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Abstract

The massive scale and variability of microarray gene data creates new and challenging problems of signal

extraction, gene clustering, and data mining, especially for temporal gene pro�les. Many data mining

methods for �nding interesting gene expression patterns are based on thresholding single discriminants, e.g.

the ratio of between-class to within-class variation or correlation to a template. Here a di�erent approach is

introduced for extracting information from gene microarrays. The approach is based on multiple objective

optimization and we call it Pareto front (PF) analysis. This method establishes a ranking of genes according

to estimated probabilities that each gene is Pareto-optimal, i.e., that it lies on the Pareto front of the multiple

objective scattergram. Both a model-driven Bayesian Pareto method and a data-driven non-parameteric

Pareto method, based on rank-order statistics, are presented. The methods are illustrated for two gene

microarray experiments.
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1 Introduction

Microarray analysis of temporal gene expression pro�les o�ers one of the most promising avenues for exploring

genetic factors underlying disease, regulatory pathways controlling cell function, organogenesis and development;

see [1, 2, 3] or [4] for background. Gene microarrays can potentially identify RNA expression levels of thousands

of genes in a time sequence of tissue samples, thereby providing valuable information about complex gene

expression patterns over time. Recent advances in bioinformatics have brought us closer to realizing this

potential. However, the massive scale and variability of microarray gene data creates new and challenging

problems of clustering and data mining. One of these problems is the so-called gene �ltering problem, also

called gene screening and gene selection, which is to reliably extract genes exhibiting interesting expression

pro�les from the thousands of hybridization indices generated by the microarray. The most common approach

to gene �ltering are signi�cance tests implemented by thresholding a set of test statistics, e.g. paired T-tests

of mean di�erences, Fisher tests of variance, or Mann-Whitney rank tests. These can be found on most of

the commercial and freeware packages used for statistical gene analysis such as the SAM MS Excel add-on

distributed by [5] or the Microarray Suite and Data Mining Tool (DMT) distributed by [6]. Such approaches

can yield a list of genes that are ranked in order of statistical signi�cance according to observed p-values.

This paper proposes a di�erent approach to gene selection, denoted Pareto-optimal �ltering, which is based on

the ordinal theory of multiple objective optimization pioneered by the economist and sociologist Vilfreda Pareto

(1848-1923). Pareto-optimality is a founding principle for social choice and decision-making in mathematical

economics (See papers by Arrow [7, 8] and the Pareto website of the New School [9]). As discussed in Steuer [10]

this principle has since been applied to many other �elds. Since V. Pareto's name has many other associations

in probablity and statistics, it is important to emphasize that the proposed method of Pareto-optimal gene

�ltering is completely unrelated to Pareto analysis or Pareto graphs for statistical process control and quality

assessment, to the Pareto principle of management science, or to the Pareto probability density, e.g., as in the

Pareto model of income distribution.

To apply Pareto-optimal gene �ltering the experimenter computes a number of �tness criteria for each gene,

generating a point cloud of criterion vectors which is called the multicriterion scattergram. For example, to

select the most monotonic pro�les over time the �tness criteria might be chosen as the di�erences in gene

expression level over successive time points. The objective of Pareto-optimal �ltering is to isolate genes that

achieve a compromise between maximizing (or minimizing) the competing gene-�tness criteria, i.e. to �nd

the "winning" pro�les. Such genes lie on the so-called Pareto front of the multicriterion scattergram and are

the non-dominated genes, see Sec. 3 for de�nitions. Stripping o� genes from successive Pareto fronts in the
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multicriterion scattergram yields a sequence of Pareto fronts at increasing depths in the data, called the �rst,

second, third, . . . , Pareto fronts, respectively. This sequence of fronts reveals a hierarchy, i.e., a partial ordering,

of the highest scoring gene pro�les. In two recent conference papers [11, 12] we applied Pareto-optimal �ltering

to discover young- and old- dominant mouse retina genes in GeneChip experiments and the discovered genes

were validated using RT-PCR techniques. The purpose of the present paper is to present the general Pareto-

optimal �ltering methodology, introduce a Bayesian formulation of Pareto-optimal �ltering, and to illustrate

this approach on a widely available data set created expressly for testing gene �ltering, classi�cation, and

quanti�cation of di�erential expression [13].

As the gene indices are randomly sampled from multiple subjects there can exist substantial statistical

sampling errors that complicate the Pareto-optimal analysis. These sampling errors can be handled by cross-

validation producing what can be called a resistant Pareto front (RPF) of genes, de�ned as those genes that

land on the Pareto front with high relative frequency under re-sampling of the microarrays. The RPF method is

completely data-driven and as such it does not rely on any distributional assumptions on the data. Thus it is very

exible, allowing treatment of arbitrary �tness criteria such as dependent and non-linear functions of the data.

