong 3 time-point gene pro�les which are end-to-end increasing and have large

positive curvature (large �2). If A3 is replaced with A
0

3 then the analysis will �nd strong pro�les which are
monotonic increasing. Using only the �rst two rows of A

0

3 will extract both string and weak monotonic
increasing pro�les. If the p.d.f. of �2(i) is truncated to zero over the range For 4 time-points A4 will perform
similar services as A3 while A

0

4 will �lter out \mexican hat" pro�les.

Note that independence of these linear contrasts is preserved under non-linear transformations since the
constrasts are conditionally Gaussian given �; �2. The contrasts can also be constrained to satisfy positivity,
lie in a interval, etc. Figures 4-7 illustrate the application of these contrasts to PPF extraction of monotonic
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increasing trajectories in 3 time-point and 4 time-point pro�les.

Figure 4 shows a simulated 3 time-point data set with a pair of criteria corresponding to the �rst two
elements of A

0

3� - these are labeled \Constrast 1" and \Contrast 2," respectively. The PPF posterior
probabilities are computed over the sector for which both criteria are strictly positive. The corresponding
PPF ranked pro�les are shown in the panel display in Fig. 5. One can extract the second Pareto front by
rerunning the PPF analysis after removing the two genes having PPF probability greater than a threshold,
e.g. 0.9. Figure 6 illustrates the PPF analysis for a simulated 4 time-point data set with three criteria
selected as the �rst three elements of A4�. The PPF analysis is again performed on sectorized (positive)
data and the ranked pro�les are shown in Fig. 7.

−15 −10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

0.00031

0.074

0.0017

0.93

0.0012

PPF Analysis with positivity constraints

Contrast 1

C
on

tr
as

t 2

Fig. 4. Sectorized PPF analysis with positivity constrained slope criteria which are given by the contrast functions extracted

from the �rst two rows of A
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3
(Contrast 1 and Contrast 2) applied to simulated 3 time-point gene pro�les (a = 2). Constant

contours around each point indicate standard errors.
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VI. Extensions

There are several issues and extensions that should be explored. Some of these are:
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Fig. 7. Ranked PPF pro�les corresponding to points in Fig. 6.
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1. To come up with a magnitude independent sectorization, e.g. max and min curvature/end-end-slope.
This would of course be data dependent and its e�ect on the statistical analysis needs to be considered.

2. Implement approximations to the posterior probabilities, e.g. upper and lower bounds, and compare
to the exact expressions used here.

3. Implement the equal variance approximation using Gaussian or other approximations. The results here
were obtained using a pooled variance estimate in the time varying variance pdf expression.

4. Compare this analysis to the non-parametric cross-validation Pareto method in [7].
5. Explore methodology, even approximate, for computing posterior probability of a gene being in the
�rst K fronts.

6. Explore more general and systematic ways to come up with meaningful contrast matrices A which are
unitary, so as to maintain independence, yet capture desired shape characteristics of teomporal exprssion
pro�les. A method, which we have not explored in depth, is to de�ne a contrast matrix B whose rows
capture some set of desired linearly independent properties of the pro�le and then apply the Pareto
analysis with orthogonalized contrast matrix A = [chol(BBT )]�1B, where chol(B �BT ) is the Cholesky
decomposition of BBT . For example the following matrix might be proposed as an alternative to A

0

3 in
the previous section for capturing strong monotone increasing pro�les given by

B =

2
4 �1 1 0

0 �1 1
1 1 1

3
5 :

It turns out that the aforementioned orthogonalization procedure yields

A =

2
4 �1=p2 1=

p
2 0

�1=p6 �1=p6 2=
p
6

1=
p
3 1=

p
3 1=

p
3

3
5 ;

which is equal (up to a left multiplication by a positive diagonal matrix) to the contrast matrix A
0

3.

VII. Experimental Results

We applied PPF analysis to Fred Wright's dataset described in the paper [14]. This data set is a mixing
experiment which has been designed for empirically validating and comparing various di�erential gene ex-
pression methods of analysis. Three populations of genes were hybridized to A�ymetrix HuGeneFL chips:
starved human �broblast cells; stimulated human �broblast cells; and a 50-50 mixture of these cells. A total
of 18 chips were processed corresponding to 6 replications within each of the three populations mentioned
above. Each chip contains the same 7129 gene probes selected by A�ymerix for the HuGeneFL chip. For
each gene probe we arbitrarily de�ned the sequence of hybridization abundances from the \stimulated(t=1),"
\50-50(t=2)," and \starved(t=3)," populations, in that order, as a gene expression pro�le. This provides a
very nice test dataset for us since we know that the true pro�les must be linearly increasing or decreasing
over the three \time points." In Figs. 8 and 9 the 7129 mean contrasts are shown for the avgdi� and the
Li-Wong reduced indices. These indices are extracted from the a�ymetrix .cel �les and measure the di�er-
ential expression levels between PM and MM oligonucleotides on the Gene Chip. See [14] for more details.
Each point on this contrast plane is a vector containing the �rst two elements of vector A

0

3�̂(i) where �̂(i) is
sample mean of over the six replicates in each group for a given gene. If the data were noiseless then all the
contrast points would fall in the upper right and lower left sectors corresponding to monotonic increasing and
monotonic decreasing gene expression pro�les, respectively. One measure of the quality of the experiment
is the proportion of genes falling outside of these two sectors, i.e. genes having non-monotonic pro�les. The
Li-Wong reduced indices are better in this quality measure.

