
Today’s private and public communications networks are critical systems of data terminals, routers,
and switches that provide the backbone of our information society. We address the longstanding problem of
distinguishing between normal and abnormal network behavior, possibly indicative of an attack on servers,
routers or other network infrastructure. Our approach is based on collaborative data collection, anomaly
detection and pattern recognition on a large scale. The proposed effort has four components: 1) distributed
data collection from participating routers and terminal sites and dissemination of the (appropriately san-
itized) data to the research community; 2) development of on-line and off-line approaches for detecting
and identifying subtle and complex pattern changes; 3) application to automated detection of intrusions,
denial of service (DDoS) attacks, quality-of-service degradations, and other anomalies; 4) development of
a comprehensive and multi-disciplinary program in network security education.

Crucial to detecting anomalous changes in aggregate behavior of networks is our ability to determine
traffic and packet behavior at a sufficient number of sites and to characterize what constitutes a significant
change in behavior patterns. However, the high-dimension and complexity of packet-level patterns in the
Internet makes the anomaly detection problem extremely challenging from the point of view of dynamic
pattern recognition and detection. With the help of our industrial partners we will collect and analyze
multi-dimensional information flows of packets sizes, packet rates, source-destination addresses, and other
attributes. In addition to router and backscatter data obtained from data collection sites at Internet2 and
Merit Network, we will collect complete header traces from switches and hubs using theSecure Packet
Vault technology previously developed by one of the co-PI’s on this project. We will supplement this data
with end-to-end active probing data collected from a consortium of volunteer sites distributed around the
network. To manage the massive amounts of collected data we will put in place a simple system for data
annotation, mass storage and retrieval, and database software utilities.

Our approach to anomaly detection and localization is a potent combination of emerging techniques
in detection, pattern recognition, decentralized information systems, and discrete event dynamic systems
(DEDS). Off-line algorithms will be developed and implemented using a combination of statistical learning,
invariance, and tree-based classifiers. This will result in flexible hybrid algorithms to correlate events over
space-time that are scalable to large volumes of data acquired from a variety of Internet measurement
sources. Methods for on-line detection and classification will be investigated using a novel framework
that combines stochastic dynamical systems and DEDS. This framework includes both centralized and
decentralized data aggregation and event processing. Our aim is to develop implementations that can be
used to generate and correlate alerts in real-time with a minimum of human intervention. Our approaches
go well beyond previously introduced techniques of fault detection, traffic analysis, and alert correlation
that have been restricted to much smaller scale problems. The collaboration of several commercial and
non-commercial networking organizations with this project will facilitate technology transfer.

This project will involve precollege, college, and continuing education. An inter-disciplinary under-
graduate and graduate curriculum in global network security will be introduced. Students in these courses
will participate in data collection, software development, and data analysis as part of instructional projects.
We will introduce a summer internship program in networking for high school and middle school students.
These students will participate in various educational and recreational signal processing and networking
activities. The project will sponsor a small number of scholarships to needy adolescents. An educational
innovation of our project is the development of a computer emulation that will generate synthetic traces
representative of various types of attacks on a network. These traces will be used in a yearly summer con-
test for developing the quickest and most effective detection and localization of the simulated attack. Our
many industrial collaborators will provide guidance and input including: help in emulating realistic attack
scenarios, evaluating response strategies, guidance on testing of our pattern recognition algorithms, and
deployment of data collection sites.
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1. Introduction and Executive Summary
The principal aims of this project are to study, develop and disseminate: (i) tools for distributed data

collection and aggregation; and (ii) methodologies for rapid detection, classification, and localization of
spatio-temporal changes in global network traffic. To make headway on such an ambitious aim requires
a large-scale broad-based effort and new approaches. We are a multi-disciplinary team of researchers
and practitioners from four universities and three Internet service providers in the relevant fields of signal
processing, pattern recognition, decentralized detection and control, multivariate statistics, network traffic
analysis, network failure detection and diagnosis, network security, and measurements. The project pro-
poses four inter-related areas of activity: distributed data collection; anomaly detection and classification;
networking applications; and network security education. These activities are discussed below.

Distributed data collection: Accurate detection of changes in spatially distributed packet-level flow-
patterns requires access to data collection devices at many different sites in the network. We will deploy a
novel combination of such devices on the Internet. Aggregated data will be collected from Merit, MichNet
and other Internet2 networks. In addition to this aggregated data, complete header information will be
continuously collected at a dozen or so switches and hubs at Rice, UM and elsewhere; every packet header
passing through these sites will be sanitized and stored. We will also deploy a small number of active
probing sites to perform end-to-end network measurements. All of this information will be combined and
used for our research. We intend to make an anonomized version of portions of this data available to the
research community along with database extraction software. We also intend to freely disseminate the
end-to-end probing software to any sites interested in participating in our data collection activities.

Anomaly detection and classification: Recognition of subtle spatially distributed patterns is an ex-
tremely challenging problem. Our approach is guided by the following principles: 1) scalable algorithms
are best implemented in a decentralized and hierarchical manner; 2) sensitive algorithms should use all
available information about the underlying models that govern the data collection process in addition to
rules or grammars that constrain the “baseline states” of the network; 3) robust algorithms should be insen-
sitive to inaccuracies in models, rules or grammars describing these states. We have two research goals: to
implement anomaly detection and classification algorithms for forensic analysis of large traffic databases;
to investigate on-line decentralized detection and classification of dynamic spatially distributed anoma-
lies. Particular innovations of our research are: 1) development of hybrid model-based and learning-based
schemes for classification of anomalies in packet flow dynamics, backscatter data, and end-to-end mea-
surements; 2) application of a discrete-event dynamic systems (DEDS) and stochastic dynamic systems to
develop a framework to emulate baseline operation of the network. 3) integration of pattern recognition,
DEDS, stochastic dynamic systems, and non-linear time series models for on-line detection of deviations
from the baseline; 4) development of new hierarchical methods for data aggregation, detection, and feature
classification from a network of data collection sites.

Networking Applications: With the help of our collaborators we will investigate several practical
applications. We will consider detection of distributed denial of service (DDoS) attacks where attackers
attempt to flood the buffers of several servers on the network. We will consider detection of coordinated
multiple-site intrusions involving robot larceny, i.e., theft of data and other files, viruses, and worms. For
these applications we will use all available data types including backscatter, active probing, and Secure
Header Vault. We will also investigate service monitoring and verification applications of anomaly detec-
tion and classification.

Network Security Education: Improving computer security education at all levels (K-12, college,
continuing education) is a major goal of this project. Two peer-reviewed workshops will be organized on
the topic of distributed data collection and anomaly detection. We will implement an undergraduate and
graduate curriculum at Rice and UM that provides an interdisciplinary three-stream track in networking,
security, and signals. In this curriculum global network security will be given the prominence it deserves.
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The curriculum will include an instructional laboratory on network security based on an entertaining com-
puter emulation. This emulation will be in the form of a game where teams of students from UM, Rice
and elsewhere will match wits against each other on mitigating simulated attacks on their networks. In
collaboration with UM’s camp CAEN, we will tailor this game to deserving high school students recruited
for a two week summer camp on network security. Finally, in collaboration with Merit/MichNet we will
engage in outreach activities to K-12 teachers and students.

This project will have the following impact: 1) a fuller understanding of the limitations of global net-
work inference methods for detecting, classifying and localizing potentially debilitating attacks and link
failures; 2) development of an on-line methodology for anomaly detection based on stochastic dynamic
systems, DEDS, decentralized decision-making, and statistical pattern recognition. 3) implementation of
scalable algorithms for detecting and classifying emerging attack patterns from routers, switches and other
data-collection sites; 4) dissemination of new software tools for multiple-stream real-time traffic analy-
sis from diverse sources of packet-flow measurements; 5) instruction of undergraduates and high school
students on computer security through a entertaining attack-analysis game; 6) multi-disciplinary and prac-
tical training of graduate and undergraduate students in Signal Processing, Networking, Statistics, Discrete
Event Systems, Optimization, and Security.

