Divergence matching criteria for indexing and registration

Alfred O. Hero

Dept. EECS, Dept Biomed. Eng., Dept. Statistics University of Michigan - Ann Arbor hero@eecs.umich.edu http://www.eecs.umich.edu/~hero

Collaborators: Olivier Michel, Bing Ma, Huzefa Heemuchwala

Outline

- 1. Statistical framework: entropy measures, error exponents
- 2. α -MI indexing using single pixel gray levels
- 3. α -MI indexing via coincident features
- 4. α -entropy and α -MI estimation via MST

(a) Image I_1

(b) Image I_0 (c) Registration result

Figure 1: A multidate image registration example

Statistical Framework

- *I*: an image
- Z = Z(I): an image feature vector over $[0, 1]^d$
- I^R a reference image, feature Z^R
- $\{I^i\}$ a database of *K* images, features Z^i
- $f(Z^R, Z^i)$: joint feature density

For a pair Z^R and Z_i we have two hypotheses:

 $H_0: f(Z^R, Z^i) = f(Z^R) f(Z^i)$

$$H_1: f(Z^R, Z^i) \neq f(Z^R) f(Z^i)$$

Divergence Measures

Refs: [Csiszár:67,Basseville:SP89]

Define densities

$$f_1 = f(Z^R, Z^i), \quad f_0 = f(Z^R) f(Z^i)$$

The Rényi α -divergence of fractional order $\alpha \in [0, 1]$ [Rényi:61,70]

$$D_{\alpha}(f_1 \parallel f_0) = \frac{1}{\alpha - 1} \ln \int f_1 \left(\frac{f_1}{f_0}\right)^{\alpha} dx$$
$$= \frac{1}{\alpha - 1} \ln \int f_1^{\alpha} f_0^{1 - \alpha} dx$$

Rényi α-Divergence: Special cases

• α -Divergence vs α -Entropy

$$H_{\alpha}(f_1) = \frac{1}{1-\alpha} \ln \int f_1^{\alpha} dx = -D_{\alpha}(f_1 \parallel f_0)|_{f_0 = U([0,1]^d)}$$

• α -Divergence vs. Batthacharyya-Hellinger distance

$$D_{\frac{1}{2}}(f_1 \parallel f_0) = \ln\left(\int \sqrt{f_1 f_0} dx\right)^2$$

$$D_{BH}^{2}(f_{1} \parallel f_{0}) = \int \left(\sqrt{f_{1}} - \sqrt{f_{0}}\right)^{2} dx = 2\left(1 - \int \sqrt{f_{1}f_{0}}dx\right)$$

• α -Divergence vs. Kullback-Liebler divergence

$$\lim_{\alpha \to 1} D_{\alpha}(f_1 || f_0) = \int f_1 \ln \frac{f_1}{f_0} dx.$$

Rényi α-divergence and Error Exponents

Observe i.i.d. sample $\underline{W} = [W_1, \ldots, W_n]$

$$H_0 : W_j \sim f_0(w)$$
$$H_1 : W_j \sim f_1(w)$$

Bayes probability of error

$$P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0)$$

LDP gives Chernoff bound [Dembo&Zeitouni:98]

$$\liminf_{n \to \infty} \frac{1}{n} \log P_e(n) = -\sup_{\alpha \in [0,1]} \left\{ (1 - \alpha) D_{\alpha}(f_1 || f_0) \right\}.$$

Registration via α -Mutual-Information

Ref: Viola&Wells:ICCV95

- 1. Reference I^R and target I^T images.
- 2. Set of rigid transformations $\{T^i\}$
- 3. Derived feature vectors

$$Z^R = Z(I^R), \qquad Z^i = Z(\mathbf{T}^i(I^T))$$

 H_0 : $\{Z^R, Z^i\}$ independent H_1 : $\{Z^R, Z^i\}$ dependent

Error exponent is α-MI (Neemuchwala&etal:ICIP01, Pluim&etal:SPIE01)

$$\mathrm{MI}_{\alpha}(Z^{R},Z^{i}) = \frac{1}{\alpha-1} \ln \int f^{\alpha}(Z^{R},Z^{i}) (f(Z^{R})f(Z^{i}))^{1-\alpha} dZ^{R} dZ^{i}.$$