As an example we present a data-driven non-parametric RPF method which is computed on rank-order statistics

of the hybridization indices of the microarrays. Of course when the data distribution can be characterized, even

approximately, data-driven methods have obvious drawbacks. Principal among these drawbacks is the high

computational load of cross-validation which can make RPF methods impractical to implement for large sample

sizes. To address these drawbacks a Bayesian approach is presented for Pareto-optimal gene �ltering: the

posterior Pareto front (PPF) method.

As contrasted to the RPF method, the PPF method ranks each gene according to its posterior probability

that it belongs to the Pareto front. This probability is computed using prior densities on various unknown

parameters in the sampling error distribution. In particular, one can assume conditionally independent Gaussian

gene indices and assign non-informative priors on the mean and variance for each time sampled gene. Using

asymptotic approximations to extreme-value distributions we obtain an expression for the posterior probability

whose complexity increases in the number of �tness criteria and not in the number of samples. The Bayesian

model that we use for the expression indices and their means and variances is similar to the conditionally

Gaussian with conjugate prior model used recently by L�onnstedt and Speed in [14].

We apply our Bayesian PPF analysis to a set of �tness criteria de�ned as linear functions, a matrix of pro�le

contrasts, of the prior mean expression levels of each gene pro�le. When the pro�le contrast matrix is orthogonal

and the mean expression levels are uncorrelated and Gaussian the �tness criteria are statistically independent.

For illustration, PPF and RPF analyses are applied and compared on Fred Wright's data set, described in
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[13], for detection of the most aberrant genes violating linearity in the A�ymetrix human �broblast mixture

experiment. The speci�cation of the set of most aberrant non-linear genes could be useful for an experimenter

who wants to choose a few egregious genes on which to perform an expensive followup study, e.g., RT-PCR

analysis. Our results show concordance between the genes selected by RPF and PPF analysis which suggests

that the PPF is insensitive to the fairly restrictive model assumptions made.

It is worthwhile mentioning that, despite some super�cial similarities, the concept of Pareto fronts is fun-

damentally di�erent from John Tukey's notion of data depths and contours of depth in a multivariate sample

[15, 16]. Roughly speaking the data depths are induced by a sequence of nested convex hulls which contain

smaller and smaller proportions of the sample as the depth increases. Similarly to Pareto fronts, the contours of

these successive convex hulls induce a (partial) ordering or �tness on points in the sample. However, the data

depths and their contours di�er from the Pareto fronts in several important respects. The Pareto front de�nes

a partial ordering relative to the non-dominated points, as measured by user-speci�ed �tness criteria, while the

data depth de�nes a partial ordering relative to a single point at the center of the sample, the \multivariate

median." For example, while the 1-st data depth de�nes the entire shape of the sample the 1-st Pareto front

only describes the shape of a side of the sample, namely the side having points with higher �tness scores.

Furthermore, Pareto fronts are not in general convex while data depth contours are always convex.

The outline of the paper is as follows. In Sec. 2 a brief review of microarray data analysis is presented and

in Sec. 3 non-statistical Pareto-optimal gene �ltering approach is introduced. In Sec. 4 the data-driven RPF

analysis methodology is described. In Sec. 5 the general PPF gene �ltering method is developed and in Sec. 6

di�erent pro�le contrast functions are considered. Finally in Sec. 7 PPF analysis is applied to �nding aberrant

genes in Fred Wright's human �broblast mixing data.

2 Gene Analysis from Microarray Data

The ability to perform accurate genetic di�erentiation between two or more biological populations is a problem

of great interest to geneticists and other researchers. For example, in a temporally sampled population of mice

one is frequently interested in identifying genes that have interesting patterns of gene expression over time, called

a gene expression pro�le. Gene microarrays have revolutionized the �eld of experimental genetics by o�ering to

the experimenter the ability to simultaneously measure thousands of gene expression levels simultaneously. A

gene microarray consists of a large number N of known DNA probe sequences that are put in distinct locations

on a slide. See one of the following references for more details [17, 18, 19, 20]. After hybridization of an unknown

tissue sample to the gene microarrays, the abundance of each probe present in the sample can be estimated from
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the measured levels of hybridization. Two main types of gene microarrays are in wide use: photo-lithographic

gene chips and uorescent spotted cDNA arrays. An example of the former is the A�ymetrix [21] product

line. An example of the later is the cDNA microarray protocol of the National Human Genome Research

Institute (NHGRI) [22]. A suite of software tools are available from A�ymetrix and elsewhere for extracting

accurate estimates of abundance, called expression indices. Computation of these indices can range from simple

unweighted sample averaging, as in the A�ymetrix MAS4 software, to more sophisticated model-based analyses,

such as the Li-Wong method [23, 24]. Many of the more sophisticated packages are available as freeware, e.g.,

see Strimmer's website [25] for links to relevant software written in the R software language.