The assembled team is ideally suited to the ambitious but important goals of this project. The junior
members of our team are rising stars in networking, signal processing, information theory, and statistics.
The senior members of our team have distinguished records of success in both specialized and collaborative
research projects. All of the senior co-PI’s are fellows of the IEEE and have received awards in the areas of
research, service, and teaching. Our team includes collaborators and supporters from several commercial
and not-for-profit companies and institutions (Arbor Networks, Camisade, Sprint, Lucent, Merit Network,
Internet2, Los Alamos National Laboratory, and Stanford Linear Accelerator Center (SLAC)) that have
had extensive practical experience in the areas related to our research. Letters from the above mentioned
organizations are attached.

A diagram summarizing how the proposed effort is compartmentalized is given in Fig. 1. Principal
associated co-PI’s for each area are listed in Table 1 of the Management section of this proposal.

DATA COLLECTION

Headervault data collection (UM−CITI)
MichNet router data (Merit Networks) 

End−to−end active probing
Data management
Data dissemination

ANOMALY DETECTION
Forensic detection and classification

Discrete event dynamic analysis
Hierarchical data aggregation

NETWORKING APPLICATIONS

Intrusion−evasion detection
Detecting robot larceny
Backscatter analysis
Performance monitoring/verification

Distributed denial−of−service detection
EDUCATION

Network security curriculum 
Workshop and residency program

High school summer camp
Network security instructional lab

K12 outreach program

On−line decentralized detection 

Analysis of packet−flow dynamics  

Figure 1:Highlights of proposed research and education activities.

2. Prior NSF Support
1. Multiscale Signal and Image Processing using Singularity Grammars,NSF CCR-9973188 (1999-
2002), Richard Baraniuk (PI), Rice University: This project aims to develop a framework for multiscale
signal modeling, processing, and analysis for data encountered in networking and image processing ap-
plications. To date, we have developed a new class of models based on wavelets and multifractals that
matches the highly non-Gaussian and bursty nature of traffic that causes overflow in network routers. Our
reduced-complexity model for end-to-end network paths based on a multifractal model is simple, easily
trainable, and accurate. These models are in use at a number of research laboratories and universities.
2. Information theoretic analysis of tomographic systems,NSF BCS-9024370 (1993-1995), A.O. Hero
(PI), University of Michigan: In this grant more pertinent criteria for design of tomographic data collection
systems and new high performance algorithms for reconstruction were developed [55, 61, 54, 41, 40, 53].
The paper [55] won a Best Paper Award from the IEEE Signal Processing Society in 1998.
3. Failure Diagnosis of Modular and Decentralized Discrete Event Systems,NSF ECS-0080406, (2000-
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2003), S. Lafortune (PI) and D. Teneketzis (co-PI), University of Michigan: The overall objective of this
project is to develop a comprehensive methodology for failure diagnosis of large-scale complex systems
with modular and distributed architectures [77]. Our current research and results to-date include: (i) diagno-
sis of intermittent failures in the context of centralized architectures [27]; (ii) dealing with communication
delays in the context of coordinated decentralized architectures [34, 35]; (iii) development of protocols for
failure diagnosis of distributed systems based on modular system models; and (iv) study of the computa-
tional complexity of diagnosability [146, 148, 147, 32].
4. Information Visualization through Graph Drawing: Modeling, Analysis and Optimization Issues,
NSF IIS-9988095; 2001-2003, George Michailidis (PI), University of Michigan: This ongoing project fo-
cuses on (1) developing a flexible modeling framework based on graph theoretical concepts that allows the
efficient representation of complex data structures, (2) formulating information visualization as an opti-
mization problem and (3) developing efficient, robust, and simple algorithms for solving the problem.
5. CAREER: Fluid Replication , NSF 9984078, 2001-2004; B. D. Noble (PI), University of Michigan:
Fluid Replication [92] addresses the problem of client mobility in a wide-area, distributed file system.
The effort’s goal is to provide the performance, safety and visibility one might obtain in a local-area file
system to clients over wide-area networks; this is done through a replication architecture comprising a
central server and a set of untrusted WayStations [93]. We have developed a sensitive estimator of link
performance quantities [72] that can be inexpensively updated [28] and is effective in wide-area networks
[71].
6. A Framework and Methodology for Edge-Based Traffic Processing and Service Inference,ANI-
0099148, 2001-2004, R. Nowak (PI), E. Knightly, R. Baraniuk, and R. Riedi (Co-PIs), Rice University:
This project focuses experts from the fields of networking, digital signal processing, and applied math-
ematics towards the goal of characterizing network service based solely on edge-based measurement at
hosts and/or edge routers. We blend recent work in multifractal traffic modeling, quality of service (QoS)
measurement, and network tomography to develop a unique and innovative framework for network service
inference. This project is developing new algorithms and implementations, providing a vital step towards
better managing and understanding of Internet performance [22, 23, 24, 25].
7. Scientific Group Communication and Collaboration Testbed for Upper Atmospheric Research,
Cooperative Agreement IRI-9216848, 1992-1998, A. Prakash(PI), D. Atkins, T. Weymouth, G. Olson, R.
Clauer, and T. Killeen (co-PIs), University of Michigan: We designed an Internet-based collaboratory for
collecting and distributed real-time data from various instruments in the space science domain, and support-
ing collaborative science activities on that data. The system led to a successful follow-on project, SPARC
collaboratory, as well as four Ph.D. thesis, education of several M.S. students, and several publications
[98, 48, 67, 80].
8. Security and Resource Management in Type-Safe Language Environments, CAREER CCR-9985332,
2000-2004, Dan S. Wallach (PI), Rice University. This project focuses on security issues in language-based
systems that run untrusted and potentially hostile programs. By rewriting these programs before they are
loaded into the system, new security semantics, including complex access control semantics [136], termi-
nation guarantees [108, 109], and transactional rollback [110] can be added to any existing language-based
system without unusual performance costs. We have also looked at other security issues, including the
performance of TLS Web servers [21] and the security of “secure” digital music standards [29]

3. General Research Approach
The research approach described in this proposal represents a significant departure from existing ac-

tivities in networking security, measurement, traffic characterization, and mapping. Instead of focusing on
the “physics” of Internet traffic, parameter estimation, or model fitting, our focus is on detection, localiza-
tion, and classification of abnormal network behavior. Instead of using rule-based heuristics to detect such
anomalies, we use statistical learning theory, stochastic dynamical systems, and algebras of discrete events
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to learn baselines and classify deviations. Our approach is likely to succeed where previous approaches
have failed due to high data dimension, small numbers of data points, and model overfitting.

The super-dimensional nature of the feature and measurement spaces presents major challenges. How-
ever, patterns of normal and abnormal network behavior or changes in behavior may be embodied in a much
lower dimensional manifold. Unfortunately, this manifold is very difficult (or impossible) to describe para-
metrically and therefore nonparametric pattern analyses form the core of our approach. On the other hand,
certain subcomponents of the networking infrastructure are quite well understood and can be modeled ac-
curately. For these subcomponents, model based approaches are unquestionably more powerful and robust.
We envision embedding model-based components within the larger setting of non-parametric pattern anal-
ysis and machine learning, producing a hybrid that leverages the best of both worlds. When combined with
DEDS event-aggregation methods this creates a very flexible framework for analyziing distributed measure-
ments on a large scale. Not only is this a completely new approach in networking, but the underlying theory
for large scale, distributed, event-based pattern analysis is virtually unexplored. Theoretical developments
in this project will have impact in a broad array of pressing new areas of science and technology including
man-made sensor networks and biological networks. This project will combine this new framework with
novel and flexible multiple stream traffic data collection, adaptable information aggregation strategies and
decentralized diagnostic algorithms to detect changes and localize abnormal network behavior.