Registration via α **-Jensen-Difference**

Ref: Ma&etal:ICIP00, He&etal:SigProc01

• Jensen's difference btwn f_0, f_1 :

 $\Delta J_{\alpha} = H_{\alpha}(\varepsilon f_1 + (1 - \varepsilon)f_0) - \varepsilon H_{\alpha}(f_1) - (1 - \varepsilon)H_{\alpha}(f_0) \ge 0$

- f_0, f_1 are two densities, ε satisfies $0 \le \varepsilon \le 1$
- Let X, Y be i.i.d. features extracted from two images

$$X_m = \{X_1,\ldots,X_m\}, \quad Y_n = \{Y_1,\ldots,Y_n\}$$

• Each realization in *unordered* sample $Z = \{X_m, Y_n\}$ has marginal

$$f_Z(z) = \varepsilon f_X(z) + (1 - \varepsilon) f_Y(z), \quad \varepsilon = \frac{m}{n+m}$$

Figure 2: Three ultrasound breast scans. From top to bottom are: case 151, case 142 and case 162.

Figure 4: Grey level scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.

Figure 5: α -Divergence as function of angle for ultra sound image registration of image 142

Figure 6: Resolution of α -Divergence as function of alpha

Higher Level Features

Disadvantages of gray level features:

- Only depends on histogram of single pixel pairs
- Insensitive to spatial reording of pixels in each image
- Difficult to select out grey level anomalies (shadows, speckle)
- Spatial discriminants fall outside of single pixel domain
- Alternative: Spatial-feature-based indexing

Spatial Relations Between Local Tags

(a) Image X_0

(b) Image X_i

Figure 8: Spatial Relation Coincidences

Feature: spatial tags via feature trees

Figure 9: Part of feature tree data structure.

Figure 10: Leaves of feature tree data structure.

Feature: projection-coefficient wrt ICA basis

Figure 11: Estimated ICA basis set for ultrasound breast image database

US Registration Comparisons

	151	142	162	151/8	151/16	151/32
pixel	0.6/0.9	0.6/0.3	0.6/0.3			
tag	0.5/3.6	0.5/3.8	0.4/1.4			
spatial-tag	0.99/14.6	0.99/8.4	0.6/8.3			
ICA				0.7/4.1	0.7/3.9	0.99/7.7

Table 1: Numerator =optimal values of α and Denominator = maximum resolution of mutual α -information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8, 151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis elements run on case 151.

Feature-based Indexing: Challenges

- How to best select discriminating features?
 - Require training database of images to learn feature set
 - Apply cross-validation...
 - ...bagging, boosting, or randomized selection?
- How to compute α -MI for multi-dimensional features?
 - Tag space is of high cardinality: $256^{16} \ge 10^{32}$
 - ICA projection-coefficient space is multi-dimensional continuum
 - Soln 1: partition feature space and count coincidences...
 - Soln 2: apply kernel density estimation and ...
 - ...plug in to the α -MI or α -Jensen formula
 - Soln 3: estimate α -MI or α -Jensen directly via MST.

Methods of Entropy/Divergence Estimation

- $Z = (Z^R, Z^T)$: a statistic (feature pair)
- { Z_i }: *n* i.i.d. realizations from f(Z)

Objective: Estimate

$$H_{\alpha}(f) = \frac{1}{1-\alpha} \ln \int f^{\alpha}(x) dx$$

- 1. Parametric density estimation methods
- 2. Non-parametric density estimation methods
- 3. Non-parametric minimal-graph estimation methods

