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ABSTRACT

High Dimensional Correlation Networks And Their Applications

by

Hamed Firouzi

Chair: Alfred O. Hero III

Analysis of interactions between variables in a large data set has recently attracted

special attention in the context of high dimensional multivariate statistical analysis.

Variable interactions play a role in many inference tasks, such as, classification, clus-

tering, estimation, and prediction. This thesis focuses on the discovery of correlation

and partial correlation structures as well as their applications in high dimensional

data analysis and inference. The thesis considers problems of screening correlation

and partial correlation networks by thresholding the sample correlation or the sample

partial correlation matrix. The selection of the threshold is guided by our high di-

mensional asymptotic theory for screening such networks. Scalable methods of edge

and hub screening are developed for applications in spatio-temporal analysis of time

series, variable selection for linear prediction, and support recovery. The proposed

methods are specifically designed for very high dimensional data with limited num-

ber of samples. Moreover, the correlation screening theory developed in this thesis

provides high dimensional family-wise error rates on false discoveries.

xv



CHAPTER I

Introduction

We live in an era of information explosion. Currently the term “Big Data” is used

in many different contexts ranging from genomics to social networks to finance. Prob-

ably the most obvious reason for such information explosion is technology. Nowadays,

sensors and gadgets digitize lots of information that was previously unavailable. As

a result, methods for analysis of large data sets have become essential for extracting

information from such data sets. In many domains the data comes in the form of a

fat matrix with many columns (variables) but few rows (samples) from which infor-

mation about variable inter-relations is to be extracted. Such information is valuable

for performing inference tasks such as classification, clustering, estimation, and pre-

diction. This thesis develops new methods of analysis for extracting such information

in the high dimensional, sample starved regime. Specifically, we develop methods

for extracting information about high dimensional correlation and partial correlation

matrices from few samples.

The correlation or partial correlation network associated with a vector of vari-

ables can be specifically useful when the covariance or inverse covariance are sparse

matrices. In this case, the nodes of the network correspond to the column indices

(variables) and the edge locations correspond to locations within the matrix where

there is a non-zero entry. The objective of edge discovery is to recover the locations

1



of these edges from limited samples of the variables. The objective of hub discovery

is to recover nodes in the graph that have a large number of edges. While there are

many ways to estimate these edge or hub locations, this thesis focuses on a simple and

scalable thresholding method. This method constructs an estimated correlation or

partial correlation network by thresholding the sample correlation or sample partial

correlation matrix, respectively.

Motivated by practical problems such as model selection and spatio-temporal anal-

ysis of time series, we generalize the recently proposed correlation edge and hub dis-

covery framework (Hero and Rajaratnam, 2011, 2012) in several ways. These frame-

works are illustrated for real life data sets. Specifically, the thesis addresses four

different extensions of previous edge and hub screening work. Each chapter describ-

ing these problems and their solutions have the following common structure. In each

chapter we introduce a correlation network inference problem inspired by a practical

application. We then propose asymptotic results associated with edge or hub screen-

ing in the defined correlation network. Afterwards we develop a scalable algorithm

for overcoming the high dimensional computational complexity problem.

1.1 Overview of hub screening methods

Consider the problem of screening for variables that have significant correlations

in a large and fat data matrix. Examples of such data sets are gene expression arrays,

multimedia databases and multivariate financial time series. A correlation network

between the variables in a data set can be formed by thresholding the absolute value

of the entries of the sample correlation matrix, obtained by the outer product (along

the fat dimension) of the data matrix. The thresholded sample correlation matrix

yields a sparse adjacency matrix defining the sample correlation network (graph).

Two nodes (vertices) are connected with an edge if the absolute value of the sample

correlation coefficient between their corresponding variables is greater than a fixed

2



threshold (See Fig. 1.2). The Correlation screening method introduced in (Hero and

Rajaratnam, 2011) addresses the following problem:

Problem A. (Global correlation screening). Assume that the ensemble correlation

matrix is sparse and that the non-sparse components correspond to variables that

are highly correlated with other variables. The problem is to discover the highly

correlated variables with low false positive rate in cases where the number of samples

may be significantly smaller than the total number of variables. A related problem is

to assign statistical significance to the discovered variables.

Figure 1.1: We define a sample correlation network by thresholding the magnitudes
of the entries of the sample correlation matrix.

In cases where the data comes from an underlying Markovian structure, for exam-

ple a Gaussian graphical model (Lauritzen, 1996), discovering the partial correlation

structures may be of interest. For such cases constructing the sample partial corre-

lation network by thresholding the sample partial correlation matrix can be useful.

The partial correlation screening problem was introduced in (Hero and Rajaratnam,

2012):

Problem B. (Global partial correlation screening). Assume that the ensemble par-
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tial correlation matrix is sparse and that the non-sparse components correspond to

variables that are highly partially correlated with other variables. The problem is to

discover the highly partially correlated variables with low false positive rate in cases

where the number of samples may be significantly smaller than the total number of

variables. A related problem is to assign statistical significance to the discovered

variables.

Mathematically, these problems are introduced as follows. There is a random

vector of dimension p, denoted by X, from which n < p samples are available. Assume

that the distribution of X is in general family of elliptically contoured distributions

with mean µ and non-singular p× p dispersion matrix Σ:

fX(x) = g
(
(x− µ)TΣ−1(x− µ)

)
(1.1)

in which g is a non-negative integrable function. Examples of such distributions

include the multivariate Gaussian and the multivariate student-t. Let 0 ≤ ρ ≤ 1 be a

fixed correlation or partial correlation threshold. A correlation or a partial correlation

network can be constructed by thresholding the magnitude of the entries of the sample

correlation matrix or sample partial correlation matrix, respectively defined below

R = D
− 1

2
S SD

− 1
2

S , (1.2)

and

P = D
− 1

2

R†
R†,D

− 1
2

R†
(1.3)

where R† is the Moore-Penrose pseudo-inverse of R, DA represents the diagonal

matrix that is obtained by zeroing out all but diagonal entries of the matrix A, and
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the p× p sample covariance matrix S is defined as:

S =
1

n− 1

n∑
i=1

(X(i) −X)T (X(i) −X), (1.4)

in which X(i) is the ith row of the n×p data matrix X, and X is the vector average of

all n rows of X. For simplicity, we use the general term hub for a node that is highly

correlated with many other variables in a correlation network, or is highly partially

correlated with other variables in a partial correlation network.

Under a null hypothesis that the true covariance matrix Σ is block sparse of degree

k (i.e. by re-arranging rows and columns all of the non-zero non-diagonal entries

can be collected in a k × k block) correlation and hub screening methods of (Hero

and Rajaratnam, 2011, 2012) develop asymptotic family-wise false discovery rates to

assign p-value to nodes of a (partial) correlation network for being a hub of certain

node degree δ, in a regime where the number samples n is fixed and the number of

variables p goes to infinity (which we also refer to as high dimensional regime, low

sample regime, sample starving regime, or purely high dimensional regime). This

allows screening for hubs in a (partial) correlation network given a false positive rate.

1.2 Local hub screening

The original theory of (partial) correlation screening assigns p-values to nodes of

a (partial) correlation network for being a hub of certain degree. A key relationship

behind the procedure of p-value assignment is the following Poisson-type equation:

P(Nρ,δ > 0)→ 1− exp (−E(Nρ,δ > 0)) , (1.5)

in which Nρ,δ is the number of hubs of degree at least δ in a (partial) correlation

network constructed using (partial) correlation threshold ρ. An important point
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Figure 1.2: Under certain conditions, as p→∞ and ρ→ 1, the degree of a vertex in a
(partial) correlation network is approximately a Poisson random variable.

to mention is that (1.5) holds in specific regimes where n is fixed, p → ∞ and

ρ → 1. Since Nρ,δ is a global characteristic of the (partial) correlation network, the

convergence region (in terms of n, p and ρ) can be relatively small. In other words

the convergence rates in (1.5) can be relatively slow (compared to some local limits)

resulting in an untrusted procedure for assigning p-values as the approximation error

for calculating the p-value may be of the same order as the p-value itself.

Problem 1. (Local (partial) correlation screening). Can we come up with a proce-

dure for assigning p-values to the nodes of a (partial) correlation network for being

hubs, which only incorporates local characteristics of the network instead of the total

number of hubs Nρ,δ?