4. Data Collection and Dissemination
We intend to collect a large variety of data from a diverse set of sites, which we collectively refer

to as thedata collection consortium. This data will include router traces (Netflow/SNMP) obtained from
MichNet and Internet2, backscatter [87, 76] on 35/8 addresses, continuous and complete packet header
traces from several switches and hubs at Rice and UM, and end-to-end active probing measurements at
Rice, UM and elsewhere. The sheer volume of data to be collected poses special challenges including:
archiving, accessing and distributing data to project collaborators; and dissemination of the data to the
wider researcher community. In addition we must ensure anonymity of any private information contained
in the data. Issues are:
Data collection architecture:A distributed architecture is needed to do summarization, compression, and
sharing of data between local data collectors, and for us to be able to run analysis models on the data and
compare the results with actual events that transpired.
Throughput, storage, and communication: At high bandwidth links, one must either do less complex real-
time analysis or perform sampling and aggregation of packet information. Not all data gathered can be
communicated electronically among the local data collection sites or to a central site because of bandwidth
and processing costs.
Privacy concerns: some of the data may contain personally identifiable information. Source IP addresses,
for example, can be linked to a person making the request. A privacy policy is needed for handling such
data. Collected data must be anonymized without adversely affecting its utility for our research on anomaly
detection and classification.

Several members of the team have extensive experience in setting up data collection sites, handling
data archiving and distribution, and addressing privacy concerns. Below, we point out some of the relevant
experience, how it ties in with the proposed architecture, and how the above problems will be addressed.
Proposed Data Collection Process: The general architecture is shown pictorially in Fig. 2. Note that to
keep bandwidth requirements manageable, only summary and compressed data will be exchanged among
the Local Data Collection Sites; more detailed logs will be exchanged on an as-needed basis via secure
file transfers and/or physical media, depending on the volume of data. The Central Data Collection Site is
really a virtual site – the same data can be archived at other sites, including a local site.

Data traces will be collected from cooperative sites and probe machines in the network (not shown in
the figure). Cooperative sites will include routers, switches and terminals in Internet which are part of our
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Figure 2: Block diagram of a two-level hierarchy for data collection and aggregation. There could in general be
several layers of intermediate collection sites that would successively aggregate data-collected at lower level sites.
Processing and decision-making becomes decentralized when the central collection site is removed and the local
sites perform low data-rate message passing to converge on a common decision about the state of the network.
Decentralized decision-making is advantageous when a central site is not available or may itself come under attack.

consortium of sites. Data from the rest of the network will be collected using active probing and end-to-end
measurements from sites within the consortium. These two types of data will of course be very different
but will be merged into a single information stream within our pattern recognition framework.
Router and Gateway-level data collection: Router data will be collected in collaboration with Internet2 and
Merit. Merit manages a regional network, MichNet, in Michigan that connects universities, community
colleges, K-12 schools, libraries, state agencies, and cultural organizations. Merit has substantial experience
in harvesting networking data using passive listening tools. Some of their earlier network data collection
systems as part of research projects include The Internet Rover Package [89] for collecting information on
broken network services; the NetSCARF project [90] for querying SNMP-aware network equipment for
performance information and making that information available over the web; and collection and analysis
of NetFlow data [20]. Netflow data includes source and destination IP addresses/port information, type of
service, packet and byte counts, timestamps, TCP flags, and routing information.

Merit, in collaboration with Arbor Networks (also a partner in this project), also has substantial expe-
rience in collecting backscatter data. These are packets that come from victims of Denial-of-service attacks
and go to random IP addresses, in response to packets with random spoofed source IP addresses from an
attacker [87, 76]. They are often indicative of a denial-of-service attacks on the Internet.

Merit will collect such data for the project gathered from MichNet. Security researchers and data
analysis researchers on the team will help design techniques to anonymize and categorize the raw data.

Merit will also work with other project staff and students to develop and deploy automatic or semiau-
tomatic methods and procedures for notifying individuals and organizations of significant network events
identified by the systems as part of the project.

Peter Honeyman at CITI will enhance and adapt its Secure Packet Vault system [6] to a Secure Header
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Vault system for the purpose of this project. By discarding packet payload such a system can handle much
higher packet rates than currently feasible, can better manage the volume of data that is generated, and
reduces privacy implications. See the discussion of Privacy Concerns and Data Storage and Communication
below.
Dedicated probe machines: We will also develop an open collaborative infrastructure for data collection
and analysis using a network of dedicated probe machines. To address privacy concerns, all accounts on
the machines will be strictly dummy and, wherever appropriate, the data will be discarded after retaining
cryptographic hashes of matching pieces of data across probe machines. In that sense of dedicated use,
these machines will be modeled after the Honeypots in the HoneyNet project, except that we exclude the
goal of encouraging system penetration to study a hacker’s behavior on an individual machine since our
concerns are pattern detection on network data across a number of machines.

The main task of these machines will be to do end-to-end measurements of network parameters to
other probe machines and to selected servers on the network. These machines will log all incoming and
outgoing network packets. The data rates at the probe machines are expected to be relatively modest.
Thus, the machines will also reconstruct application-specific messages to better understand correlations
across application-level data for selected applications to be studied (e.g., distributed denial-of-service, dis-
tributed detection of email SPAM and viruses by correlating email data across a number of nodes, and
service/performance monitoring).
Privacy concerns: Our partner’s experience in handling privacy policies for network data will provide a
basis for the privacy policies in this project. Merit already has a privacy policy in place on how this data
can be used (see http://www.merit.edu/privacy.html), how long the personally-identifiable data can be kept
(at most 72 hours), and provides for specific safeguards to ensure confidentiality of personally identifiable
information when used for analysis or research purposes. In the Secure Packet Vault project at UM, the
privacy policy mandates that all packet fields be kept encrypted under a public key whose corresponding
private key is provided for safekeeping only to an executive officer appointed by the university; the key is
to be used only for reconstructing forensic evidence in legal proceedings.

In this project, there is less interest in collecting forensic evidence for legal proceedings. Merit’s
privacy policy is thus likely to be a more appropriate model. On the other hand, some of the cryptographic
techniques used to sanitize the data in the Packet Vault project are certainly relevant to this work. The key
research that we will investigate here is to ensure that cryptographic transforms are used in a manner that
does not defeat the anomaly detection and classification techniques that are being investigated. In some
cases, it may be more appropriate to run classification and data transformation algorithms first and then
apply cryptographic transforms.

Besides encryption and cryptographic hashes, other techniques will also be used to provide privacy of
the data. This includes converting host addresses to network addresses (by dropping the last 8 or 16 bits of
the IP address). Often, the network addresses will suffice for many anomaly detection algorithms.

Finally, where potential concerns remain in providing detailed data for research, each site will work
with its legal department to provide legal safeguards before releasing such data.
Data storage and communication: Atul Prakash was a co-PI on the UARC and SPARC collaboratory
efforts where space science data was collected from a variety of instruments in real-time and made avail-
able to the space science community. As part of that effort, HTTP-based protocols were developed for
exchanging data among local data collection sites. As in this project, the data was mostly time-series data.
Several tools were developed for time-interval based and attribute-based retrieval and analysis of data. We
will reuse these tools and protocols wherever possible.

One key difference from the SPARC collaboratory effort is that the Netflow, backscatter, and Header
Vault data can be much more voluminous (data from probe machines is likely to be more modest). The
positive side is that storage is getting both inexpensive and compact. In the Secure Header Vault project at
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UM, packets can currently be captured, encrypted, and compressed at 100 Mbs rate. In the Packet Vault, one
cubic meter of storage is estimated to be sufficient to capture all packets per year, which is not insignificant
but manageable. This data should be substantially less voluminous for the Header Vault.