The study of di�erential gene expression between T populations requires hybridizing several microarrays from

each population to reduce response variability. De�ne the expression index extracted from the m-th microarray

at time t and at the n-th gene chip probe location

ytm(n); n = 1; : : : ; N; m = 1; : : : ;Mt; t = 1; : : : ; T:

When several microarray experiments are performed over time they can be combined in order to �nd genes with

interesting expression pro�les. This is a data mining problem for which many methods have been proposed

including: multiple paired t-tests; linear discriminant analysis; self organizing (Kohonen) maps (SOM); principal

components analysis (PCA); K-means clustering; hierarchical clustering (kdb trees, CART, gene shaving); and

support vector machines (SVM) (See [26, 27] and [28]). Validation methods have been widely used and include:

signi�cance analysis of microarrays (SAM); bootstrapping cluster analysis; and leave-one-out cross-validation

(See [29] and [30]). Many of these methods are based on optimizing some single �tness criterion such as: the

ratio of between-population-variation to within-population-variation; or the temporal correlation between a

measured pro�le and a pro�le template. The Pareto front method we propose is based on optimization with

respect to multiple �tness criteria. We �rst consider multiple-objective �ltering for the case where the �tness

criteria have no statistical uncertainty.

3 Non-statistical Multiple Objective Gene Filtering

As contrasted to maximizing scalar criteria, multiple objective gene �ltering seeks gene pro�les that strike an op-

timal compromise between maximizing several criteria. This is closely related to multiple objective optimization

in which the concept of Pareto-optimal solutions play a crucial role. These solutions are almost never unique

and are variously called the Pareto-optimal set, the Pareto front, the Pareto frontier, and the Edgeworth-Pareto

front (See books by Stadler or [31] or Steuer [10]). Pareto optimality theory has been applied to a wide range of
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application areas including: economics, sociology, psychology, operations research, and evolutionary computing

(See above referenced books, and articles by Zitler and Thiele [32] and Arrow and Herv�e [8]).

Multi-objective gene �ltering can be motivated by the following simple example. Let there be T = 2 time

points and de�ne �(i) = [�1(i); �2(i)]
T the true unobserved expression levels of the i-th gene at each of these

times. Let a group of experimenters agree on P gene selection criteria which, when applied to a given gene,

gives the vector criterion:

�(i) = [�1(�(i)); : : : ; �P (�(i))]
T :

Gene i is said to be better than gene j in the p-th criterion if �p(i) > �p(j). When it is desired to �lter out

highly expressed and/or strongly increasing gene pro�les, one set of selection criteria might be (P = 2):

�1(�) = �2 � �1; �2(�) = �2 + �1: (1)

If the measured pro�le of the i-th gene has vector mean � = �(i) for which �1 and �2 are the largest over

all genes then this gene would be of obvious interest to the experimenter. However, there may be many other

genes that could interest the experimenter, e.g. those where �1 is large but �2 is only moderate or vice-versa.

Furthermore, if the criteria are in conict then no single gene may simultaneously maximize �1 and �2. To

capture a set of genes of interest, one might consider thresholding a compound scalar �ltering criterion, e.g. the

weighted arithmetic average of (1)

J�(�) = �(�2 � �1) + (1� �)(�2 + �1): (2)

Of course, if �1 and �2 are positive valued and a proportional increase in the pro�le is more meaningful to

the experimenter then he might prefer the log criteria �1(�) = log�2=�1; �2(�) = log
p
�2�1; and J�(�) =

� log(�2=�1) + (1 � �) log
p
�2�1: In eiher case, when � = 0 or 1 maximizing this compound criterion would

yield the two most �t genes under criteria �1 or �2.

An obvious issue that arises in selecting a scalar criterion J� is: what is the most suitable choice of the weight

�? Two experimenters, A and B, may not have selected the same weight factor � and therefore one of them

would not necessarily be satis�ed by the signi�cance of the genes reported by the other. One way out of this

dilemma is to �nd the entire set of genes which maximize J� for some choice of �. This would give a set of

genes that would be guaranteed to contain the favorite gene of all experimenters. It turns out that this set of

genes are contained in a set called the Pareto front which results from multiple objective optimization of the

pair [�1(�i); �2(�i)]
T over i [33].

Multiple objective optimization captures the intrinsic compromises among possibly conicting objectives in a

natural way. Consider the multicriterion scattergram in Fig. 1 and suppose that �tness criteria �1 and �2 are to
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be maximized. Gene D is dominated by both gene A and gene B since gene D has lower �tness in both criteria

�1 and �2. Likewise gene E is dominated by gene B and gene C. On the other hand genes A, B and C are not

dominated by any other gene and are therefore preferable to genes D and E. Multi-objective �ltering uses this

non-dominated property as a way to establish a preference relation among genes given a set of criteria f�qgq.
More formally, gene i is said to be dominated if there exists some other gene g 6= i such that for at least one q

�q(i) < �q(g) and �p(i) � �p(g); p 6= q:

The set of non-dominated genes are de�ned as those genes that are not dominated. All the genes which are

non-dominated constitute a set of points called the (�rst) Pareto front. A second Pareto front can be obtained

by stripping o� the points on the �rst front and computing the Pareto front on the remaining points. For the

example in Fig. 1 the �rst Pareto front is fA;B;Cg and the second Pareto front is fD;Eg.