We show in Chapter II that under milder conditions (compared to the global

Poisson-type limit of (1.5)), the degree of a node in a (partial) correlation network

converges to a Poisson random variable, in total variation distance. Using the new

Poisson limits, we propose a procedure for assigning p-values to the event that a node

of the (partial) correlation network has abnormally high vertex degree under the

block sparse covariance null hypothesis. The high dimensional convergence rate of
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the proposed local hub screening procedure is faster than the original global procedure

of (Hero and Rajaratnam, 2012) which achieves the global Poisson-type limit (1.5).

Specifically, we will see that for fixed n the convergence rates associated with the

local limits are at least a factor of p faster than those of the global limits. It is

worth mentioning that the theory developed in Chapter II allows performing both

family-wise false discovery rate and false discovery rate control on the number of

hubs.

1.3 Spectral correlation hub screening of multivariate time

series

Next we focus on hub screening in the context of stationary multivariate time

series. Spatio-temporal correlation analysis of multivariate time series is important

in applications such as wireless sensor networks, computer networks, neuroimaging

and finance (Vuran et al., 2004; Paffenroth et al., 2013; Friston et al., 2011; Zhang

et al., 2003; Tsay, 2005). Hub screening in the context of spatio-temporal analysis

can be useful in identifying the important parameters of the spatio-temporal models

aimed for various purposes such as reducing the complexity, performing sensitivity

analysis, and optimal allocation of resources.

Assume that N consecutive time samples of a p-variate time series is available.

Spatio-temporal analysis is computationally challenging in situations where the num-

ber of time series p is large. A naive approach is to treat the time series as a sequence

of N independent identically distributed p-dimensional vectors. However, such anal-

ysis completely ignores the temporal correlations in the time series. At the other

extreme, another approach is to consider all correlations between any two time in-

stants. However, this approach would entail the estimation of an Np×Np correlation

matrix which can be computationally costly as well as statistically unstable.
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We consider a more general approach where we look at the stationary (partial)

correlations over time within a time window of given size n ≤ N . Following this idea,

we divide the time series in to m = N/n windows of n consecutive samples. However,

instead of estimating the temporal correlations directly, we perform analysis on the

Discrete Fourier Transforms (DFT) of the time series. In Chapter III we focus on the

following problem.

Problem 2. (Global spectral correlation screening). Given a number N of consecutive

time samples for a stationary p-variate time series, the problem is to discover hubs in

the complex-valued spectral correlation matrix of the time series, for large values of

p and N .

In Chapter III we show that for stationary, jointly Gaussian time series under

the mild condition of absolute summability of the auto- and cross-correlation func-

tions, different Fourier components (frequencies) become asymptotically independent

of each other as the DFT length n increases. This property of stationary Gaussian

processes allows us to focus on the p×p correlations at each frequency separately with-

out having to consider correlations between different frequencies. Moreover, spectral

analysis isolates correlations at specific frequencies or timescales, potentially leading

to greater insight.

The spectral approach reduces the detection of hub time series to the independent

detection of hubs at each frequency. However, in exchange for achieving spectral

resolution, the sample size is reduced by the factor n, from N to m = N/n. To

confidently detect hubs in this high-dimensional, low sample regime (large p, small

m), as well as to accommodate complex-valued DFTs, we develop a method that we

call complex-valued (partial) correlation screening. This is a generalization of the

correlation and partial correlation screening method of (Hero and Rajaratnam, 2011,

2012) to complex-valued random variables. Using the proposed theory we develop

a method for assigning p-values to the nodes in the (partial) correlation network
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of the DFT components of the p time series. To make aggregate inferences based

on all frequencies, straightforward procedures for multiple inference can be used as

described in Chapter III.

1.4 Variable selection and prediction in high dimensional lin-

ear regression using hub screening

Consider the problem of under-determined multivariate regression in which a set

of high dimensional training data {Yi, Xi1, ..., Xip}ni=1 is given and a linear estimate

of the response variable Yi, 1 ≤ i ≤ n < p, is desired:

Yi = a1Xi1 + . . .+ apXip + εi, 1 ≤ i ≤ n, (1.6)

where Xij is the ith sample of independent variable (also referred to as predictor

variable or regressor variable) Xj, Yi is the ith sample of dependent variable Y (also

referred to as response variable), aj is the regression coefficients corresponding to Xj,

and εi is the residual, 1 ≤ i ≤ n, 1 ≤ j ≤ p. There are many applications in which

the number of predictor variables p is larger than the number of samples n. Such

applications arise in text processing of internet documents, gene expression array

analysis, combinatorial chemistry, and other areas (Guyon and Elisseeff , 2003). In

this p > n situation, training a linear predictor becomes difficult due to rank deficient

normal equations, overfitting errors, and high computation complexity. We consider

the following problem in the context of hub screening.

Problem 3. (Two stage global screening for prediction). Assuming a sparse ground

truth linear model, the problem is to design a scalable algorithm that identifies the

true support set and an accurate regression function, in the high dimensional regres-

sion setting of the model (1.6), under a budget constraint on the total number of

variables sampled over the two stages of the procedure.

9



In chapter IV we present a general adaptive procedure for budget-limited pre-

dictor design in high dimension called two-stage Sampling, Prediction and Adaptive

Regression via Correlation Screening (SPARCS). More specifically, assume that the

cost of acquiring the full set of variables X = [X1, . . . , Xp] increases linearly in its

dimension. SPARCS breaks the data collection into two stages in order to achieve

an optimal tradeoff between sampling cost and predictor performance. In the first

stage we collect a few (n) expensive samples {Yi, Xi1, ..., Xip}ni=1, at the full dimension

p � n of X, winnowing the number of variables down to a smaller dimension l < p

using some form of variable selection. In the second stage we collect a larger number

(t − n) of cheaper samples of the l variables that passed the screening of the first

stage. After the second stage, a low dimensional predictor is constructed by solving

the regression problem using all t samples of the selected variables.

Unlike the global and local correlation and hub screening methods considered in

(Hero and Rajaratnam, 2011, 2012) and in Chapter II, in the first stage of SPARCS, we

screen for connectivity in a bipartite graph between the predictor variables {X1, . . . , Xp}

and the response variable Y . An edge exists in the bipartite graph between indepen-

dent variable Xj and response variable Y if the thresholded min-norm least squares

regression coefficient vector B = [b1, . . . , bp] has a non-zero jth entry. When the

jth entry of this thresholded vector is zero the jth independent variable is thrown

out. Using this idea, in Chapter IV we propose a scalable algorithm called predic-

tive correlation screening (PCS) for performing variable selection at the first stage of

SPARCS procedure. We show that two-stage SPARCS predictor that uses PCS in

the first stage outperforms the two-stage predictors which use state of the art variable

selection methods such as LASSO (Tibshirani, 1996) and SIS (Fan and Lv, 2008).

The SPARCS method proposed in Chapter IV considers the case of scalar response

variable. The results for the general case where the response is a vector are presented

in the Appendix A.
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1.5 Covariance and inverse covariance support recovery via

correlation and partial correlation thresholding

Finally, we consider the problem of (inverse) covariance support recovery. Dis-

covering the structure of a high-dimensional covariance matrix or its inverse (also

referred to as (inverse) covariance support recovery) is an attractive problem which

is useful in various contexts. In the context of covariance estimation, discovering the

structure of the covariance matrix or the inverse covariance matrix can be the first

stage of a two-stage esimator of the covriance matrix or its inverse. The second stage

of such two-stage procedure is to estimate the non-zero entries of the (inverse) covari-

ance matrix given the support recovered at the first stage. In the context of graphical

models, inverse covariance support recovery can be used to tackle the problem of

learning the structure of graphical models. It is well known that the zeros in the

inverse covariance matrix of multivariate normal distribution imply the absence of an

edge in the corresponding graphical model (Bishop et al., 2006). Discovering such

structure is of interest in many applications such as social networks, epidemiology,

and finance.

Motivated by above applications, we focus on the following problem in the context

of correlation screening.

Problem 4. (Global screening for support recovery). Assuming a sparse population

(inverse) covariance matrix, the problem is to design a scalable algorithm that ac-

curately detects the non-zero entries of the high dimensional population (inverse)

covariance matrix.