To alleviate the data pressure from multiple collection points and higher data rates (and thus also
keep storage requirements bounded), our primary focus will not be on a complete archive of the data but on
archival of a rolling subset of the data that allows analysis against selected temporal and spatial dimensions.
Several techniques will be employed to limit the storage requirements. First, detailed data will be discarded
after a time period (Merit’s current policy is 72 hours) unless it satisfies one of several conditions: (1)
an interesting event (e.g., distributed denial-of-service attack) occurred during the period; or (2) the data
belongs to a selected periodic interval to help create baselines for anomaly detection; (3) the data is a useful
summary of the detailed data that is reasonable to archive over a long-term.

A standard data representation scheme will be needed for representing data captured at various routers
and probe machines. In this project, the data will mostly be stored in flat files. For each file, converters will
be provided to map the data to XML (with appropriate XSL style sheet specs) and to the Common Intrusion
Specification Language (CISL) format [38] – CISL is a format that has been proposed for Network Intrusion
community as part of its CIDF framework. Wherever appropriate, we will adapt the time-series analysis
and display infrastructure from the SPARC collaboratory for use with network data. As needed by the
community, selected data can be easily dumped into Postgres databases to support SQL queries on the data.

A number of servers, each capable of storing about a terabyte of data using 180GB SCSI disks, will
be deployed at the partner sites. Each site will be responsible for providing web-based authenticated access
to the data on the servers.

5. Anomaly Detection and Classification Research
To understand our approach to anomaly detection and classification we refer the reader back to Fig. 2.

The local data collection sites shown in Fig. 2 transmit compressed (encoded) versions of features extracted
from local data streams. The design of compression and feature extraction algorithms can be based on
models (multivariate time series), rules (learning) or grammars (DEDS). A central collection site, which we
call thenetwork managersite, receives this encoded data, possibly asynchronously, approximates the local
features at the decoder and aggregates these local features using a global feature reconstruction algorithm.
These global features are then classified by detecting feature clusters or other fixed or data-adaptive feature-
space partitioning. The classified features may either be used to refine the models (detection of slowly
varying baseline or “rare-event”) or to ring an alarm (detection of an anomaly).

We will divide our research into off-line (Sec. 5.1) and on-line (Sec. 5.2) methods. For the off-line case
we will apply a combination of statistical learning, invariance, and tree-based classifiers. These techniques
are mature, can be used for forensic analysis, and will result in practical algorithms that can be rapidly
transitioned to our industrial collaborators in the first year of the project. On-line detection and classification
of network anomalies from many local data collection sites is a very ambitious aim for which advances on
many fundamental research issues are necessary. We propose a research program below that will flesh out
these issues.

5.1. Learning Theory and Pattern Classification

Direct methods of detection and classification can be summed up by thecentral tenetof statistical
learning theory [131] “when solving a given problem, try to avoid solving a morecomplexproblem as an
intermediate step.” In the context of the present application this tenet reads: do not focus on parameter
estimation or model fitting when the objective is detection and classification of deviations from a baseline.
Direct methods fall into two broad categories: statistical learning approaches and invariance approaches.
These approaches [58, 59, 60, 70] to detection and classification have led to breakthroughs in high dimen-
sional classification problems for which insufficient numbers of samples are available for model fitting.
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These include areas such as hand written character recognition, genetic sequencing, and image indexing
[2, 15, 30, 50]. We have had extensive experience applying statistical learning and invariance principles to
many different areas relevant to this project including: pattern matching [52], non-linear prediction [86],
and cluster analysis [58, 119]. It is therefore reasonable to expect that application of similar methods may
lead to similar breakthroughs in network anomaly detection.

Tree classifiers partition the feature space in a hierarchical manner, using a divide-and-conquer strat-
egy, that enables robust and flexible pattern recognition. Tree classifiers can easily handle “mixed” data
types and missing data, are robust to outliers and insensitive to monotone transformations of the input
features, and are computationally scalable. Recently, we and others have devised a new approach to con-
structing tree classifiers that provides concrete bounds on the classification [91, 119] performance. We have
also applied tree classifiers to universal prediction and reconstruction of non-linear time series for analysis
of turbulence and other chaotic signals [86], and to high dimensional biological feature selection for drug
discovery problems [46].

SVMs are another very powerful approach to classification of high-dimensional and complex patterns
[131] because they convert non-linearly separable patterns to linearly separable ones in a higher dimen-
sional feature space where hyperplane classifiers can be applied. The Vapnik-Chervonenkis (VC) dimen-
sion of the hyperplane classifiers measures the complexity of the pattern classifier. This complexity can
be used to guard against overfitting to training data and ensures that the classifiers will generalize to new
situations The use of the VC complexity measure is also central to our new tree classifiers [119].

5.1.1. Research Issues

To the best of our knowledge tree classifiers, SVMs, and invariance principles have not been applied
to large-scale analysis of network data and pattern change detection. This application calls for several
important and challenging avenues for new research.
Feature Selection:What network statistics or metrics are most informative for pattern recognition and
change detection? How can these metrics be transformed into empirical risk minimization problems?
Unsupervised learning:can one build a baseline based on sets of past measurements and simultaneously
detect probable deviations of current measurements from the baseline? Can outlier detection methods
similar to the entropic graph methods developed by us [58, 57] be applied to detect deviations from such
an unknown baseline?
Model-based Subcomponents:Can well-modeled subcomponents of the Internet and traffic measurements
be embedded into a larger, learning based framework? For example, how can known correlations and
dependencies between measurement sites be incorporated into tree or SVM classification schemes? Can
SVM’s, trees and DEDS be woven into a unified anomaly detection and diagnosis algorithm that collec-
tively exploits the strengths of statistical learning and model-based paradigms?
Data Collection/Measurement Placement:Given a limited number of measurement resources, how can
these resources be optimally deployed for pattern recognition/detection purposes?
Change Detection/Localization:How well can changes be spatially and temporally localized, and how
should active probing methods assist passive data collection to this end?
Decentralization:Most tree classifiers and SVMs act as a centralized scheme. Can these methods be broken
up into smaller subcomponents that pass partial pattern classifications between themselves to achieve a
more decentralized, and scalable approach to global Internet pattern recognition?
Hierarchical Coarse-to-Fine Hypothesis Testing:Rather than directly attempting a fine-grain classification
of network anomalies, perhaps a nested sequence of hypotheses is a more robust approach to Internet pattern
recognition. For example, anomalies could first be coarsely categorized into equipment/protocol failures
or malicious activity. This coarse classification could feed into subsequent analysis stages that refine these
initial hypotheses (e.g., DDoS attacks, spoofing, etc.)
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Classification from end-to-end measurements:A corollary to the central tenet of statistical learning theory
is that solving the full network tomography problem, i.e. performing link parameter estimation, may be an
unnecessary intermediate step towards anomaly detection, classification and localization. In what manner
should end-to-end probing measurements be merged with passive packet-flow measurements to form im-
proved features for anomaly detection? How should probe paths be designed to best complement MichNet
router data so as to enhance detection and localization performance?

5.2. On-line Distributed Anomaly Detection and Classification

We refer the reader once again to Fig. 2 for the proposed distributed architecture, which in general can
consist of two or more levels of data aggregation and processing. At the lowest level, local nodes establish
a baseline of local traffic and local packet-level information, and measure, in real-time, local characteristics
of the network operation (e.g. local traffic, size of incoming packets, destination of incoming packets, etc.).
Based on their on-line (real-time) information the nodes detect deviations from their baseline operation
and depending on the hierarchical structure, report these deviations either to the network manager or to
intermediate-level nodes that are responsible for monitoring the operation of larger than local portions of
the network. The intermediate nodes process the information they receive and report to nodes above them
in the hierarchy (eventually, to the network manager).

According to the taxonomy proposed in [7], intrusion detection can be classified into three categories:
anomaly detection, signature detection, and compound detection. Conceptually, anomaly detection assumes
a partial model of “normal” behavior [121, 134, 73] while signature detection assumes a partial model of
“intrusion” [66, 75, 79, 19, 49, 95]. As its name indicates, compound detection assumes partial models of
intrusive and normal behaviors [78]. This is the approach that we shall adopt in our investigations.