Non-parametric estimation methods

Given i.i.d. sample
$$X = \{X_1, \ldots, X_n\}$$

Density "plug-in" estimator

$$H_{\alpha}(\hat{f}_n) = \frac{1}{1-\alpha} \ln \int_{\mathbf{R}^d} \hat{f}^{\alpha}(x) dx$$

Previous work limited to Shannon entropy $H(f) = -\int f(x) \ln f(x) dx$

- Histogram plug-in [Gyorfi&VanDerMeulen:CSDA87]
- Kernel density plug-in [Ahmad&Lin:IT76]
- Sample-spacing plug-in [Hall:JMS86] (d = 1)
 - Performance degrades as density f becomes non smooth
 - Unclear how to robustify \hat{f} against outliers
 - *d*-dimensional integration might be difficult
 - \Rightarrow function { $f(x) : x \in \mathbb{R}^d$ } over-parameterizes entropy functional

Direct α -entropy estimation

• MST estimator of α -entropy [Hero&Michel:IT99]:

$$\hat{H}_{\alpha} = \frac{1}{1-\alpha} \ln L_{\gamma}(X_n) / n^{-\alpha}$$

- Direct entropy estimator: faster convergence for nonsmooth densities
- Parameter α is varied by varying interpoint distance measure
- Optimally pruned k-MST graphs robustify \hat{f} against outliers
- Greedy multi-scale MST approximations reduce combinatorial complexity

Minimal Graphs: Minimal Spanning Tree (MST)

Let $M_n = M(X_n)$ denote the possible sets of edges in the class of acyclic graphs spanning X_n (spanning trees).

The Euclidean Power Weighted MST achieves

$$L_{\text{MST}}(X_n) = \min_{M_n} \sum_{e \in M_n} ||e||^{\gamma}.$$

Convergence of MST

Figure 15: Continuous quasi-additive euclidean functional satisfies "self-similarity" property on any scale.

Asymptotics: the BHH Theorem and entropy estimation

Theorem 1

Beardwood&etal:Camb59,Steele:95,Redmond&Yukich:SPA96 Let L

be a continuous quasi-additive Euclidean functional with power-exponent γ , and let $X_n = \{X_1, \ldots, X_n\}$ be an i.i.d. sample drawn from a distribution on $[0,1]^d$ with an absolutely continuous component having (Lebesgue) density f(x). Then

$$\lim_{n \to \infty} L_{\gamma}(X_n) / n^{(d-\gamma)/d} = \beta_{L_{\gamma},d} \int f(x)^{(d-\gamma)/d} dx, \qquad (a.s.)$$

Or, letting $\alpha = (d - \gamma)/d$

$$\lim_{n\to\infty} L_{\gamma}(X_n)/n^{\alpha} = \beta_{L_{\gamma},d} \exp\left((1-\alpha)H_{\alpha}(f)\right), \qquad (a.s.)$$

Asymptotics: Plug-in estimation of $H_{\alpha}(f)$

Class of Hölder continuous functions over $[0, 1]^d$

$$\Sigma_d(\kappa, c) = \left\{ f(x) : |f(x) - p_x^{\lfloor \kappa \rfloor}(z)| \le c \, \|x - z\|^{\kappa} \right\}$$

Proposition 1 (Hero&Ma:IT01) Assume that $f^{\alpha} \in \Sigma_d(\kappa, c)$. Then, if \hat{f}^{α} is a minimax estimator

$$\sup_{f^{\alpha} \in \Sigma_{d}(\kappa,c)} E^{1/p} \left[\left| \int \widehat{f}^{\alpha}(x) dx - \int f^{\alpha}(x) dx \right|^{p} \right] = O\left(n^{-\kappa/(2\kappa+d)} \right)$$