Throughout this section we used the exponent a = 2 in the prior density input for the PPF analysis. We
�rst applied the PPF analysis to the non-monotone convex cap pro�les. For this we adopted the contrast
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Fig. 8. Scatterplot of slope contrasts (Sample mean contrasts de�ned from the �rst two rows of A
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) for avgdi� indices for Fred

Wright's HuGeneFL mixture study. Annotations are the number of non-monotone genes with convex cup (upper left) and
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matrix

A =

� �1 1 0
1 1 �2

�
:

The results are shown in Figs. 11-14. In the Figs. 11 and 12 are the PPF planes over a small sector (indicated)
containing only six gene pro�les along with their posterior probabilities for the A�ymetrix avgdi� index and
the Li-Wong index, respectively. The contour around each point denotes the standard error (one standard
deviation) circle and the annotation at the center is the posterior probablity P (ijY ). While the posterior
scores for the six genes are di�erent in each �gure the genes are the same - avgdi� and Li-Wong contain
identical genes in this sector of the contrast plane. Figs. 13 and 14 show eight top scoring trajectories
among the top �fty trajectories ranked by the contrast matrix A and and PPF analysis. In each subpanel
the piecewise linear line passes through the means of the 6 replicates for each of the 3 groups. Note that
that the ranking of genes in avgdi� and Li-Wong indices is di�erent but many commonalities exist. Many,
but not all, genes are ranked strongly non-monotonic in both avgdi� and Li-Wong indices. The complete
list is given in Fig. 10.

AFFX−BioDn−3−at
AFFX−CreX−3−at
AFFX−HSAC07/X00351−5−st
AFFX−HUMGAPDH/M33197−3−at
AFFX−HUMRGE/M10098−3−at
AFFX−HUMRGE/M10098−5−at
AFFX−LysX−3−at
AFFX−LysX−5−at
AFFX−M27830−5−at
AFFX−PheX−5−at
AFFX−ThrX−M−at
D49824−s−at
D83174−s−at
HG1980−HT2023−at
HG3044−HT3742−s−at
J00073−at
J04823−rna1−at
L06505−at
L21954−at
L24559−at
L37368−at
L77701−at
M14328−s−at
M21142−cds2−s−at
M24485−s−at
M35878−at
M55998−s−at
M60752−at
M80563−at
M81181−s−at
U03057−at
U12404−at
U12465−at
U14394−at
U27325−s−at
U45285−at
U51004−at
U52101−at
U58516−at
U90915−at
X03689−s−at
X13973−at
X16064−at
X67247−rna1−at
X86809−at
X95404−at
Y09912−rna1−at
Z21507−at
Z24727−at
Z69043−s−at

AFFX−BioDn−3−at
AFFX−CreX−3−at
AFFX−HSAC07/X00351−5−at
AFFX−HUMRGE/M10098−3−at
AFFX−HUMRGE/M10098−5−at
AFFX−LysX−3−at
AFFX−LysX−M−at
AFFX−PheX−3−at
AFFX−PheX−5−at
D49728−at
D49824−s−at
D76435−at
D86976−at
HG1800−HT1823−at
HG1980−HT2023−at
HG3044−HT3742−s−at
HG831−HT831−at
J00073−at
J03756−at
J04823−rna1−at
L06505−at
M14328−s−at
M19267−s−at
M19311−s−at
M26708−s−at
M35878−at
M55998−s−at
M60752−at
M88461−s−at
M95712−at
S54005−s−at
U03057−at
U12404−at
U12465−at
U14394−at
U25034−s−at
U27325−s−at
U52101−at
U70063−at
U73379−at
U78027−rna3−at
V00594−at
X02152−at
X16064−at
X67247−rna1−at
X90780−rna1−at
X95404−at
Z23090−at
Z50022−at
Z69043−s−at

Fig. 10. The 50 top scoring genes (A�ymetrix nomenclature) resulting from PPF analysis of the most non-monotone convex
cap pro�les for Fred Wright's data using A�ymatrix avgdi� (left) and Li-Wong reduced (right) indices.

We also applied PPF analysis to the lower left (monotone decreasing pro�les) sector of the contrast plane
in Fig. 8. The six top ranked gene pro�les for each of avgdi� and Li-Wong reduced indices are shown in
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Figs. 15 and 16.

VIII. Conclusion

This paper introduced a new method of Pareto gene �ltering based on posterior analysis of the Pareto
fronts of the multi-objective vector. This o�ers an alternative to non-parametric cross-validation approaches
to Pareto �ltering introduced by us in earlier work. The method is very 
exoble and involves choosing a
set of appropriate pro�le contrasts which display desired characteristics of the expression pro�les. These
techniques also have applicability to general data mining problems. An issue that must be addressed is
reduction in computational complexity which will be necessary for these, and other, validation techniques
to be peformed in \real time."
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Fig. 11. The PPF scores of 6 genes in the indicated restricted sector computed for Fred Wright's data using A�ymatrix avgdi�
indices. Constant contours around each point indicate standard errors. The contrast function A is as given in the text
and corresponds to rotating the scatter plot in Fig. 8 by 90o.
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Fig. 12. Same as Fig. 11 except that the PPF analysis is applied to Fred Wright's computed Li-Wong reduced indices.
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Fig. 13. First 8 rank ordered convex cap gene pro�les in an enlarged sector containing the one illustrated in Fig. 11.
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Fig. 14. Same as in Fig. 13 except with Li-Wong reduced indices.
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Fig. 15. First 8 ranked PPF monotone decreasing pro�les for avgdi� indices.
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Fig. 16. First 8 ranked PPF monotone decreasing pro�les for Li-Wong reduced indices.