Below we first present our approach to characterizing the various levels of the aforementioned hierar-
chy. Then, we will present the research issues at each level of the hierarchy.
5.2.1. Research Approach

As relevant information is contained in the temporal variations of local traffic and packet flows, a
stochastic dynamic systems framework is natural for the local data collection sites. Such a framework can
yield a compact dynamic systems approximation to the “baseline” of the microscopic evolution of traf-
fic and packet-level information at local nodes or small groups of neighboring nodes. Application of a
stochastic dynamic systems framework could be model-based or learning-based. Model-based examples
include variants on autoregressive moving average (ARMA) [14] time series models such as: multifractal
(MF) ARMA [105, 104, 103, 102, 115, 137, 116] and fractional autoregressive integrated moving average
(FARIMA) [69, 10, 88] systems. Learning-based examples include non-parametric phase-space reconstruc-
tion algorithms using Taken’s imbedding methods [86, 130], classification and regression trees (CART)
[86, 8, 120, 13, 11, 50, 91], multivariate splines [135], and state space particle filters [24, 36]. Features of
the residual prediction errors produced at the local nodes will be defined and used both to establish local
baselines and to detect deviations from this baseline. Deviations are classified and transmitted to the higher
levels of the network hierarchy.

Upper levels of the data-collection hierarchy aggregate the received locally-encoded features into
global features as illustrated in Fig. 2. We will investigate both learning-based and model-based approaches
to feature aggregation. In the model-based approach we will use a DEDS framework to capture the oper-
ation of the intermediate and highest levels. The DEDS framework, either logical [17] (which is based
on automata and language theory) or stochastic [12] (which is based on Markov or semi-Markov chains),
provides a compact description of what one might call the “macroscopic” evolution of the network. DEDS
can efficiently describe patterns of normal network behavior and be used to detect changes in behavior of
individual nodes or larger portions of the network. The intermediate levels and the central data collection
site receive information in the form of messages from lower levels. Such messages report deviations (such
as “increase in traffic in a certain part of the network”) or some “statistic” carrying information from lower
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levels (such as “likelihood” of a traffic anomaly in a certain part of the network). Such deviations are caused
by events that are “unobservable” by the data collection nodes. Examples of unobservable events include
“initiation of attacks on the network” or “rare increases in normal traffic”. Based on the received messages,
the intermediate levels and the network manager have to estimate their “aggregate” state and detect attacks.
Attacks on the network are modeled as sequences of observable and unobservable events over space and
time, or patterns of network behavior over space and time.

To improve the quality of its estimates (therefore, the quality of its diagnostic decisions) the network
manager may query lower levels so as to acquire specific information. To provide the information requested
by the network manager, the lower levels may adjust their rules of acquisition and processing of informa-
tion. These adjustments, together with information received on-line, lead to the adaptation of the dynamic
systems describing the operation of local nodes. The information received by the network manager as a
result of its queries to the lower levels may lead to adaptation of the DEDS describing the operation of the
higher levels. Thus, the two-way interaction among various levels of the hierarchy leads to a continuous
“learning’ of the network’s operating environment and a continuous improvement of the quality of infor-
mation upon which the detection of network attacks is based. Furthermore, these interactions point to the
important research issues at each level.

5.2.2. Research Issues

To achieve its objectives the network manager must ensure that: (i) it has a DEDS that represents
adequately the operation and dynamic evolution of the network; (ii) it has the quality of information that
allows it to make the correct decisions about the status of the network; and (iii) it employs decision rules
that effectively utilize the information available to it. Consequently, three classes of problems we propose
to investigate are: (1) Active acquisition of information; (2) Data fusion/coordination mechanisms; and (3)
DEDS updating mechanisms that are based on the results of active acquisition of information.

Within the logical and stochastic DEDS framework, we propose to formulate “active acquisition of in-
formation” as an optimization problem where the network manager has to select the information it requests
from the intermediate levels to achieve its goals. We will assume that information is “costly” because it
increases the “overhead” of the network operation due to data processing. This will result in a tradeoff
between acquisition of information and detection capabilities.

Data fusion/coordination mechanisms integrate the information sent to the network manager by nodes
of the intermediate levels. For logical as well as stochastic DEDS we propose to use the methodology
developed in our prior investigations [113, 114, 112, 33, 77], which has been successfully demonstrated
in practical applications: large-scale telecommunication networks [1, 96, 9] and wireless LANs in vehicle
platooning [31]. The results of [113, 114, 112, 33, 77] deal primarily with logical DEDS and “simple” fault
events. To develop effective data fusion/coordination mechanisms for the network manager we must extend
our methodology in two directions: (i) develop a diagnostic methodology similar to that introduced in [113]
for stochastic DEDS; (ii) generalize the notion of “failure-type labels” (introduced in [113] for tracking
unobservable fault events) to “sequences of labels” over space and time that capture partial/complete attack
patterns from a database of such patterns.

Information that is received from active acquisition of information and cannot be unambiguously in-
terpreted by the network manager will lead to an update and refinement of its DEDS. Our approach to this
issue will combine results from active acquisition of information and adaptive control and learning theory
for logical and probabilistic automata; see [74, 151, 45, 44, 43] and the references therein.

A key feature of the intermediate levels of the hierarchy is that information at each level is decentral-
ized. Intermediate nodes possess different information about the status of the network. The fundamental
research issues associated with the design and operation of these levels are: (i) The determination of the in-
formation partition. Given that local nodes will have to report to one, or perhaps more than one intermediate
nodes, we must specify “which local nodes report to which intermediate node.” (ii) After an information
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partition is determined, the information across intermediate nodes will, in general, be correlated. Conse-
quently, the intermediate nodes will have to jointly determine the rules that specify their communication
with the network manager. (iii) Based on the “active acquisition of information” instructions they receive
from the network manager, the intermediate nodes have to determine how to query local nodes to receive
the information requested.

The information partition at the intermediate levels of the hierarchy has to achieve the following
objectives: (1) To provide each of the intermediate levels nodes with the quality of information that is
necessary to ensure that each node effectively monitor its portion of the network. (2) To create a high-
degree of “informational redundancy” at the intermediate levels of the network hierarchy, which ensures
that the network manager’s quality of decisions does not significantly deteriorate when one (or more)
of the intermediate nodes fails or is attacked. The literature on information structures and partitions
[107, 37, 39, 85, 106, 145, 142, 139, 3, 4, 127] will form the basis of our approach to designing infor-
mation partitions.

The classes of problems in research issues (ii) and (iii) above are similar in nature because they address
the joint determination of optimal (with respect to some performance criterion) decision rules by a group
of decision makers that have the same objective and different but correlated information. When these
problems are considered in connection with the “active acquisition of information” problem, they result
in “dynamic team” problems. The approaches to solving dynamic teams [140, 65, 141, 133, 150, 132,
149, 100, 144, 138, 126, 63, 143, 125, 97] are computationally formidable. In contrast, when the above
problems are considered in isolation from the “active acquisition of information” problem they result in
“partially nested” teams [64, 18], which are simpler than dynamic teams and have been successfully applied
to decentralized detection [150, 128]. We expect that by studying the problems that arise in research issues
(ii) and (iii) in isolation from the “active acquisition of information” problem we will describe effective
guidelines and heuristics for their solutions. Such guidelines and heuristics will also be developed using the
decentralized analogue of the sequential Monte Carlo Markov chain framework that appeared in [24]. The
classes of problems in research issue (ii) can also be viewed as a “modular diagnosis” problem. since every
intermediate node has a different DEDS of the overall network. We propose to approach such a modular
diagnosis problem by using and extending our prior work on diagnosis of DEDS [113, 114, 112, 33, 77].

In addition to the research issues discussed in Section 5.1, local nodes have to detect deviations from
their baseline operations, classify them, and report them to the intermediate levels. Furthermore, local
nodes have to respond to requests associated with acquisition of information by higher levels.Within the
context of stochastic dynamic systems (MF, ARMA, FARIMA), these issues are conceptually similar to
research of issues (ii) and (iii) discussed above regarding the intermediate nodes.