The above multiple criterion �ltering methods are applicable when the criteria �1 through �P are perfectly

observable. However, as these criteria depend on the true mean values �(i) of the i-th gene pro�le, the criteria

are only partially observed through a random sample from the underlying population. Despite its obvious

potential for improvement over single criteria optimization methods, to our knowledge Pareto front analysis has

not been previously applied to gene �ltering or to more general data mining problems. We speculate that this

might be due to the unreliability of the non-statistical Pareto front technique when applied to noisy observations

and to the lack of systematic methods for dealing with statistical uncertainty. We propose two methods for

handling statistical uncertainty: cross-validation leading to resistant Pareto front (RPF) analysis, and Bayes

smoothing, leading to posterior Pareto front (PPF) analysis.

4 Resistant Pareto Front Analysis

The idea behind resistant Pareto front (RPF) analysis is a simple case of leave-one-out cross validation but

requires some notation to explain succinctly. Let �̂
(M1;���;MT )

p
(n) denote an empirical estimator of the �tness

criterion vector �(n) for the n-th gene using the entire sample population. Let �̂
(�m1;���;�mT )

(n) denote the

same empirical estimator computed on a reduced population obtained by omission of the mt-th sample from

each time point t = 1; : : : ; T , mt 2 f1; : : : ;Mtg. For a given m1; : : :mT we call this a leave-one-out estimator.

When the sample population consists of independent sub-populations at di�erent time points there will be a

total of
QT

t=1Mt di�erent leave-one-out estimates of �(n). For each leave-one-out estimate �̂
(�m1;���;�mT )

(n)

�nd the Pareto front of genes. De�ne the indicator function �(�m1;:::;�mT )(n) =1, if gene n is on the Pareto
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front and = 0, otherwise. Finally, compute the relative frequency scores

RF(n) =

PM1

m1=1
� � �PmT = 1MT�(�m1;:::;�mT )(n)QT

t=1Mt

; n = 1; : : : ; N:

These relative frequency scores are then used to rank the genes in decreasing order of likelihood of belonging

to the Pareto front. This procedure can be repeated for the second order and higher Pareto fronts to generate

scores for the relative frequency that each gene lies on the �rst 2 or more Pareto fronts.

In [12] we applied the RPF procedure described above to �lter a set of N = 12; 422 genes obtained from an

A�ymetrix GeneChip study of retinal tissues of a population of 24 mice grouped into T = 6 time points (between

postnatal 2 days (Pn2) through month 21 (M21)) each time point having data from Mt = 4 microarrays. A

representative sample of the data for 4 di�erent genes is shown in Fig. 2 which indicates a variety of gene

expression pro�les over time. The objective was to extract \aging genes," i.e. genes that demonstrated a

marked and steady increase in expression level over time. First a set of MT = 4096 time trajectories were

de�ned for each gene, corresponding to all possible time paths through the sets of 4 samples at each of 6 time

points. For illustration three of these possible trajectories are shown for a speci�c gene in Fig. 3. For each

trajectory the sign of the slope between each time point was extracted to capture instantaneous increase or

decrease of each gene trajectory. The set of 1296 sign pro�les summarize the monotonic properties of a gene's

temporal evolution pattern. For each gene three criteria were then computed including: the proportion �̂1 of

the 1296 trajectories that are monotonic; the overall change �̂2 in expression level as measured by the di�erence

between the �rst (t = 1) and last (t = T ) time points; and the negative curvature �̂3 of the pro�le computed

as the average second order di�erence between all sets of three adjacent time points. The 3D multicriterion

scattergram of the full-sample criterion vector �̂
(4;:::;4)

(n) is illustrated in Fig. 4 along with the (�rst) Pareto

front consisting of over 100 genes. A more stringent gene �ltering procedure is to intersect the Pareto fronts of all

3 possible 2D multicriterion scattergrams formed from pairs of �tness criteria, see Fig. 5 for illustration. When

using all of the microarray data only one gene was found to lie on the intersection of these fronts. This Pareto-

optimal gene trajectory is shown in Fig. 6. More genes were found by implementing the RPF cross-validation

technique to determine the number of times each gene appears in one of the �rst ten intersecting Pareto fronts via

the relative frequency scoring procedure described earlier. For more details see [12]. The result of this analysis

yielded several stongly monotonic increasing genes which have been subsequently validated experimentally using

RT-PCR analysis.
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5 Posterior Pareto Front Analysis

The posterior Pareto front analysis (PFA) introduced here is based on a Bayesian perspective and can o�er a

lower complexity alternative to the RPF procedure described in the previous section. The posterior probability

p(ijY ) that a particular gene i is on the �rst Pareto front is easily expressed using the de�nition of non-dominance
and the assumption that the criteria vectors f�(j)gj are statistically independent given the chipset data Y . In

the following expressions the notation �(i) � �(j) means that �p(i) � �p(j) for p = 1; : : : ; P , and Ec denotes

the complement of event E:

p(ijY )
= P

�\j 6=i ��(i) � �(j)
	c jY �

=

Z
dP (�(i)jY )