Asymptotics: Minimal-graph estimation of $H_{\alpha}(f)$

Proposition 2 (Hero&Ma:IT01) *Let* $d \ge 2$ *and*

 $\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$. Assume that $f^{\alpha} \in \Sigma_d(\kappa, c)$ where $\kappa \ge 1$ and $c < \infty$. Then for any continuous quasi-additive Euclidean functional L_{γ}

$$\sup_{f^{\alpha}\in\Sigma_{d}(\kappa,c)}E^{1/p}\left[\left|\frac{L_{\gamma}(X_{1},\ldots,X_{n})}{n^{\alpha}}-\beta_{L_{\gamma},d}\int f^{\alpha}(x)dx\right|^{p}\right]\leq O\left(n^{-2/(3d)}\right)$$

Conclude: minimal-graph estimator converges faster for

$$\kappa < \frac{2d}{3d-4}$$

Observations

- Minimal graph rates valid for MST, *k*-NN graph, TSP, Steiner Tree, etc
- Analogous rate bound holds for progressive-resolution algorithm

$$L^G_{\gamma}(X_n) = \sum_{i=1}^{m^d} L_{\gamma}(X_n \cap Q_i)$$

 $\{Q_i\}$ is uniform partition of $[0,1]^d$ into cell volumes $1/m^d$

• Optimal sequence of cell volumes is:

$$m^{-d} = n^{-1/3}$$

Computational Acceleration of MST

Figure 16: Acceleration of Kruskal's MST algorithm from $n^2 \log n$ to $n \log n$.

Figure 17: Comparison of Kruskal's MST to our nlogn MST algorithm.

Figure 18: Bias of n log n MST algorithm as function of radius parameter.

Application of MST to US image Registration

1. Extract features from reference and transformed target images:

 $X_m = \{X_i\}_{i=1}^m \text{ and } Y_n = \{Y_i\}_{i=1}^{n_y}$

2. Construct MST on union of X_m and Y_n

 $L_{\gamma}(X_m \cup Y_n)$

3. Minimize L_{γ} over transformations producing Y_n . Note: This minimizer converges to minimizer of α -Jensen difference

$$L_{\gamma}(X_m \cup Y_n)/(m+n)^{\alpha} \rightarrow \beta_{L_{\gamma},d} \exp\left((1-\alpha)H_{\alpha}(\epsilon f_x + (1-\epsilon)f_y)\right),$$
 (a.s. where $\epsilon = \frac{m}{m+n}$

Figure 19: MST demonstration for misaligned images

Figure 20: MST demonstration for aligned images

Illustration for Case 142 and Single Pixels

Figure 21: Single-pixel objective function profiles for MST estimator of α -Jensen difference vs histogram plug-in estimator ($\alpha = 1/2$).

Illustration for Case 142 and 8-D ICA Features

Figure 22: 8-basis ICA objective function profiles for MST estimator of α -Jensen difference vs histogram plug-in estimator of α -MI ($\alpha = 1/2$).

Illustration for Case 142 and 64-D ICA Features

Figure 23: 64-basis ICA objective function profiles for MST estimator of α -Jensen difference.

Extension of MST to divergence estimation

- 1. Let i.i.d. $\{Z_i\}_{i=1}^n$ have marginal density f_1 on $[0,1]^d$
- 2. Let f_0 dominate density f_1

3. Define measure transformation M on $[0,1]^d$ which takes f_0 to uniform density

Then $S_i \stackrel{\text{def}}{=} M(Z_i)$ has α -entropy:

$$(1-\alpha)H_{\alpha}(S_i) = \ln \int f_S^{\alpha}(s)ds = \ln \int \left(f_1(z)/f_0(z)\right)^{\alpha} f_0(z)dz$$

Conclude, for $S_n = \{S_1, \ldots, S_n\}$:

$$\hat{D}_{\alpha}(f_1 || f_0) = \frac{1}{1 - \alpha} \left[\ln L_{\gamma}(S_n) / n^{\alpha} - \ln \beta_{L,\gamma} \right] .$$
⁽²⁾

is a consistent estimator of α -divergence

Example Original data exact inverse transform 0.8 0.8 0.6 0.6 $^{z}_{2}$ \mathbf{z}_{2} 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 0.2 0.6 0.8 0 0.4 1 1 z₁ z₁ tranfd data tranfd data, 2D cdf estd 0.8 0.8 0.6 0.6 z^2 z^2 0.4 0.4 0.2 0.2 0 0 0^L 0.8 0.2 0.8 0.2 0.4 0.6 0.4 0.6 1 1 z₁ z₁