In Chapter V we use correlation and partial correlation edge screening for the

purpose of covariance and inverse covariance support recovery. It is well known that in

high-dimensional regimes, where the number of samples n is relatively small compared

to the number of variables p, the sample covariance matrix performs poorly as an
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estimator of the population covariance matrix. In Chapter V we show that despite

poor estimation performance, thresholding the sample (partial) correlation coefficients

can perform well in discovering the true structure (i.e., the detection of non-zero

entries) of the population (inverse) covariance matrix. We generalize the support

recovery results presented in Chapter IV for the problem of covariance structure

discovery. More specifically, we show that in a purely high-dimensional regime where

n is fixed and p goes to infinity, under certain conditions, the total number of edges

in a (partial) correlation network converges to a Poisson random variable. Using

the proposed Poisson asymptotic result we introduce an algorithm for discovering

the edges of a (partial) correlation network at a specified false discovery rate. We

show that, under the assumption of elliptically contoured distribution, such structure

discovery method only requires n = Θ(log p) samples to recover the true structure

with probability converging to one.
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CHAPTER II

Local hub screening

2.1 Introduction

In this chapter we present a method called local hub screening for detecting hubs

in a sparse correlation or partial correlation network over p nodes. The proposed

method is related to the hub screening method (Hero and Rajaratnam, 2012) where

a Poisson-type limit is used to specify p-values on the number of spurious hub nodes

found in the network. In this chapter we also establish Poisson limits. However,

instead of being on the global number of hub nodes found, here the Poisson limit

applies to the node degree found at an individual node. This allows us to define

asymptotic p-values that are local to each node. We will see that the convergence

rates for proposed local hub screening method are at least a factor of p faster than

those of global correlation and hub screening. We illustrate the proposed method for

a connectomics application on a to fMRI brain activation dataset.

Identifying hubs in correlation and partial correlation networks is an important

problem which arises in applications such as gene expression analysis, sensor networks

and information theoretic imaging (Friedman et al., 2008; Wiesel et al., 2010; Liu

et al., 2012). Similar to the previous work (Hero and Rajaratnam, 2011, 2012) we

consider the problem of detection of hubs of high correlation in large scale networks.

Hub screening methods (Hero and Rajaratnam, 2012, 2011) attempt to identify the

14



hubs in a (partial) correlation network by hard thresholding the magnitude of the

entries of the sample (partial) correlation matrix.

Correlation and hub screening methods use a U -score representation of the sample

(partial) correlation matrix to obtain an asymptotic expression for the expected num-

ber of hubs as the number of nodes p becomes large while the number of samples n is

fixed. When the (partial) correlation matrix is sparse, the asymptotic expression for

the expected number of hubs, does not depend on the underlying joint distribution of

the variables. Furthermore, the probability that there exists at least one hub of de-

gree greater than a given integer δ converges to the probability that a Poisson random

variable exceeds zero, where the rate of the Poisson variable is the expected number

of hubs of degree > δ. Computing this probability enables assignment of p-values

to different nodes of the network. Since the expected number of hubs in a correla-

tion network is a general property of the network (not a local one), the approximate

p-value obtained for a specific node depends on all nodes in the network.

It has been shown that (Hero and Rajaratnam, 2011, 2012) there is an abrupt

phase transition in the number of non-zero entries of the thresholded sample (partial)

correlation matrix as a function of the correlation threshold. Such a phase transition

can be observed even in cases where there is no actual correlation between the nodes

in the network. The value of the critical threshold ρc where the phase transition

occurs, can be found as a function of n, p and the underlying distribution of the

data. When the sample (partial) correlation matrix is thresholded with correlation

threshold ρ < ρc, there will be many false discoveries. The situation becomes worse

when the number of nodes p is significantly larger than the number of samples n

(n� p). Indeed, in such a high dimensional regime, the value of the critical threshold

ρc approaches 1 and almost all hub discoveries are false alarms.

In this chapter we introduce a new (partial) correlation screening method, called

local hub screening, that relies on a Poisson limit for the degree distribution of the
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degree of any node in the network. We give a theorem which shows that, for specific

regimes of n, p and ρ, the degree of a specific vertex in the thresholded (partial)

correlation graph is approximately a Poisson random variable. We also provide an

expression for the rate of the Poisson processes corresponding to different vertices.

The Poisson approximation allows us to assign p-value on observed hub degree to each

node of the network. We show that the rate of convergence to the Poisson limit is at

least a factor of p faster than the rates that govern previous hub screening methods.

As a result, the local hub screening method proposed in this chapter can be applied

to a wider range of p and n with higher accuracy. Unlike previous correlation and

hub screening methods, the p-values assigned to a specific node depend only on the

local dependencies of that node.

The rest of this chapter is organized as follows. Section 2.2 provides the necessary

preliminaries. In Sec. 2.3 we introduce our theory for local hub screening method.

Also we present a numerical example which validates the theoretical predictions.

Finally, in Sec. 2.4 we propose our local hub screening method for assigning p-values.

2.2 Preliminaries and notations

Assume X = [X1, . . . , Xp] and is a random vector, from which n observations are

available. We represent the n × p data matrix as X. Throughout this chapter, we

assume that the vector X has an elliptically contoured density with mean µx and non-

singular p×p covariance matrix Σx, i.e. the probability density function is of the form

fX(x) = g
(
(x− µx)

TΣx
−1(x− µx)

)
, in which g is a non-negative integrable function.

The correlation matrix and partial correlation matrix are defined as Γ = D
− 1

2
Σ ΣD

− 1
2

Σ

and Ω = D
− 1

2

Σ−1Σ
−1D

− 1
2

Σ−1 , respectively, where for a matrix A, DA represents the

diagonal matrix that is obtained by zeroing out all but diagonal entries of A.
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The p× p sample covariance matrix S for data X is defined as:

S =
1

n− 1

n∑
i=1

(X(i) −X)T (X(i) −X), (2.1)

where X(i) is the ith row of data matrix X, and X is the vector average of all n

rows of X. The p× p sample correlation and sample partial correlation matrices are

then defined as, R = D
− 1

2
S SD

− 1
2

S and P = D
− 1

2

R†
R†D

− 1
2

R†
, respectively, where R† is the

Moore-Penrose pseudo-inverse of R.

Our theory for local hub screening is based on the U -scores representation of

the correlation and partial correlation matrices. It can be shown that there exist a

(n−1)×p matrix UR with unit norm columns, such that the following representation

holds (Hero and Rajaratnam, 2012):

R = UT
RUR. (2.2)

Based on Lemma 1 of the hub screening work (Hero and Rajaratnam, 2012) we have:

R† = UT
R(URUT

R)−2UT
R. (2.3)

Hence by defining UP = (URUT
R)−1URD

− 1
2

UTR(URUTR)−2UR
we have the following represen-

tation of the sample partial correlation matrix:

P = UT
PUP, (2.4)

where UP is a (n− 1)× p matrix with unit-norm columns.

The following will be necessary for Sec. 2.3. We denote the (n − 2)-dimensional

unit sphere in Rn−1 and its surface area by Sn−2 and an, respectively. Assume that

U,V are two independent and uniformly distributed random vectors on Sn−2. For
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a threshold ρ ∈ [0, 1], let r =
√

2(1− ρ). P0 is then defined as the probability that

either ‖U −V‖2 ≤ r or ‖U + V‖2 ≤ r. P0 can be computed using the formula for

the area of spherical caps on Sn−2:

P0 = I1−ρ2(
n− 2

2
,
1

2
), (2.5)

where Ix(a, b) is the regularized incomplete beta function with parameters a and

b. For arbitrary joint density fU1,...,Up(u1, . . . ,up) defined on the Cartesian product

Spn−2 = Sn−2 × · · · × Sn−2, define

fUi,U∗−i(u,v) =
1

p− 1

p∑
j 6=i,j=1

1

2
(fUi,Uj

(u,v) + fUi,Uj
(u,−v)). (2.6)

Let k represent an upper bound on the number of non-zero entries in any row of

covariance matrix Σx. Define the dependency coefficient ∆i,p,n,k as

∆i,p,n,k = max
j 6=i

∥∥∥(fUi,Uj |UAk(i,j)
− fUi,Uj

)/fUi,Uj

∥∥∥
∞
, (2.7)

in which Ak(i, j) is defined as the complement of the union of the sets of indices of

the k nearest neighbors of nodes i and j in the correlation graph associated with Σx.

The function J of the joint density fU,V(u,v) is defined as:

J(fU,V) = an

∫
Sn−2

fU,V(u,u)du. (2.8)

There are several intuitive interpretations for J(fU,V) (see for example (Hero and

Rajaratnam, 2011)). Simple calculations show that when U and V are independent

and uniform over Sn−2, J(fU,V) = 1. As we will see later, J(fUi,U∗−i) will play an

important role in the expressions for average vertex degrees.

Finally, the total variation distance between the probability distributions of two
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integer valued random variables M and N is defined as

dTV (M,N) = sup
A⊂Z
|P(M ∈ A)− P(N ∈ A)|, (2.9)

where Z is the set of integer numbers.