Y
j 6=i

P
��
�(i) � �(j)

	c jY; �(i)�

or when the posterior density f�(i)jY (u) of �(i) is available

p(ijY )
Z

duf�(i)jY (u)
Y
j 6=i

�
1� P

�
u � �(j)jY �� : (3)

This expression requires evaluating a multidimensional integral over P -dimensions. For the case of two criteria

(P = 2) the posterior probability reduces to:

p(ijY ) =
Z Z

du1du2f�1(i);�2(i)jY (u1; u2)
Y
j 6=i

�
F�1(j)jY (u1) + F�2(j)jY (u2)� F�1(j);�2(j)jY (u1; u2)

�
; (4)

where F�1(i);�2(i)jY (u1; u2) is the bivariate conditional distribution function of �1(i); �2(i): F�1(i);�2(i)jY (u1; u2) =R u1
�1 dv1

R v2
�1 du2F�1(i);�2(i)jY (v1; v2).

5.1 Pareto-Optimal Gene Filtering

Start with the additive model for the (log) gene pro�le measurement

ymt(i) = �t(i) + �mt(i)

where �mt(i) are zero mean noise samples and m = 1; : : : ;M , t = 1; : : : ; T and i = 1; : : : ; N . Given a prior

f(�t(i); �t(i)
2) on the mean �t(i) and the variance �

2
t (i) of ymt(i) the posterior probabilities (3) can be computed.

This is a similar Bayesian setup as used in the empirical Bayes approach of L�onnstedt and Speed [14] to

microarray analysis. However, as contrasted to the conjugate prior adopted in [14], here we will adopt the

simpler non-informative prior as described in Geisser and Corn�eld [34]:

f�t(i);�2t (i)(u; s) =
c

sa=2
; u 2 IR; s 2 IR+
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where c is a positive normalizing constant and a > 0.

Two special cases are of interest to us: (i) time varying variances f�2t (i)gt; and (ii) non-time varying variances
�2t (i) = �2� (i), t; � = 1; : : : ; T . The former case is easier to treat than the latter case.

5.1.1 Time varying variances

Consider the following model for �t(i) and �mt(i): (i) f�t(i)gti and f�2t (i)gti are independent sets of i.i.d.

random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian random

variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally i.i.d.

It is easily shown that under the above assumptions the means f�t(i)gti are conditionally independent given

Y with marginal posterior density equal to the student-t density

f�t(i)jY (u) = k(Yti)

�
1 +

(u� �̂t(i))
2

�̂2t (i)

��(M�a+2)=2

; (5)

where �̂t(i) =M�1
P

m ytm(i), �̂
2
t (i) =M�1

P
m(ytm(i)��̂t(i))2, Yti = fytm(i)gm, and k(Yti) is the measurement-

dependent normalizing factor given in [34]:

k(Yti) =
1

�̂t(i)
p
�

�( 1
2
(M � a+ 2))

�( 1
2
(M � a+ 1))

: (6)

The associated distribution function can be approximated using either the largeM Gaussian approximation to

the student-t or the L1 approximation
�R u

�1
gq(v)dv

�1=q
� supv�u g(v), where q > 0. The latter approximation

improves as q gets large. The L1 approach has computational advantages as it yields a closed form expression

- as contrasted with the Gaussian approximation that gives an expression involving integrals of the Gaussian

density. Applying the L1 approximation to the integral of (5) yields

F�t(i)jY (u) �
�
1 +

(�̂t(i)� u)2+
�̂2t (i)

��(M�a+2)=2

:

where (x)+ is the function equal to x when x > 0 and equal to zero otherwise.

5.1.2 Non-time varying variances

Next consider the following model: (i) �2t (i) = �2(i); (ii) f�t(i)gti and f�2(i)gi are independent sets of i.i.d.
random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian random

variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally i.i.d.
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Due to (i) the mean pro�le f�t(i)gt is no longer a conditionally independent sequence given Y . The joint

posterior density of �(i) = [�1(i); : : : ; �T (i)]
T takes the form of a multivariate student-t

f�(i)jY (u1; : : : ; uT ) = k(Yi)

 
1 +

TX
t=1

(ut � �̂t(i))
2

�̂2(i)

!�(TM�a+2)=2

; (7)

where �̂2(i) = T�1M�1
P

t

P
m(ytm(i)� �̂t(i))

2, Yi = fytm(i)gtm, and k(Yi) is a scale factor similar to (6).

Analogously to the case of unequal variances, the associated distribution function can be approximated by a

multivariate L1 approximation to (7):

F�(i)jY (u1; : : : ; uT ) �
 
1 +

X
t

(�̂t(i)� ut)
2
+

�̂2(i)

!�(TM�a+2)=2

: (8)

6 Pro�le Contrasts

The simplest contrast functions are the time sampled means themselves �p(i) = �p(i), p = 1; : : : ; T which can

be called the amplitude pro�le criterion. In the case of time varying variances using the expressions (5) and (7)

in (4) gives an expression for p(ijY ) which only requires numerical evaluation of one-dimensional integrals (as

compared with T -dimensional integrals if the exact non-asymptotic distribution function was used).