Figure 24:

MST robustification against outliers: Pruned MST

Fix $k, 1 \le k \le n$. Let $M_{n,k} = M(x_{i_1}, \dots, x_{i_k})$ be a minimal graph connecting k distinct vertices x_{i_1}, \dots, x_{i_k} . The k-MST $T_{n,k}^* = T^*(x_{i_1^*}, \dots, x_{i_k^*})$ is minimum of all k-point MST's

$$L_{n,k}^{*} = L^{*}(X_{n,k}) = \min_{i_{1},...,i_{k}} \min_{M_{n,k}} \sum_{e \in M_{n,k}} \|e\|^{\gamma}$$

Figure 25: *k-MST for 2D annulus density with and without the addition of uniform "outliers"*.

Extension of BHH to Pruned Graphs

Fix $\alpha \in [0, 1]$ and let $k = \lfloor \alpha n \rfloor$. Then as $n \to \infty$ (Hero&Michel:IT99)

$$L(X_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\vee} \to \beta_{L_{\gamma},d} \min_{A:P(A) \ge \alpha} \int f^{\vee}(x|x \in A) dx \qquad (a.s.)$$

or, alternatively, with

$$H_{\nu}(f|x \in A) = \frac{1}{1-\nu} \ln \int f^{\nu}(x|x \in A) dx$$

$$L(X_{n,k}^*)/(\lfloor \alpha n \rfloor)^{\nu} \to \beta_{L,\gamma} \exp\left((1-\nu)\min_{A:P(A) \ge \alpha} H_{\nu}(f|x \in A)\right) \qquad (a.s.)$$

Figure 26: Water pouring construction of $f(x|A_0)$. Arrows indicate the high water marks indicating high probability regions which are not truncated in the influence function.

k-MST Influence Function for Gaussian Density

Figure 27: MST and k-MST influence curves for Gaussian density on the plane.

k-MST Stopping Rule

Figure 28: Left: *k*-MST curve for 2D annulus density with addition of uniform "outliers" has a knee in the vicinity of n - k = 35. This knee can be detected using residual analysis from a linear regression line fitted to the left-most part of the curve. Right: error residual of linear regression line.

Conclusions

- 1. α -divergence for indexing can be justified via decision theory
- 2. Applicable to feature-based image registration
- Non-parametric estimation is possible without density estimation via MST
- 4. MST outperforms plug-in estimation for non-smooth densities
- 5. Robustified MST can be defined via optimal pruning of MST: k-MST

Divergence vs. Jensen: Asymptotic Comparison

For $\varepsilon \in [0, 1]$ and *g* a p.d.f. define

$$f_{\varepsilon} = \varepsilon f_1 + (1 - \varepsilon) f_0, \quad E_g[Z] = \int Z(x)g(x)dx, \quad \tilde{f}_{\frac{1}{2}}^{\alpha} = \frac{f_{\frac{1}{2}}^{\alpha}}{\int f_{\frac{1}{2}}^{\alpha}dx}$$

Then

$$\Delta J_{\alpha} = \frac{\alpha \varepsilon (1 - \varepsilon)}{2} \left[E_{\tilde{f}_{\frac{1}{2}}^{\alpha}} \left(\left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right]^2 \right) + \frac{\alpha}{1 - \alpha} E_{\tilde{f}_{\frac{1}{2}}^{\alpha}} \left(\left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right] \right)^2 \right] + O(\Delta)$$
$$D_{\alpha}(f_1 || f_0) = \frac{\alpha}{4} \int f_{\frac{1}{2}} \left[\frac{f_1 - f_0}{f_{\frac{1}{2}}} \right]^2 dx + O(\Delta)$$