2.3 Local Hub Screening

2.3.1 Asymptotic hub degree distribution

We define the generic matrix notation Φ = [Φij]
p
i,j=1 to denote either the sample

correlation matrix R or the sample partial correlation matrix P. Correspondingly,

we define U = [U1, · · · ,Up] as the generic notation for the U -score representation of

matrix Φ, i.e.:

Φ = UTU. (2.10)

For ρ ∈ [0, 1], we define the (partial) correlation graph Gρ(Φ) as follows. The vertices

of Gρ(Φ) are v1, · · · , vp which correspond to U1, · · · ,Up respectively. For 1 ≤ i, j ≤ p,

vi and vj are connected in Gρ(Φ) if the magnitude of the sample (partial) correlation

coefficient between Xi and Xj is at least ρ, i.e. |Φij| = |UT
i Uj| ≥ ρ. Denote the

degree of vi by di. For a positive integer δ, a vertex of Gρ(Φ) is called a hub if di ≥ δ.

The following theorem shows that under certain conditions, the degree di of ver-

tex vi is approximately a Poisson random variable. This theorem also provides an

approximate expression for the mean of di.

Theorem II.1. Let U = [U1, · · · ,Up] be a (n−1)×p random matrix with Ui ∈ Sn−2

where n ≥ 3 is a fixed integer. Assume that the joint density of any subset of Ui’s is
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Figure 2.1: Local hub screening thresholds the sample correlation or partial correla-
tion matrix, denoted by the matrix Φ in (5.4) to find variables Xi that
are highly correlated with other variables. This is equivalent to finding
hubs in a graph Gρ(Φ) with p vertices v1, · · · , vp. For 1 ≤ i, j ≤ p, vi is
connected to vj in Gρ(Φ) if |Φij| ≥ ρ.

bounded and differentiable. Then:

|E[di]− Λi,p,n,ρ| ≤ 2(p− 1)P0an
√

2(1− ρ)Ṁ1, (2.11)

in which

Λi,p,n,ρ = (p− 1)P0J(fUi,U∗−i), (2.12)

and

Ṁ1 = max
j 6=i

sup
u,v∈Sn−2

‖∇vfUj |Ui
(v|u)‖2. (2.13)

Furthermore, let Ni be a Poisson random variable with rate E[di]. Then:

dTV (di, Ni) ≤ (p− 1)k2P 2
0 a

2
n((M i

1)2 +M i
2) + (p− 1)P0an∆i,p,n,k, (2.14)

where

M i
1 = max

j 6=i
sup

u,v∈Sn−2

‖fUj |Ui
(v|u)‖2, (2.15)
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and

M i
2 = max

j,k 6=i
sup

u,v,w∈Sn−2

‖fUj ,Uk|Ui
(v,w|u)‖2. (2.16)

Proof. For U ∈ Sn−2, let A(r,U) be the union of two anti-polar caps in Sn−2 of

radius r =
√

2(1− ρ) centered at U and −U. Moreover let φij be the indicator

of Uj ∈ A(r,Ui), i.e., the event that the magnitude sample (partial) correlation

between the ith and jth variable exceeds ρ. For each 1 ≤ i ≤ p, we have the following

representation for the vertex degree di:

di =

p∑
j 6=i,j=1

φij. (2.17)

Therefore,

E[di] =

p∑
j 6=i,j=1

E[φij]. (2.18)

We have

E[φij] =

∫
Sn−2

du

∫
A(r,u)

dvfUi,Uj
(u,v). (2.19)

Hence, using mean value theorem we have:

|E[φij]− P0

(
J

(
1

2
(fUi,Uj

(u,v) + fUi,Uj
(u,−v))

))
| ≤ 2P0an

√
2(1− ρ)Ṁ1.(2.20)

Summing over j will then conclude the relation (2.11).

Next we prove the relation (2.14). We use Chen-Stein method (Arratia et al.,

1990). Define the index set B(i, j) = {(l,m) : l ∈ Nk(i),m ∈ Nk(j)}, where Nk(i) is

the set of indices of the k-nearest neighbors of Ui. Note that |B(i, j)| ≤ k2. Using
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Theorem 1 of (Arratia et al., 1990), we have:

2 maxA|P(di ∈ A)− P(Ni ∈ A)| ≤ b1 + b2 + b3, (2.21)

where

b1 =

p∑
j 6=i,j=1

∑
(l,m)∈B(i,j)

E[φij]E[φlm], (2.22)

b2 =

p∑
j 6=i,j=1

∑
(l,m)∈B(i,j)

E[φijφlm], (2.23)

and, for pij = E[φij],

b3 =

p∑
j 6=i,j=1

E [E[φij − pij|{φlm : (l,m) 6∈ B(i, j) ∪ {(i, j)}}]] . (2.24)

Note that we have

E[φij] =

∫
Sn−2

du

∫
A(r,u)

dvfUi,Uj
(u,v) ≤ P0anM

i
1, (2.25)

and

E [φijφil] =

∫
Sn−2

du

∫
A(r,u)

dv1

∫
A(r,u)

dv2fUi,Uj ,Ul
(u,v1,v2) (2.26)

≤ P 2
0 a

2
nM

i
2. (2.27)

Applying the bound (2.25) to the summand of b1 we obtain

b1 ≤ (p− 1)k2P 2
0 a

2
n(M i

1)2. (2.28)
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Likewise, the bound (2.27) applied to b2 gives

b2 ≤ (p− 1)k2P 2
0 a

2
nM

i
2. (2.29)

Furthermore, with Ak(i, j) = Nk(i) ∪Nk(j)− {i, j} we have

E [E[φij − pij|{φlm : (l,m) 6∈ B(i, j) ∪ {(i, j)}}]] = E
[
E[φij − pij|UAk(i,j)]

]
=

∫
S
|Ak(i,j)|
n−2

duAk(i,j)

∫
Sn−2

dui

∫
A(r,ui)

duj

(
fUi,Uj |UAk(i,j)

(ui,uj|uAk(i,j))− fUi,Uj
(ui,uj)

fUi,Uj
(ui,uj)

)
fUi,Uj

(ui,uj)fUAk(i,j)
(uAk(i,j))

≤ P0an∆i,p,n,k. (2.30)

This yields

b3 ≤ (p− 1)P0an∆i,p,n,k. (2.31)

Hence, combining bounds (2.28), (2.29), (2.31) along with the inequality (2.21) gives

the bound (2.14).

Comparing the bounds in equations (2.11) and (2.14) with those of Proposition

1 in (Hero and Rajaratnam, 2012) shows that the rates of convergence of (2.11) and

(2.14) in Theorem II.1 converge to 0, p times faster.

When the rows of data matrix X are independent (i.e. when the samples are inde-

pendent) and Σx is diagonal, U -scores U1, · · · ,Up are uniform on Sn−2. Moreover if

the random variables X1, · · · ,Xp are independent, then U1, · · · ,Up are independent.

Under this independence assumption J(fUi,U∗−i) = 1. In this case Poisson limits do

not depend on the possibly unknown underlying marginal distribution of the U -scores.

Using similar arguments as in hub screening (Hero and Rajaratnam, 2012) it can be
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shown that if Σx is block sparse of degree k, we have:

J(fUi,U∗−i) = 1 +O(k/p) (2.32)

and

∆i,p,n,k =

 0, Φ = R

O (k/p)) , Φ = P
(2.33)

Later we will see that under the assumption of block sparsity of Σx, we can use

the Poisson limit introduced in Theorem II.1 to assign p-values to vertices of Gρ(Φ)

for being hubs.

2.3.2 A numerical example

To illustrate the accuracy of the expressions given in Theorem II.1 for the mean

and the distribution of the degree of a specific vertex in a correlation graph, we

performed a simple numerical simulation. We generated n = 100 independent samples

of p = 5000 independent and identically distributed (i.i.d) standard normal random

variables, constructed the U -scores, constructed the correlation graph Gρ and applied

the local hub screening.

The value of the correlation threshold was set to ρ = 0.32. Figure 2.2 shows the

normalized histogram of the degree of the vertex v1000 in the graph Gρ. The histogram

was obtained by performing N = 104 simulations. The solid red line shows a Poisson

distribution with rate Λ1000,5000,100,0.32 given in (2.12). Since both the samples and the

variables are independent, J(fU1000,U∗−1000) = 1 and Λ1000,5000,100,0.32 = (p − 1)P0 =

(5000−1)× (1.1722×10−3) = 5.8599. In the figure the dashed green line corresponds

to a Poisson distribution with rate equal to 5.8704, the empirical mean degree.
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Figure 2.2: A numerical example which confirms the validity of expressions in Theo-
rem II.1. Here n = 100, p = 5000 and ρ = 0.32.