6. Applications
A large fraction of DARPA’s Fault Tolerant Networking funded projects and commercial products

from both established companies, such as Cisco Systems, and a flock of startup companies, such as Arbor
Networks, Asta, Mazu, Reactive, etc., are proposing deployment of Internet-wide infrastructure to combat
DDoS attacks, intrusions and worms. The pattern recognition and detection framework described in the
previous sections can be applied to the early detection, prevention, and analysis of a variety of known at-
tacks. Furthermore, using the unsupervised learning framework discussed in the previous section, outlier
detection from an estimated baseline can be used to help discover new types of attacks. When supple-
mented by active probing methods, we can perform tomography to detect changes in topology, latency, and
other types of active service monitoring tasks. In this section we describe example applications that will
be studied in this project, their relationship to the more general detection framework, and our proposed
approaches.

DDoS Attacks: Distributed denial-of-service (DDoS) attacks are an increasingly damaging class of
coordinated attacks launched from several attacker sites each of which sends malicious packets to the victim
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at very high rate/intensity over a period of time. Attacks and intrusions are becoming more-and-more
prevalent (as many as a dozen attacks per week on the UM EECS servers recently), target a wide variety of
hosts (servers, routers, terminals), and can last for hours, days and sometimes longer. Emerging DDoS
attacks are typically accompanied by subtle and simultaneous changes in traffic-level and packet-level
statistics at different sites. This makes DDoS an ideal application for our distributed anomaly detection
methodology. Most current approaches to detection rely on distributed traffic correlation capabilities to
detect anomalies. The basic architecture proposed invariably involves distributed monitoring, some form of
distributed traffic correlators fed by these monitors, and installation of traffic filters for detection of traffic
anomalies. The key research issues in building such an architecture include: How to detect attacks with
minimal false positives? How to mitigate the attacks? And how to do both in a scalable and timely manner?

Ideally, the earlier the attack is detected, the earlier actions can be taken and the better the network can
be protected. The difficulty is that the change in traffic pattern can be very subtle across the network due to
the distributed nature of these attacks. Statistics from multiple locations have to be carefully correlated to
detect such attacks. Another difficulty is that accurate detection of such weak changes is inherently subject
to high false alarm rate. We initially will concentrate on detecting spatial and temporal changes using
off-line statistical learning methods discussed in Section 5.1. As the research of Section 5.2 progresses,
on-line implementations will be investigated. We will evaluate the responsiveness, as well as accuracy of
our system under simulated attacks. The focus will be on enhancing the responsiveness and at the same
time decreasing the probability of false alarms.

Backscatter Analysis: One particularly effective type of DoS attack can be achieved through a “SYN
flood” [26], which consists of a stream of TCP SYN packets directed to a listening TCP port at the victim’s
site. Such a mechanism can be rendered extremely powerful, if it can be used from a set of compromised
Internet nodes, where attack daemons producing a group of “zombie” hosts can be installed. The result is a
coordinated attack from numerous zombies onto a single site. Hence, SYN packets with different spoofed
IP addresses arrive at the victim, who is rapidly overwhelmed by the various requests. A key feature of
this mechanism is that, to cover his tracks, the attacker spoofs his source IP addresses by randomly setting
the IP source address field in his transmitted packet header. As shown by researchers at CAIDA [87],
Merit Networks and Arbor Networks [76], any ISP that has access to a large chunk of unused address
space can detect the presence of a major attack. These messages are part of thebackscattercreated by
the attack, and also identify the victim (but not the attacker). As backscatter is generated by any spoofing
mechanism it has also been used to detect and localize victims of intrusions, worms and viruses [68]. In
collaboration with Arbor Networks, Merit has exploited itsclass Aaddress space (called 35/8 address space
in the current classless IP address allocations) to track DoS using backscatter analysis [82]. We propose
to work with Arbor Networks and Merit to extend backscatter analysis in several new directions including:
1) apply multivariate time series analysis to the backscatter detected in Merit’s 35/8 over time to identify
trends and models for normal vs. malicious backscatter signatures; 2) build a baseline and a classifier
to recognize normal and anomalous backscatter patterns based on the latest statistical learning methods,
including classifier boosting and randomization methods developed by us [52, 51] and others [2, 42, 13]);
3) investigate the applications of DEDS, and of simpler sequential detection techniques developed by us
[129, 56] and others [124] (e.g. sequential probability ratio tests or cumulative sum tests), to perform
on-line detection and classification of attacks as they evolve.

Intrusions and Evasions: While network capacity is threatened by DDoS aimed at CPU cycles and
memory, networks are constantly exposed to more subtle attacks. Robot larceny and espionage constitute a
common form of malicious activity targeting actual content stored at servers, thus attempting unapproved
access to networking resources, sensitive data and theft of marketable information. This type of attacker
will use a spoofed source address and break into a system. The attacker may sometimes be detected by a
host-based or a network-based intrusion detection system (IDS). A host IDS may check logfiles or look for
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signatures indicating a suspicious sequence of events generated by the operating system or an application
during. A network IDS detects suspicious packet behavior, e.g. TTL manipulations on TCP, unusual IP
options, or timing patterns [47]. However, attacker evasions of IDS systems are common and frequently
exploit small ambiguities in the applications layer. The evasion strategies can be quite complex, sometimes
eluding even the most sensitive pattern recognition or anomaly detection algorithms [117, 118]. We think
that these ambiguities could be efficiently captured by the proposed DEDS framework, possibly leading to
greatly improved detection of new evasion strategies. We will develop a DEDS model for the state space of
events that describe user interactions with certain web applications. Another approach we will investigate
is to use pattern recognition to discriminate between human behavior and behavior of coordinated machines
that are expected to be much less correlated over space and time [83, 84].

SPAM and viruses: SPAM and viruses via email are a growing problem. The current solutions to
SPAM that are being explored tend to be local – based on text and header categorization of received email,
based on machine learning techniques (for example, see [81, 5, 99, 111, 62, 94, 16]). A more distributed
approach is exemplified by the Vipul’s Razor [101], in which a catalog of SPAM is maintained. This catalog
can used by clients to filter out known SPAM. End-users are responsible for reporting a SPAM message to
the catalog server, which is then used by other users for filtering. Using the packets directed at the SMTP
ports of the probe machines (which only have dummy accounts) as well as the cryptographically hashed
data at the packet vault directed at the SMTP ports, we believe that there is an opportunity to explore the
design of a distributed and automated approach to detecting and characterizing SPAM and viruses. The
research questions we will attempt to answer are: Can email viruses, which are often sent as attachments
of well known types, be distinguished from valid attachments of the same type based on distributed pattern
recognition techniques?

Service/Performance Monitoring: It is now common for Internet service providers to offer a vari-
ety of service levels to customers. Service level agreements specify performance criteria that the network
provider guarantees to satisfy. Such quality-of-service (QoS) criteria can include the amount of bandwidth
made available to the customer and bounds on the maximum delay (which is important for Internet tele-
phony and streaming applications). However, anomalous behavior such as malicious activities and faults
can severely degrade network service. Such anomalies are reflected in spatially localized packet delay and
loss distributions. For example, a DDoS attack may disrupt service in a subnetwork, producing measurable
losses and delays at a remote site. From the perspective of a service provider (or a customer of a provider)
it may be important to determine if the anomalies are occurring within the service providers network or if
they are external. While it may be relatively straightforward for a provider to detect problems within their
own network, detecting and localizing anomalous behavior in other portions of the Internet that may be
affecting their service is highly non-trivial.