A more exible criterion are various constrasts between time means. In particular de�ne the vector criterion

�(i) = [�1(i); : : : ; �P (i)]
T as the linear function of the mean pro�le vector:

�(i) = A�(i);

where A = ((aij)) is a P � T contrast matrix. The vector �(i) will be called the pro�le contrasts for gene i.

To retain the simplicity of the approximations to p(ijY ), it is necessary that the component criteria in �(i) be

statistically independent when conditioned on Y . At a minimum this requires P � T . Assume as above that

the components of � are conditionally independent. A suÆcient condition for independent �p's is that non-zero

elements of each of the rows of A do not overlap each other, i.e. aikajk = 0, for all i 6= j and all k. When the

variances are not time varying a weaker suÆcient condition is that the rows of A be orthogonal since the joint

density f�(i)jY (u) in (7) is invariant to orthogonal transformations of u� �̂(i).

As examples consider the following T � T contrast matrices

A3 =

2
4 �1 0 1

1 �2 1

3
5 ; A

0

3 =

2
4 �1 1 0

�1 �1 2

3
5 :
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A4 =

2
6664
�1 1 0 0

�1 �1 2 0

�1 �1 �1 3

3
7775 ; A

0

4 =

2
6664

1 0 0 �1
0 �1 1 0

1 0 0 1

3
7775 :

Applying posterior Pareto front analysis to �(i) = A3�(i) will extract 3 time-point gene pro�les which are end-

to-end increasing and have large positive curvature (large �2). If A3 is replaced with A
0

3 then the analysis will

�nd pro�les which are monotonic increasing. For 4 time-points A4 will perform similar services as A3 while A
0

4

will �lter out \mexican hat" pro�les. Note if the noises f�mt(i)gmt are i.i.d. Gaussian then the linear contrasts

are also independent and Gaussian as the above constrast matrices have orthogonal rows.

Of interest are general ways to construct meaningful contrast matrices A which are orthogonal, so as to

maintain multiple criteria independence for computational simplicity, yet to capture desired shape characteristics

of temporal expression pro�les. One possible method is to de�ne a contrast matrix B whose rows capture some

set of desired linearly independent properties of the pro�le and then apply the PPF with the orthogonalized

contrast matrix A = [chol(BBT )]�1B, where chol(BBT ) is the Cholesky decomposition of BBT . For example

the following matrix might be proposed as an alternative to A
0

3 in the previous section for capturing monotone

increasing pro�les given by

B =

2
4 �1 1 0

0 �1 1

3
5 :

It turns out that the aforementioned Cholesky orthogonalization procedure yields

A =

2
4 �1=p2 1=

p
2 0

�1=p6 �1=p6 2=
p
6

3
5 ;

which is equal (up to a left multiplication by a positive diagonal matrix) to the contrast matrix A
0

3.

7 Experimental Results

Both Bayesian PPF and data-driven RPF analysis methods were applied to Fred Wright's dataset described

in the paper by Lemon etal [13] and available at the web address provided in the citation. Fred Wright's

data set was obtained from a mixing experiment which the authors designed for empirically validating and

comparing various di�erential gene expression methods of analysis. As explained in [13] three populations of

genes were hybridized to A�ymetrix HuGeneFL chips: serum starved human �broblast cells; serum stimulated

human �broblast cells; and a 50-50 mixture of these cells. A total of 18 chips were processed corresponding

to 6 replications within each of the three populations mentioned above. Each HuGeneFL chip contains the
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same 7129 gene probes. For each gene probe the sequence of hybridization levels from the \stimulated(t=1),"

\50-50(t=2)," and \starved(t=3)," populations was de�ned, in that order, as a gene expression pro�le. We used

the Li-Wong reduced expression indices downloaded at the web address listed in citation [13] for our analysis.

This is a nice test dataset for testing PPF and RPF since in a perfect world the true pro�les should be linearly

increasing or decreasing over the three \time points." Any extracted non-monotone gene pro�les must either

be due to statistical estimation errors, uncontrolled uctuations in sample concentrations during hybridization,

or (most problably [35]) hybridization saturation. A typical set of expression indices is shown in Fig. 7.