2.4 Application

2.4.1 Assigning p-values to hubs

Under the null hypothesis of block sparse covariance matrix Σx the result of The-

orem II.1 along with the approximations (2.32) and (2.33) can be used to assign

p-values to the observed degrees {di}pi=1 of nodes v1, · · · , vp. The procedure for as-

signing p-values is as follows:

1. Choose an initial threshold ρ∗.

2. Select a value δ ∈ {1, · · · ,max1≤i≤p di}, where di’s are the vertex degrees in Gρ∗(Φ).

3. For each 1 ≤ i ≤ p let ρδ(i) be the δ-th largest element of {|Φij|, j 6= i, 1 ≤ j ≤ p}.

4. Approximate the p-value corresponding to vertex vi as

pvδ(i) = 1− FΛi,p,n,ρδ(i)
(δ − 1), (2.34)
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in which FΛ(δ−1) is the cumulative distribution function of a Poisson random variable

with rate Λ computed at δ − 1, i.e. FΛ(δ − 1) = e−Λ
∑δ−1

l=0 Λl/l!.

The above procedure is similar to the procedures introduced in correlation and

predictive correlation screening (Hero and Rajaratnam, 2011, 2012; Firouzi et al.,

2013) with the difference that here the local Poisson rates Λi,p,n,ρ are used to ap-

proximate the p-values whereas correlation screening methods use the global rates

for the avergae number of hubs in the (partial) correlation graphs. The advantage of

using procedure above comes from the fact that the error bounds for the convergence

of the local Poisson rates are at least p times faster than the error bounds for the

convergence of the global rates (Hero and Rajaratnam, 2011, 2012; Firouzi et al.,

2013). This leads to a larger convergence region in terms of p, n and ρ for the rates

introduced in Theorem II.1. Therefore, local hub screening applies to a wider range

of operating conditions.

2.4.2 Phase transition threshold

The average degree of vertex vi in Gρ(Φ) exhibits a phase transition as a function

of the correlation threshold ρ (see Fig. 2.3). For a given n there is a critical threshold

ρc such that as ρ ↓ ρc the average degree of vertex vi in the graph Gρ(Φ) is small

and increases very slowly. As ρ continues to decrease to values below ρc, the average

degree of vertex vi increases rapidly. The rapidity of the phase transition depends on

the value of n. For large values of n the phase transition is more evident. We define

the critical threshold ρc to be the point where dE[di]/dρ = −(p−1). An approximate

value for the critical threshold can be obtained using the approximation (2.11):

ρc ≈
√

1− cn, (2.35)
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where cn = (2J(fUi,U∗−i))
−2/(n−4). The value of ρc depends on p only through the

quantity J(fUi,U∗−i)). Therefore, in the cases where the approximation (2.32) is valid

the value of the critical threshold does not depend on p nor does it depend on the

distribution of the data.

Generally the value of the initial threshold ρ∗ will be application dependent, re-

flecting the minimal correlation that is scientifically significant. In cases where a

minimal threshold is not specified by the experimenter, the critical phase transition

threshold ρc can be used as ρ∗. This ensures that the full range of statistically signif-

icant hub correlations is covered in the local hub screening process.

Figure 2.3: Average vertex degree as a function of correlation threshold ρ. The aver-
age is obtained for a specific vertex by performing 104 experiments. The
plots correspond to n = 2000, 1000, 500, 200, 100, 50 from left to right,
respectively. The samples are draws of p = 1000 i.i.d. standard normal
random variables. As we see there is a phase transition in the mean ver-
tex degree as a function of ρ. The phase transition becomes sharper as n
grows. The critical phase transition threshold ρc obtained from (2.35) is
shown on the plots using black stars. The values for the critical threshold
can be found in Table 2.1

27



n 2000 1000 500 200 100 50
ρc 0.0263 0.0373 0.0528 0.0840 0.1197 0.1723

Table 2.1: The value of critical threshold ρc obtained from formula (2.35) for different
values of n. The predicted ρc approximates the phase transition thresholds
in Fig. 2.3.

2.4.3 Application to Connectomics

We illustrate the proposed procedure on a fMRI dataset to assign p-values to dif-

ferent seeds in human brain connectome for being a hub. Studies show that detection

of hubs plays a key role in the field of connectomics and can provide insights into the

structure of human brain. (Bullmore and Sporns, 2009; He and Evans, 2010).

In this experiment, the dataset consists of 30 human subjects from which 17 are

diagnosed with attention deficit hyperactivity disorder (ADHD). For each subject a

number of n samples (which varies between 78 to 340 for different subjects), are used

to construct the sample correlation matrix between the resting state blood-oxygen-

level dependent (BOLD) signals of p = 1166 seeds in the brain.

We applied the procedure described in Sec. 2.4.1 to assign p-values to vertices

of the correlation graphs constructed by thresholding the correlation matrices corre-

sponding to each subject. Figure 2.4 shows the waterfall plots of p-values correspond-

ing to the 30 different subjects. For a fixed δ, the waterfall plot corresponding to each

subject is obtained by linearly interpolating the pairs {(ρδ(i), log log(1− pvδ(i))−1)}pi=1

which are ordered based on the absolute values of their first components (i.e., the

quantities |ρδ(i)|). The initial threshold is chosen to be ρ∗ = 0.86 which is well be-

yond the critical thresholds for different subjects. Note that since the number of

samples n is different for each subject, the statistical significance obtained by (2.34)

using a specific value of ρδ(i) is different for each subject. For this reason the waterfall

plots for different subjects do not intersect. The results are shown for δ = 1, 2, 3, 4.

We can see that as δ becomes larger there are less discoveries since more seeds fails
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to pass the degree threshold. Also, despite the fact that there are fewer healthy sub-

jects (13 out of 30), the healthy subjects tend to be more persistent in appearing in

waterfall plots for larger values of δ.
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Figure 2.4: Waterfall plots of p-values for a fMRI dataset plotted in terms of
log log(1−pvδ(i))−1. The seeds plotted correspond to vertices with degree
at least δ in the correlation graph with initial threshold ρ∗ = 0.86. Upper
left, upper right, lower left, and lower right plots correspond to δ = 1, 2, 3,
and 4, respectively.

2.5 Conclusion

We introduced local hub screening for detecting hubs in correlation and partial

correlation graphs. Local hub screening assigns p-values to vertices under the null

hypothesis of that the covariance matrix is block sparse. The procedure for assigning

p-values is justified by a Poisson limit theory of distribution of vertex degrees. We

presented a numerical example to confirm the accuracy of our theoretical predictions.
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CHAPTER III

Spectral correlation hub screening of multivariate

time series

3.1 Introduction

This chapter discusses correlation analysis of stationary multivariate Gaussian

time series in the spectral or Fourier domain. While bearing similarities to the lo-

cal hub screening method of Chapter II, the goal here is to identify the hubs in the

correlation network corresponding to the time series, i.e., those times series variables

that are highly correlated with a specified number of other time series variables.

We show that the Fourier components of the time series at different frequencies are

asymptotically statistically independent. This property permits independent corre-

lation analysis at each frequency, alleviating computational and statistical challenges

of high-dimensional time series. To detect correlation hubs at each frequency, an

existing correlation screening method is extended to the complex-valued variables to

accommodate complex-valued Fourier components. We characterize the number of

hub discoveries at specified correlation and degree thresholds in the regime of increas-

ing dimension and fixed sample size. The theory specifies appropriate thresholds to

apply to sample correlation matrices to detect hubs and also allows statistical signif-

icance to be attributed to hub discoveries. Numerical results illustrate the accuracy
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of the theory and the usefulness of the proposed spectral framework.

Correlation analysis of multivariate time series is important in many applications

such as wireless sensor networks, computer networks, neuroimaging, and finance (Vu-

ran et al., 2004; Paffenroth et al., 2013; Friston et al., 2011; Zhang et al., 2003; Tsay,

2005). This chapter focuses on the problem of detecting hubs in the time series,

variables that have a high degree of interaction with other variables as measured by

correlation or partial correlation. Detection of hubs can lead to reduced computa-

tional and/or sampling costs. For example in wireless sensor networks, the identifi-

cation of hub nodes can be useful for reducing power usage and adding or removing

sensors from the network (Stanley et al., 2012; Li et al., 2008). Hub detection can

also give new insights about underlying structure in the dataset. In neuroimaging for

instance, studies have consistently shown the existence of highly connected hubs in

brain graphs (connectomes) (Bullmore and Sporns, 2009). In finance, a hub might

indicate a vulnerable financial instrument or a sector whose collapse could have a

major effect on the market (Hero and Rajaratnam, 2012).