The ability of network tomography to localize pathological network performance to individual com-
ponents or subnetworks could aid in the early warning and detection of attacks and intrusions. In this
project we will investigate the use of our network tomographic methods [22, 23, 25, 122, 123] to detect
and localize patterns of change in unobservable portions of the network; e.g., changes in routing topologies
due to downed links during an attack and evolutionary patterns in delay and dropped packet statistics. Fur-
thermore, on-line network tomography methods like those developed in [23] can provide spatio-temporal
localization of anomalous changes, allowing for very rapid detection of attacks and failures. An additional
key research issue it to carefully investigate how tomographic methods (based on active probing) can sup-
plement passive data collection at measurement sites in our infrastructure. We envision focused adaptive,
active probing, driven by the passively collected data. In effect, active probing and on-line network to-
mography will allow us to “fill in the gaps” between the the incomplete set of measurement sites in the
infrastructure, without overburdening the network with large amounts of additional probe traffic.

7. Education
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The scope of this effort will provide many opportunities for students to be involved in research. Be-
cause the research draws from a number of traditionally separate fields, the project also informs the curricu-
lar process. This effort will deploy networking laboratories within the host institutions to provide hands-on
learning opportunities to undergraduate and graduate students, and include plans for outreach to precollege
students. The project will also coordinate a number of broadly-targeted “competitions” to provide both
visibility and wide-ranging educational opportunities focused on the problem of global-scale security.

Security Curriculum : The proposed curriculum draws from a number of distinct, traditionally sep-
arate fields, including security, cryptography, networking, software systems, signal processing, and mod-
eling. Students must have a deep understanding of some subset of these topics, plus a broad appreciation
for the remainder. This effort proposes to provide such training through a two-pronged approach of course
development and curriculum organization. Co-PIs at each institution are developing or have recently devel-
oped courses in a number of these areas, spanning the senior undergraduate level through research-oriented
graduate courses. These courses will be organized in three mutually-supportingthreads: security, network-
ing, and signals. At each institution, each thread consists of one (or more) introductory courses plus at
least two courses focused on a more specific topic within the thread. The introductory courses include
broad coverage of a wide variety of topics, offered to senior undergraduates and first-year graduate stu-
dents. The more focused courses are intended to prepare our graduate students for research in the area.
Each student on the project is expected to complete two courses from a single thread for depth, plus any
two courses from the other two threads for breadth. These courses have already attracted industrial support
from Schlumberger, Intel, IBM, and others. Some of these courses may be offered jointly by both sites,
utilizing the distance learning capabilities each institution already has in place. We will look to develop a
new interdisciplinary course on Global Network Security which will incorporate the diverse expertise of
the research team on this project.

Instructional Laboratory : Students at Rice and Michigan who are participating in the research effort
will also have access to a networking laboratory. This laboratory, described in more detail in the budget
justification section, will serve the dual purpose of educating students in network security and providing a
testbed for our research. In this lab students will learn about attack strategies and mitigation (on a scaled
down, “private” network emulation) and will also generate attack scenarios for testing.

Network Security Competition: We propose to offer periodic competitions—open to students at any
institution—for detecting and analyzing simulated attacks which will be emulated from data collected over
the course of the project. Each competition will commence with a public release of sanitized data that
contains one or more known attacks, along with the toolsets that have been developed up to that time.
Entrants will be judged based on how quickly they can isolate attack signatures, along with the specificity
and recall of the attack identification. These competitions provide educational opportunities beyond the
host institutions, as well as active feedback on the tools and data collection process, allowing continuous
improvement of both.

K-12 Activities: This project also proposes to incorporate pre-college outreach activities, in order to
build a sustainable population of interested, talented students. There are two avenues available for such
activities. First, Merit acts as the Internet service provider for K-12 institutions throughout the state of
Michigan. This relationship provides direct access to local administrators at these institutions, and thus
both channels for outreach to and feedback from these institutions. By participating in workshops of-
fered by Merit and attended by K-12 staff, we can advertise opportunities and potentially influence ad-
vanced computing curricula at these institutions. Second, the College of Engineering at UM also orga-
nizes Camp CAEN, a summer camp with a computing focus for students between the ages of 13 and 17
(http://campcaen.engin.umich.edu/ ). Co-PI’s at Rice and Michigan plan to organize courses
within Camp CAEN introducing students to security and monitoring issues. Camp CAEN also provides
an all-day, girls-only offering, providing a more supportive environment in which to attract more women
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to the field. Every year scholarships for kids will be offered (included in the budget). Special efforts will
be made to recruit economically disadvantaged kids with the help of CAEN admissions staff and our K-12
MichNet outreach program.

Rice and Michigan, in establishing a summer program for high school students, hope to create excite-
ment in these students that will hopefully carry them forward through computer science as a major and as
an eventual profession. By getting students to think of security issues now, when most of them have had
only basic training in programming, we hope these students will learn to approach their future education
with an eye toward robustness in the face of malicious threats. We note that our program is explicitly not
designed to teach students to be “script kiddies”. While we do intend to teach how such tools work, the
focus will be on how to defend against such attacks. We will also include an explicit lecture on the ethics
of performing research in computer security.

In a two-week course, there is a limit to the depth of material that can be covered, particularly for
students without a college-level background in computer science. The main curricular elements will be:

- explaining how modern computer systems work (operating systems, networking, file systems, and so
forth), including discussing vulnerabilities that have been found in these systems.

- hands-on work with current security tools, including packet sniffers, intrusion detection systems,
virus scanners, and the like.

The summer program will conclude with an adolescent-adapted version of the network security com-
petition, described above, pitting teams of summer-camp students against each other. We will place these
students in a testbed network environment of machines for which they have full administrative privileges.
We will have a “malicious” host that is attacking the students’ network. Before the malicious host is in-
troduced, the students will have an opportunity to install tools and prepare for being invaded. Then, the
malicious host will begin attacking their network, using some off-the-shelf attack tools unknown to the
students. The students will be responsible for identifying and cleaning up the attack. Appropriate firewall
technologies will be placed around the student network to prevent these attacks from “leaking” out to the
actual Internet. The competition, as such, will be to see which student group can resolve the attacks first.

This summer camp and competition experience will provide students with an opportunity to learn real
world skills and gain an appreciation of the damage that can occur when a site is under attack. We believe
this will give students an invaluable insight into how the Internet really works (and does not work).

8. Impact of Project
The considerable vulnerabilities of open communication networks will continue to be exploited and it

is inevitable that new weaknesses will continue to be discovered. This creates enormous challenges for net-
work security in general and detection of malicious attacks in particular. We have assembled a team with the
combined expertise necessary to make an impact on the challenging network anomaly detection problems
discussed in this proposal. While there are other university-led research activities in networking, including
a NSF funded ITR-project focussed on network traffic analysis (“A multiresolution analysis for the Global
Internet”), our team is unique by its combined strengths in the areas of network measurement, traffic anal-
ysis, network tomography, discrete event-dynamical systems, pattern recognition, network security, and
education. If funded the project would likely have major impact on these areas. The participation of our
commercial and non-commercial collaborators at Arbor, Sprint, Merit, Internet2,. . . , virtually guarantees
rapid transfer of technology developed by the co-PI’s (one of whom (Ogden) is with Merit Networks). The
involvement of leading researchers in network failure detection at INRIA(France) and network data analy-
sis at McGill(Canada) contributes an important international component to network security research. The
project’s impact on network security education will be broad and significant, affecting K-12 teachers, high
school students, undergraduates, graduate students, and continuing education.
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8. Management Plan
To accomplish the research and education aims of this project requires afocused large scale and multi-

disciplinary effort. The breakdown of senior personnel by sub-areas in Table 1 illustrates the balance of our
team in the four areas of this project.