7.1 Linear-Contrast Pareto Analysis

Our objective is to determine the most aberrant inverted V-shaped gene pro�les. These are those genes whose

expression increases over t = 1 to t = 2 followed by an decrease over t = 2 to t = 3. As we are primarily

interested discovering genes with non-linear pro�les, we screened for non-linear genes before performing the

Pareto analysis. Speci�cally, the indices for each gene expression pro�le were regressed onto the linear model

ytm(i) = a(i)t+ b(i) + �tm(i); t = 1; 2; 3;

where f�tm(i)gtm is i.i.d. Gaussian additive noise with variance �2 and a; b are undetermined coeÆcients. The

regression gives an error residual for the i-th gene

R(i) = [y
��
(i)]T [I ��][y

��
(i)];

where � is the 3 � 3 matrix which orthogonally projects IR3 onto the aÆne subpace fy 2 IR3 : y = a[1; 2; 3] +

b[1; 1; 1]ga;b2IR, and [y
��
(i)]T = 1

M

PM
m=1[y1m; y2m; y3m]

T is the mean vector for the i-th gene pro�le. With s(i)

the (pooled) sample variance estimate of �2 the statistic F (i) = R(i)=s(i) is distributed as Fisher-F on 2 and

M � 3 degrees of freedom [36]. The 1 � p quantile of this distribution gives a threshold on F (i) above which

a gene is classi�ed as having a non-linear pro�le at signi�cance level p. This preprocessing eliminated all but

98 genes from the total of 7129 genes studied by [13]. In the sequel these will be called the \non-linear" gene

pro�les.

We adopted the following contrast matrix

A =

2
4 �1 1 0

1 1 �2

3
5 ;

which will pick-out the inverted-V shaped pro�les. Figure 8 displays the associated multicriterion scattergram.

The crosses in the �gure indicate the 98 non-linear genes.
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While we have investigated many di�erent values for the prior PPF parameter a, we only present results for

a = 2 here. We have observed that increasing a makes the computed posterior probabilities more conservative

(smaller) as the tails of the posterior densities become heavier. Figure 9 shows the �rst �ve Pareto fronts

computed on sample mean constrasts of all microarray data. Figure 10 show the results of PPF analysis in the

multiple criteria plane. The contours around each point denotes the standard error (one standard deviation)

circle and the annotation at the centers of the circles is the computed posterior probability that the gene

belongs to the �rst Pareto front. These plots illustrate how statistical uncertainty in the multiple criteria plane

(standard error contours) translates to probability that a gene lies on the �rst Pareto front. Figure 11 show the

eight top scoring trajectories after PPF analysis. In each sub-panel the indicated piecewise linear line passes

through the means of the 6 replicates of each of the 3 time samples.

7.2 Non-Parametric RPF analysis

For comparison we investigated a fully non-parametric data-driven Pareto analysis based on rank-order statistics.

Rank order methods of microarray analysis are popular since they are distribution-free and avoid amplitude

dependent biases and circumvent the need for microarray amplitude normalization. On the other hand such

methods sometimes incur a loss in sensitivity for small sample sizes. The rank-order Pareto front procedure

that we used is as follows. For each microarray we computed the rank-order of each gene according to its

hybridization score, determined by the extracted Li-Wong indices as above, relative to all other genes on the

microarray. Speci�cally, we used the matlab command [s,yr]=sort(y) where y is the 7129� 18 matrix whose

columns are gene expression indices for each of the 18 microarrays (3 treatment groups of 6 samples each).

The resulting 7129� 18 matrix yr of integers from 1 to 7129 was then used to perform screening of non-linear

genes, similarly to above, and subsequently to perform Pareto analysis under the following two criteria. The �rst

criterion �̂1(n) is the di�erence between the mid-point and the average of the two other points in the mean rank-

order pro�le of gene n (Matlab command [mean(yr(:,1:6)');mean(yr(:,7:12)');mean(yr(:,13:18)')]'

* A'). The second criterion is the number of possible rank-order pro�les whose shapes match an inverted-V

pro�le. Speci�cally, for each gene we generate all 63 = 216 possible trajectories through the 3 sets of 6 replicated

measurements of hybridization levels. The proportion of these trajectories which have slope of positive sign

followed by slope of negative sign is the second criterion �̂2(n).

In Fig. 12 the multicriterion scattergram is displayed. Figure 13 shows the �rst �ve Pareto fronts computed on

the full set of 3�6 non-linear gene samples indicated as crosses on Figure 12. Leave-one-out cross validation was

performed to determine the resistant genes for which a high proportion of the 216 re-sampled 3� 5 trajectories

remained on the �rst Pareto front. Fig. 14 shows the top 8 resistant inverted V-shaped pro�les ranked in terms
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of relative frequency of remaining on the �rst front.

The top ranked 25 gene pro�les under each criterion are shown in Table 15 along with their probability

scores. Also included for comparison to the PPF analyis is a linear-contrast RPF analysis. Only 17 genes

obtained positive scores under the linear contrast RPF analysis (middle column of �gure). The linear-contrast

RPF analysis is a leave-one-out cross-validation procedure applied to the same linear contrasts (matrix A) as

adopted in PPF analysis. Observe that all of the 17 RPF genes appear in the �rst 25 of the PPF gene list:

purely data-driven RPF (linear-contrast) analysis is concordant with the model-based Bayesian PPF analysis.