Correlation analysis becomes challenging for multivariate time series when the

dimension p of the time series, i.e. the number of scalar time series, and the number

of time samples N are large (Zhang et al., 2003). A naive approach is to treat the time

series as a set of independent samples of a p-dimensional random vector and estimate

the associated covariance or correlation matrix, but this approach completely ignores

temporal correlations as it only considers dependences at the same time instant and

not between different time instants. The work in (Chen et al., 2013) accounts for

temporal correlations by quantifying their effect on convergence rates in covariance

and precision matrix estimation; however, only correlations at the same time instant

are estimated. A more general approach is to consider all correlations between any two

time instants of any two series within a window of n ≤ N consecutive samples, where

the previous case corresponds to n = 1. However, in general this would entail the
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estimation of an np× np correlation matrix from a reduced sample of size m = N/n,

which can be computationally costly as well as statistically unstable.

In this chapter, we propose spectral correlation analysis to overcome the issues

discussed above. As before, the time series are divided into m temporal segments of

n consecutive samples, but instead of estimating temporal correlations directly, the

method performs analysis on the Discrete Fourier Transforms (DFT) of the time se-

ries. We prove in Theorem III.1 that for stationary, jointly Gaussian time series under

the mild condition of absolute summability of the auto- and cross-correlation func-

tions, different Fourier components (frequencies) become asymptotically independent

of each other as the DFT length n increases. This property of stationary Gaussian

processes allows us to focus on the p×p correlations at each frequency separately with-

out having to consider correlations between different frequencies. Moreover, spectral

analysis isolates correlations at specific frequencies or timescales, potentially leading

to greater insight. To make aggregate inferences based on all frequencies, straightfor-

ward procedures for multiple inference can be used as described in Section 3.5.

The spectral approach reduces the detection of hub time series to the independent

detection of hubs at each frequency. However, in exchange for achieving spectral reso-

lution, the sample size is reduced by the factor n, from N to m = N/n. To confidently

detect hubs in this high-dimensional, low-sample regime (large p, small m), as well as

to accommodate complex-valued DFTs, we develop a method that we call complex-

valued (partial) correlation screening. This is a generalization of the correlation and

partial correlation screening method of (Hero and Rajaratnam, 2011, 2012; Firouzi

et al., 2013) to complex-valued random variables. For each frequency, the method

computes the sample (partial) correlation matrix of the DFT components of the p

time series. Highly correlated variables (hubs) are then identified by thresholding the

sample correlation matrix at a level ρ and screening for rows (or columns) with a

specified number δ of non-zero entries.
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We characterize the behavior of complex-valued correlation screening in the high-

dimensional regime of large p and fixed sample size m. Specifically, Theorem III.5 and

Corollary III.6 give asymptotic expressions in the limit p→∞ for the mean number

of hubs detected at thresholds ρ, δ and the probability of discovering at least one such

hub. Bounds on the rates of convergence are also provided. These results show that

the number of hub discoveries undergoes a phase transition as ρ decreases from 1,

from almost no discoveries to the maximum number, p. An expression (3.33) for the

critical threshold ρc,δ is derived to guide the selection of ρ under different settings of

p, m, and δ. Furthermore, given a null hypothesis that the population correlation

matrix is sufficiently sparse, the expressions in Corollary III.6 become independent of

the underlying probability distribution and can thus be easily evaluated. This allows

the statistical significance of a hub discovery to be quantified, specifically in the form

of a p-value under the null hypothesis. We note that our results on complex-valued

correlation screening apply more generally than to spectral correlation analysis and

thus may be of independent interest.

The remainder of the chapter is organized as follows. Section 3.3 presents nota-

tion and definitions for multivariate time series and establishes the asymptotic inde-

pendence of spectral components. Section 3.4 describes complex-valued correlation

screening and characterizes its properties in terms of numbers of hub discoveries and

phase transitions. Section 3.5 discusses the application of complex-valued correlation

screening to the spectra of multivariate time series. Finally, Sec. 3.6 illustrates the

applicability of the proposed framework through simulation analysis.

3.2 Preliminaries and notation

A triplet (Ω,F ,P) represents a probability space with sample space Ω, σ-algebra

of events F , and probability measure P. For an event A ∈ F , P(A) represents the

probability of A. Scalar random variables and their realizations are denoted with
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upper case and lower case letters, respectively. Random vectors and their realizations

are denoted with bold upper case and bold lower case letters. The expectation opera-

tor is denoted as E. For a random variable X, the cumulative probability distribution

(cdf) of X is defined as FX(x) = P(X ≤ x). For an absolutely continuous cdf FX(.)

the probability density function (pdf) is defined as fX(x) = dFX(x)/dx. The cdf and

pdf are defined similarly for random vectors. Moreover, we follow the definitions in

(Durrett, 2010) for conditional probabilities, conditional expectations and conditional

densities.

For a complex number z = a + b
√
−1 ∈ C, <(z) = a and =(z) = b represent

the real and imaginary parts of z, respectively. A complex-valued random variable

is composed of two real-valued random variables as its real and imaginary parts. A

complex-valued Gaussian variable has real and imaginary parts that are Gaussian.

A complex-valued (Gaussian) random vector is a vector whose entries are complex-

valued (Gaussian) random variables. The covariance of a p-dimensional complex-

valued random vector Y and a q-dimensional complex-valued random vector Z is a

p× q matrix defined as

cov(Y,Z) = E
[
(Y − E[Y])(Z− E[Z])H

]
,

where H denotes the Hermitian transpose. We write cov(Y) for cov(Y,Y) and

var(Y ) = cov(Y, Y ) for the variance of a scalar random variable Y . The correla-

tion coefficient between random variables Y and Z is defined as

cor(Y, Z) =
cov(Y, Z)√

var(Y )var(Z)
.

Matrices are also denoted by bold upper case letters. In most cases the distinction

between matrices and random vectors will be clear from the context. For a matrix A

we represent the (i, j)th entry of A by aij. Also DA represents the diagonal matrix
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that is obtained by zeroing out all but the diagonal entries of A.

3.3 Spectral representation of multivariate time series

3.3.1 Definitions

Let X(k) = [X(1)(k), X(2)(k), · · ·X(p)(k)], k ∈ Z, be a multivariate time series

with time index k. We assume that the time series X(1), X(2), · · ·X(p) are second-

order stationary random processes, i.e.:

E[X(i)(k)] = E[X(i)(k + ∆)] (3.1)

and

cov[X(i)(k), X(j)(l)] = cov[X(i)(k + ∆), X(j)(l + ∆)] (3.2)

for any integer time shift ∆.

For 1 ≤ i ≤ p, let X(i) = [X(i)(k), · · · , X(i)(k + n − 1)] denote any vector of

n consecutive samples of time series X(i). The n-point Discrete Fourier Transform

(DFT) of X(i) is denoted by Y(i) = [Y (i)(0), · · · , Y (i)(n− 1)] and defined by

Y(i) = WX(i), 1 ≤ i ≤ p

in which W is the DFT matrix:

W =
1√
n



1 1 · · · 1

1 ω · · · ωn−1

... ... . . . ...

1 ωn−1 · · · ω(n−1)2


,
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where ω = e−2π
√
−1/n.

We denote the n× n population covariance matrix of X(i) as C(i,i) = [c
(i,i)
kl ]1≤k,l≤n

and the n × n population cross covariance matrix between X(i) and X(j) as C(i,j) =

[c
(i,j)
kl ]1≤k,l≤n for i 6= j. The translation invariance properties (3.1) and (3.2) imply

that C(i,i) and C(i,j) are Toeplitz matrices. Therefore c(i,i)
kl and c(i,j)

kl depend on k and

l only through the quantity k− l. Representing the (k, l)th entry of a Toeplitz matrix

T by t(k − l), we write

c
(i,i)
kl = c(i,i)(k − l) and c

(i,j)
kl = c(i,j)(k − l),

where k − l takes values from 1− n to n− 1. In addition, C(i,i) is symmetric.

3.3.2 Asymptotic independence of spectral components

The following theorem states that for stationary time series, DFT components

at different spectral indices (i.e. frequencies) are asymptotically uncorrelated under

the condition that the auto-covariance and cross-covariance functions are absolutely

summable. This theorem follows directly from the spectral theory of large Toeplitz

matrices, see, for example, (Grenander and Szegő, 1958) and (Gray, 2006). However,

for the benefit of the reader we give a self contained proof of the theorem.