The coordination of collaborative projects which span four colleges (UM, Rice, McGill, IRISA-
Rennes) and three networking organizations (Arbor Networks, Internet2 and Merit) requires a tight man-
agement plan. Research partnerships which lead to productive inter-disciplinary collaborations will be
essential for success of this effort. We will allocate 0 to 2 GSRA’s per co-PI depending on research needs.
All GSRA’s will have at least two co-PI’s on their thesis committees to further the collaborative aims of
this project. In addition we will develop and team-teach courses combining signal processing, control sys-
tems, statistics, and network security in the context of the new curricula we are developing at UM and
Rice. Furthermore, close collaboration with collaborators, contacts, and co-PI’s at Internet2, Merit, Lucent,
SLAC, and Arbor Networks on solving real-life networking security problems will help maintain focus and
relevance of the research.
National Advisory Committee: A National Advisory Committee (NAC) will be created with representa-
tives from industry, government, and academia. The role of this committee will be to annually review the
work carried out on this project, provide guidance on future directions of the research, and help identify
ways to improve practical impact of the project. We have agreements with the following companies and
organizations: Sprint, Stanford Linear Accelerator Center (SLAC), Merit Networks, Los Alamos National
Lab (LANL), Lucent Bell Labs (Murray Hill), Internet2, Camisade, and Arbor Networks to serve on the
NAC (see attached letters). One other organization (Google, Inc) has also expressed interest and will be
asked join the NAS if the project is funded. There will be an annual meeting of the NAC every spring which
will occur right after our internal project review meeting.
Internal Advisory Committee : An Internal Advisory Committee (IAC) will be created with representa-
tives from various university organizations. The prime function of the IAC will be to advise us on issues of
privacy and human subjects implications of our data collection and dissemination activities. The IAC will
include representatives from legal, computing, and networking organizations within Rice and UM. Issues
of privacy and human subjects will be addressed with the IRB’s (Internal Review Board) of UM and Rice
if this proposal is funded.
Electronic Dissemination: A website will be created as an archive for research reports and articles, sample
data traces, interactive software, course materials, and announcements. This website will be accessible to
the public. It is our intent to make some of the data collected available to the public, along with terms and
conditions of use, on this web site. Part of the project administrator’s job will be webmaster for this site.
Residency program and minisymposia: Each year we will run a two-week residency program in network
security at UM. This will be a small and selective “by-invitation” program run during the summer session
at the University of Michigan. The aim of the residency program will be to gather together top researchers
from academia and industry around a topic or theme. Initially we will focus on data collection, pattern
recognition, and global security. The residency program will be structured as follows. Each year names
of potential session organizers will be solicited from co-PI’s, collaborators and others, e.g. the NAC. The
slate of names will be forwarded to the project executive committee and two organizers will be selected to
organize focussed minisymposia during one of the two weeks in the program. The organizers would each
control a budget to reimburse all inviting participants for travel and lodging expenses for their two-week
residency. UM facilites (Cambridge House or residence halls) would be used for lodging to cut down on
expenses.
Biennial Workshops: We will organize a biennial workshop on Data Collection and Anomaly Detection
which will have keynote speakers, special invited sessions, and contributed sessions. The workshops will be
aimed toward the research community. The workshops will take place over three successive days. They will
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co-PI Data Collection Anomaly Detection Applications Education
A. Hero(UM) X X
R. Baraniuk(Rice) X X
A. Benveniste(INRIA) X X
M. Coates(McGill) X X
P. Honeyman(Merit ) X X
S. Lafortune(UM) X X
M.Y. Liu(UM) X X
G. Michailidis(UM) X X
B. Noble(UM) X X
R. Nowak(Rice) X X
J. Ogden(Merit) X X
S. Pradhan(UM) X X
A. Prakash(UM) X X
R. Riedi(Rice) X X
D. Teneketzis(UM) X X
D. Wallach(Rice) X X

Table 1: Matrix of associations between senior-personnel/collaborators and sub-areas of this project.

have a strong education component involving tutorials on network traffic measurement, network security,
and network modeling. At each workshop there will be a session on novel classroom teaching methods
for lower level signal processing and networking courses. We will also have sessions featuring papers
presented by students (undergraduate and graduate) on networking projects completed over the previous
year in connection with this grant.

Project Executive Committee

Project Director

Pattern Recognition Data Collection Applications Education

A Hero

M. Liu, B. Noble, R. Nowak, A. Prakash, J. Ogden, D. Teneketzis

D. Teneketzis A. Prakash M. Liu B. Noble

Internal Advisory 
Committee

OGC

IRB

CITI

CAEN

ITR Project co−PI’s
Hero, Baraniuk, Honeyman, Lafortune, Liu,  

Michailidis, Noble, Nowak, Ogden
Prakash, Riedi, Teneketzis, Wallach

McGill

Coates

Arbor NetworksInternet2

Jahanian

INRIA
Benveniste Munn−Freeman

ITR Project Collaborators
Merit

Williams

National Advisory

Sprint
SLAC

Committee
Arbor Networks

Camisade
Internet2
LANL
Lucent

Merit Network, Inc

Figure 3: Management structure for the project. Executive committee will operate as the clearinghouse for all
decisions and will solicit inputs from the National Advisory Committee (NAC) - whose members are indicated - and an
Internal Advisory Committee (IAC) which will be composed of representatives from CITI (UM Center for Information
Technology Integration), CAEN (UM Computer Aided Engineering Network), OGC (UM Office of General Counsel),
and the IRB (UM Internal Review Board). The executive committee will make decisions on resource allocation, area
progress, and other operational issues.

Team Management Structure:
The project will have a three level management structure illustrated in Figure 3. Four area leaders

(B. Noble, M. Liu, A. Prakash, D. Teneketzis) will be in charge of their respective areas and will have the
following responsibilities:

� Holding regular meetings of co-PI’s and collaborators associated with their areas.

� Assessing and reporting on progress in their area.
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Year 1 2 3 4 5
Month 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

Education � � } � � } � � } � � } � �

Workshops I F � � F � J

Summit (NAC) z z z z z

Execom Meetings � � � � � � � � � � � � � � � � � � � � � � � � �

Table 2: Time line for educational activities, hosted workshops and other outreach programs, summit meet-
ings of all participants with the National Advisory Council (NAC), and Execom meeting.

� camp CAEN for high school kids
� Development of attack emulations
} Rice/UM gaming competition
I Kickoff meeting
F Anomaly Detection Workshop
� Summer residency program
J Wrapup meeting
z Annual NAC/Project meeting
� Excom meeting

Table 3: Legend for timeline (Table 1)

� Identifying potential difficulties impeding progress.

� Collecting input from co-PI’s and drawing up a set of year-end goals for sub-projects in their area.

� Reporting on their area to the executive committee (see below).

Major project decisions will be made by Prof. Hero in consultation with the executive committee
(Excom), formed by the four area leaders plus a representative each from Rice (R. Nowak), and Merit Inc.,
(J. Ogden). The Excom will meet 5 or 6 times per year and will have the following responsibilities:

� Review overall progress of the project and identify potential difficulties and opportunities.

� Review the specific year-end goals for each research area.

� Allocate resources to research areas and to co-PI’s based on project-relevance and past performance.

� Meet in closed session with the NAC once per year.

� Meet with the IAC as needed.

A comprehensive year-end review of progress in each area will be based on the following criteria: the
effectiveness of collaborations; innovations in theory, algorithms, data collection, or education; and dis-
semination (journal and conference publications, web-tools, technical transfer, data disseminated, etc).

Prof. Hero will be aided by a project adminstrator, the executive secretary, who will help manage the
day-to-day activities of the project. A part-time staff person will be responsible for monitoring the data
collection sites and overseeing maintenance of the database of traffic traces at UM and elsewhere. Another
part-time staff person will help us to maintain the networking laboratory. For more details on staff see
budget justification.

A time-line for the five year duration of the project is given in Tables 2 and . Each year we will
have face-to-face meetings involving all co-PI’s, collaborators, and the NAC. At this meeting co-PI’s
and collaborators will present previous year’s research and education results to the NAC. Other indus-
try and government representatives will be invited to attend and participate in these meetings. In addi-
tion to these larger meetings there will be several smaller meetings during the year. We will utilize we-
bcast/videoconference/teleconference facilities at Rice and UM to include all co-PI’s in these meetings.
Several UM co-PI’s will visit co-PI’s at Rice, and vice versa, for more extended periods.
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