This indicates that the performance of the PPF analysis is insensitive to the somewhat dubious assumptions

(Gaussianity, independence, large M , and di�use prior) under which the PPF posterior probabilities were

derived. On the other hand, the non-parametric RPF analysis reveals 3 highly ranked genes (U23435-s-at,

AFFX-PheX-M-at and AFFX-LysX-M-at) which are not in the list of top 25 PPF ranking genes.

8 Conclusion

This paper introduced a new method of gene �ltering based on analysis of the Pareto fronts of a speci�ed multiple

criterion objective function applied to each gene. These techniques also have applicability to general data mining

problems involving shape analysis and general selection criteria. The method is very exible and involves

choosing a set of appropriate pro�le contrasts which display desired characteristics of the expression pro�les.

Both a data-driven cross-validation method, called RPF, and a model-driven Bayesian posterior Pareto method,

called PPF, were presented for gene �ltering. In contrast to the cross validation method the Bayesian method

assigns positive probability to all genes and has lower complexity than the non-parametric cross-validation

method for large sample size. On the other hand the cross-validation method requires fewer assumptions and

may be more robust to dubious model assumptions.

As for possible future work, a full bootstrap implementation of the RPF method would undoubtedly make

it more outlier resistant. However this would greatly increase computational complexity. Methods of multiple

comparisons ([37]), which have been previously applied to di�erential analysis of gene microarrays by Storey etal

[38] and others, also appear applicable to multicriterion �ltering and, in particular, to validating Pareto-optimal

trajectories. Finally, the multiple objective optimization approach described in this paper may be applicable to

the PIDEX method of Ge etal [39] for combining pairs of gene selection criteria.
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Figure 1: A hypothetical multicriterion scattergram for genes A,B,C,D,E plotted as vectors in the plane described by a

pair of �tness criteria �1 and �2. A, B, C are non-dominated genes and form the (�rst) Pareto front. A second Pareto

front is formed by genes D,E.

2 4 6
0

100

200 98401−at

2 4 6
0

200

400

98619−at

2 4 6
0

500

1000
98406−at

2 4 6
0

50

100

150
160966−at

Figure 2: Microarray data (MAS4) for 4 randomly selected gene hybridization pro�les among the 14,222 genes encoded

on the 24 microarrays in the 6 time-point mouse retinal aging study.
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Figure 3: Three of the 4096 possible virtual trajectories passing through the 6 time points of the upper left pro�le in Fig.

2.
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Figure 4: The multicriterion scattergram (population averaged hybridization levels) and the Pareto front for the 24 mouse

retinal aging study.
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Figure 5: The multicriterion scattergram (population averaged hybridization levels) and intersection of the 3 possible

pairwise Pareto fronts (respectively denoted by box, circle, and asterisk) for the 24 mouse retinal aging study. Only one

gene lies on intersection.
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Figure 6: The trajectory of the Pareto-optimal gene lying on the intersection of the three fronts in Fig. 5 in the 24

mouse retinal aging study.
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Figure 7: Microarray data for a gene in human �broblast mixture study.
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Figure 8: Multicriterion scattergram corresponding to contrast matrix A = [�1; 1; 0;�1;�1; 2] applied to the

mean expression levels over 18 microarrays in human �broblast study. Crosses again indicate the 98 genes

having non-linear pro�les at a p-value of 0.1. The contrast A is designed to �lter genes with signi�cant inverted-

V shaped pro�les.
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Figure 9: The �rst �ve Pareto fronts (no cross-validation) for the genes with non-linear pro�les shown in Fig.

8.
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Figure 10: Results of applying PPF analysis of human �broblast study along with standard error constant

contours and posterior probabilities of a given gene belonging to the �rst Pareto front. For clarity, only the �rst

20 top ranked genes are shown.
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Figure 11: Some top ranked gene pro�les in human �broblast study according to computed PPF posterior proba-

bilities shown on Fig. 10. P (ijY ) denotes the Bayes posterior probability that each pro�le is on the Pareto-front.
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Figure 12: Multicriterion mean scattergram for the non-parametric rank-order criteria for human �broblast

study.
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Figure 13: The �rst �ve Pareto fronts (no cross-validation) of the non-parametric criteria for the non-linear

genes indicated by crosses in Fig. 12.
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Figure 14: The 8 top ranked cross-validated gene pro�les remaining on the �rst Pareto front among the non-linear

genes in Fig. 13. P (ijY ) denotes the relative frequency that each re-sampled (leave-one-out cross-validation)

pro�le is Pareto-optimal according to the non-parametric slope-sign criteria. Dashed line is the linear regression

on t.
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Figure 15: The top scoring genes (A�ymetrix nomenclature) resulting from PPF and RPF analysis of the most

non-monotone convex cap pro�les for Fred Wright's data (Li-Wong reduced indices). In the case of PPF, P (ijY )
denotes the posterior probability that given gene belongs to �rst Pareto front with respect to the non-informative

prior. In the case of RPF P (ijY ) denotes the relative frequency that the gene belongs to the Pareto front with

respect to re-sampling.
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