Theorem III.1. Assume limn→∞
∑n−1

t=0 |c(i,j)(t)| = M (i,j) < ∞ for all 1 ≤ i, j ≤ p.

Define err(i,j)(n) = M (i,j) −
∑n−1

m′=0 |c(i,j)(m′)| and avg(i,j)(n) = 1
n

∑n−1
m′=0 err(i,j)(m′).

Then for k 6= l, we have:

cor
(
Y (i)(k), Y (j)(l)

)
= O(max{1/n, avg(i,j)(n)}).

In other words Y (i)(k) and Y (j)(l) are asymptotically uncorrelated as n→∞.

Proof. Without loss of generality we assume that the time series have zero mean (i.e.
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E[X(i)(k)] = 0, 1 ≤ i ≤ p, 0 ≤ k ≤ n − 1). We first establish a representation of

E[Z(i)(k)Z(j)(l)∗] for general linear functionals:

Z(i)(k) =
n−1∑
m′=0

gk(m
′)X(i)(m′),

in which gk(.) is an arbitrary complex sequence for 0 ≤ k ≤ n− 1. We have:

E[Z(i)(k)Z(j)(l)∗]

= E

[(
n−1∑
m′=0

gk(m
′)X(i)(m′)

)(
n−1∑
n′=0

gl(n
′)X(j)(n′)

)∗]

=
n−1∑
m′=0

gk(m
′)
n−1∑
n′=0

gl(n
′)∗E[X(i)(m′)X(j)(n′)∗]

=
n−1∑
m′=0

gk(m
′)
n−1∑
n′=0

gl(n
′)∗c

(i,j)
m′n′ (3.3)

Now for a Toeplitz matrix T, define the circulant matrix DT as:

DT =



t(0) t(−1) + t(n− 1) · · · t(1− n) + t(1)

t(1) + t(1− n) t(0) · · · t(2− n) + t(2)

... ... . . . ...

t(n− 2) + t(−2) t(n− 3) + t(−3) · · · t(−1) + t(n− 1)

t(n− 1) + t(−1) t(n− 2) + t(−2) · · · t(0)


We can write:

C(i,j) = DC(i,j) + E(i,j)

for some Toeplitz matrix E(i,j). Thus c(i,j)(m′ − n′) = d(i,j)(m′ − n′) + e(i,j)(m′ − n′)

where d(i,j)(m′ − n′) and e(i,j)(m′ − n′) are the (m′, n′) entries of DC(i,j) and E(i,j),
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respectively. Therefore, (3.3) can be written as:

n−1∑
m′=0

gk(m
′)
n−1∑
n′=0

gl(n
′)∗d(i,j)(m′ − n′) +

n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gl(n

′)∗e(i,j)(m′ − n′)

The first term can be written as:

n−1∑
m′=0

gk(m
′)
(
g∗l ~ d(i,j)

)
(m′) =

n−1∑
m′=0

gk(m
′)v

(i,j)
l (m′)

where we have recognized v
(i,j)
l (m′) = g∗l ~ d(i,j) as the circular convolution of g∗l (.)

and d(i,j)(.) (Oppenheim et al., 1989). Let Gk(.) and D(i,j)(.) be the the DFT of gk(.)

and d(i,j)(.), respectively. By Plancherel’s theorem (Conway, 1990) we have:

n−1∑
m′=0

gk(m
′)v

(i,j)
l (m′) =

n−1∑
m′=0

gk(m
′)
(
v

(i,j)
l (m′)∗

)∗
=

n−1∑
m′=0

Gk(m
′)
(
Gl(m

′)D(i,j)(−m′)∗
)∗

=
n−1∑
m′=0

Gk(m
′)Gl(m

′)∗D(i,j)(−m′). (3.4)

Now let gk(m′) = ωkm
′
/
√
n for 0 ≤ k,m′ ≤ n − 1. For this choice of gk(.) we have

Gk(m
′) = 0 for all m′ 6= n− k and Gk(n− k) = 1. Hence for k 6= l the quantity (3.4)

becomes 0. Therefore using the representation E(i,j) = C(i,j) −DC(i,j) we have:

|cov
(
Y (i)(k), Y (j)(l)

)
| = |E[Y (i)(k)Y (j)(l)∗]|

= |
n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gl(n

′)∗e(i,j)(m′ − n′)|

≤ 1

n

n−1∑
m′=0

n−1∑
n′=0

|e(i,j)(m′ − n′)|

=
2

n

n−1∑
m′=0

m′|c(i,j)(m′)|, (3.5)
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in which the last equation is due to the fact that |c(i,j)(−m′)| = |c(i,j)(m′)|.

Now using (3.4) and (3.5) we obtain expressions for var
(
Y (i)(k)

)
and var

(
Y (j)(l)

)
.

Letting j = i and l = k in (3.4) and (3.5) gives:

var
(
Y (i)(k)

)
= cov

(
Y (i)(k), Y (i)(k)

)
=

n−1∑
m′=0

Gk(m
′)Gk(m

′)∗D(i,i)(−m′) +
n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)

= n.
1√
n
.

1√
n
D(i,i)(k) +

n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)

= D(i,i)(k) +
n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′), (3.6)

in which the magnitude of the summation term is bounded as:

|
n−1∑
m′=0

n−1∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)|

≤ 1

n

n−1∑
m′=0

n−1∑
n′=0

|e(i,i)(m′ − n′)|

=
2

n

n−1∑
m′=0

m′|c(i,i)(m′)|. (3.7)

Similarly:

var
(
Y (j)(l)

)
= D(j,j)(l) +

n−1∑
m′=0

n−1∑
n′=0

gl(m
′)gl(n

′)∗e(j,j)(m′ − n′), (3.8)

in which

|
n−1∑
m′=0

n−1∑
n′=0

gl(m
′)gl(n

′)∗e(j,j)(m′ − n′)|

≤ 2

n

n−1∑
m′=0

m′|c(j,j)(m′)|. (3.9)

To complete the proof the following lemma is needed.
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Lemma III.2. If {am′}∞m′=0 is a sequence of non-negative numbers such that
∑∞

m′=0 am′ =

M < ∞. Define err(n) = M −
∑n−1

m′=0 am′ and avg(n) = 1
n

∑n−1
m′=0 err(m′). Then

| 1
n

∑n−1
m′=0m

′am′ | ≤M/n+ err(n) + avg(n).

Proof. Let S0 = 0 and for n ≥ 1 define Sn =
∑n−1

m′=0 am′ . We have:

n−1∑
m′=0

mam′ = (n− 1)Sn − (S0 + S1 + . . .+ Sn−1).

Therefore:

1

n

n−1∑
m′=0

m′am′ =
n− 1

n
Sn−1 −

1

n

n−1∑
m′=0

Sm′ .

Since M −M/n − err(n) ≤ n−1
n
Sn−1 ≤ M and M − avg(n) ≤ 1

n

∑n−1
m′=0 Sm′ ≤ M ,

using the triangle inequality the result follows.

Now let am′ = |c(i,j)(m′)|. By assumption limn→∞
∑n−1

m′=0 am′ = M (i,j) < ∞.

Therefore, Lemma III.2 along with (3.5) concludes:

cov
(
Y (i)(k), Y (j)(l)

)
= O(max{1/n, err(i,j)(n), avg(i,j)(n)}). (3.10)

err(i,j)(n) is a decreasing decreasing function of n. Therefore avg(i,j)(n) ≥ err(i,j)(n),

for n ≥ 1. Hence:

cov
(
Y (i)(k), Y (j)(l)

)
= O(max{1/n, avg(i,j)(n)}).

Similarly using Lemma III.2 along with (3.6), (3.7), (3.8) and (3.9) we obtain:

|var
(
Y (i)(k)

)
−D(i,i)(k)| = O(max{1/n, avg(i,i)(n)}), (3.11)
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and

|var
(
Y (j)(l)

)
−D(j,j)(l)| = O(max{1/n, avg(j,j)(n)}). (3.12)

Using the definition

cor
(
Y (i)(k), Y (j)(l)

)
=

cov
(
Y (i)(k), Y (j)(l)

)√
var (Y (i)(k))

√
var (Y (j)(l))

,

and the fact that as n→∞, D(i,i)(k) and D(j,j)(l) converge to constants C(i,i)(k) and

C(j,j)(l), respectively, equations (3.10), (3.11) and (3.12) conclude:

cor
(
Y (i)(k), Y (j)(l)

)
= O(max{1/n, avg(i,j)(n)}).

As an example we apply Theorem III.1 to a scalar auto-regressive (AR) process

X(k) specified by

X(k) =
L∑
l=1

ϕlX(k − l) + ε(k),

in which ϕl are real-valued coefficients and ε(.) is a stationary process with no tem-

poral correlation. The auto-covariance function of an AR process can be written as

(Hamilton, 1994):

c(t) =
L∑
l=1

αlr
|t|
l ,

in which r1, . . . , rl are the roots of the polynomial β(x) = xL −
∑L

l=1 ϕlx
L−l. It is

known that for a stationary AR process, |rl| < 1 for all 1 ≤ l ≤ L (Hamilton, 1994).
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Therefore, using the definition of err(.) we have:

err(n) =
∞∑
t=n

|c(t)| =
∞∑
t=n

|
L∑
l=1

αlr
t
l | ≤

L∑
l=1

|αl|
∞∑
t=n

|rl|t

=
L∑
l=1

|αl|
|rl|n

1− |rl|
≤ Cζn,

in which C =
∑L

l=1 |αl|/(1− |rl|) and ζ = max1≤l≤L |rl| < 1. Hence:

avg(n) =
1

n

n−1∑
m′=0

err(m′) ≤ 1

n

n−1∑
m′=0

Cζm
′ ≤ C

n(1− ζ)
.

Therefore, Theorem III.1 concludes:

cor (Y (k), Y (l)) = O(1/n), k 6= l,

where Y (.) represents the n-point DFT of the AR process X(.).

In the sequel, we assume that the time series X is multivariate Gaussian, i.e.,

X(1), . . . , X(p) are jointly Gaussian processes. It follows that the DFT components

Y (i)(k) are jointly (complex) Gaussian as linear functionals of X. Theorem III.1

then immediately implies asymptotic independence of DFT components through a

well-known property of jointly Gaussian random variables.

Corollary III.3. Assume that the time series X is multivariate Gaussian. Under

the absolute summability conditions in Theorem III.1, the DFT components Y (i)(k)

and Y (j)(l) are asymptotically independent for k 6= l and n→∞.

Corollary III.3 implies that for large n, correlation analysis of the time series X

can be done independently on each frequency in the spectral domain. This reduces

the problem of screening for hub time series to screening for hub variables among the

p DFT components at a given frequency. A procedure for the latter problem and a

corresponding theory are described next.
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3.4 Complex-valued correlation hub screening

This section discusses complex-valued correlation hub screening, a generalization

of real-valued correlation screening in (Hero and Rajaratnam, 2011, 2012), for identify-

ing highly correlated components of a complex-valued random vector from its sample

values. The method is applied to multivariate time series in Section 3.5 to discover

correlation hubs among the spectral components at each frequency. Sections 3.4.1

and 3.4.2 describe the underlying statistical model and the screening procedure. Sec-

tions 3.4.3 and 3.4.4 provide background on the U-score representation of correlation

matrices and associated definitions and properties. Section 3.4.5 contains the main

theoretical result characterizing the number of hub discoveries in the high-dimensional

regime, while Section 3.4.6 elaborates on the phenomenon of phase transitions in the

number of discoveries.

3.4.1 Statistical model

We use the generic notation Z = [Z1, Z2, · · · , Zp]T in this section to refer to a

complex-valued random vector. The mean of Z is denoted as µ and its p × p non-

singular covariance matrix is denoted as Σ. We assume that the vector Z follows a

complex elliptically contoured distribution with pdf fZ(z) = g
(
(z− µ)HΣ−1(z− µ)

)
,

in which g : R≥0 → R>0 is an integrable and strictly decreasing function (Micheas

et al., 2006). This assumption generalizes the Gaussian assumption made in Section

3.3 as the Gaussian distribution is one example of an elliptically contoured distribu-

tion.

In correlation hub screening, the quantities of interest are the correlation matrix

and partial correlation matrix associated with Z. These are defined as Γ = D
− 1

2
Σ ΣD

− 1
2

Σ

and Ω = D
− 1

2

Σ−1Σ
−1D

− 1
2

Σ−1 , respectively. Note that Γ and Ω are normalized matrices

with unit diagonals.
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3.4.2 Screening procedure

The goal of correlation hub screening is to identify highly correlated compo-

nents of the random vector Z from its sample realizations. Assume that m samples

z1, . . . , zm ∈ Rp of Z are available. To simplify the development of the theory, the

samples are assumed to be independent and identically distributed (i.i.d.) although

the theory also applies to dependent samples.

We compute sample correlation and partial correlation matrices from the samples

z1, . . . , zm as surrogates for the unknown population correlation matrices Γ and Ω in

Section 3.4.1. First define the p×p sample covariance matrix S as S = 1
m−1

∑m
i=1(zi−

z)(zi − z)H , where z is the sample mean, the average of z1, . . . , zm. The sample

correlation and sample partial correlation matrices are then defined as R = D
− 1

2
S SD

− 1
2

S

and P = D
− 1

2

R†
R†D

− 1
2

R†
, respectively, where R† is the Moore-Penrose pseudo-inverse of

R.

Correlation hubs are screened by applying thresholds to the sample (partial) cor-

relation matrix. A variable Zi is declared a hub screening discovery at degree level

δ ∈ {1, 2, . . .} and threshold level ρ ∈ [0, 1] if

|{j : j 6= i, |ψij| ≥ ρ}| ≥ δ,

where Ψ = R for correlation screening and Ψ = P for partial correlation screening.

We denote by Nδ,ρ ∈ {0, . . . , p} the total number of hub screening discoveries at levels

δ, ρ.

Correlation hub screening can also be interpreted in terms of the (partial) cor-

relation graph Gρ(Ψ), depicted in Fig. 5.1 and defined as follows. The vertices of

Gρ(Ψ) are v1, · · · , vp which correspond to Z1, · · · , Zp, respectively. For 1 ≤ i, j ≤ p,

vi and vj are connected by an edge in Gρ(Ψ) if the magnitude of the sample (partial)

correlation coefficient between Zi and Zj is at least ρ. A vertex of Gρ(Ψ) is called a
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v2v1

vp

vj
vi

Figure 3.1: Complex-valued (partial) correlation hub screening thresholds the sam-
ple correlation or partial correlation matrix, denoted generically by the
matrix Ψ, to find variables Zi that are highly correlated with other vari-
ables. This is equivalent to finding hubs in a graph Gρ(Ψ) with p vertices
v1, · · · , vp. For 1 ≤ i, j ≤ p, vi is connected to vj in Gρ(Ψ) if |ψij| ≥ ρ.

δ-hub if its degree, the number of incident edges, is at least δ. Then the number of

discoveries Nδ,ρ defined earlier is the number of δ-hubs in the graph Gρ(Ψ).

3.4.3 U-score representation of correlation matrices

Our theory for complex-valued correlation screening is based on the U-score rep-

resentation of the sample correlation and partial correlation matrices. Similarly to

the real case (Hero and Rajaratnam, 2012), it can be shown that there exists an

(m − 1) × p complex-valued matrix UR with unit-norm columns u
(i)
R ∈ Cm−1 such

that the following representation holds:

R = UH
RUR. (3.13)

Similar to Lemma 1 in (Hero and Rajaratnam, 2012) it is straightforward to show

that:

R† = UH
R(URUH

R)−2UR.
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Hence by defining UP = (URUH
R)−1URD

− 1
2

UHR(URUHR)−2UR
we have the representation:

P = UH
PUP, (3.14)

where the (m− 1)× p matrix UP has unit-norm columns u
(i)
P ∈ Cm−1.

3.4.4 Properties of U-scores

The U-score factorizations in (3.13) and (3.14) show that sample (partial) corre-

lation matrices can be represented in terms of unit vectors in Cm−1. This subsection

presents definitions and properties related to U-scores that will be used in Section

3.4.5.

We denote the unit spheres in Rm−1 and Cm−1 as Sm−1 and Tm−1, respectively.

The surface areas of Sm−1 and Tm−1 are denoted as am−1 and bm−1 respectively. Define

the interleaving function h : R2m−2 → Cm−1 as below:

h([x1, x2, · · · , x2m−2]T ) =

[x1 + x2

√
−1, x3 + x4

√
−1, · · · , x2m−3 + x2m−2

√
−1]T .

Note that h(.) is a one-to-one and onto function and it maps S2m−2 to Tm−1.

For a fixed vector u ∈ Tm−1 and a threshold 0 ≤ ρ ≤ 1 define the spherical cap in

Tm−1:

Aρ(u) = {y : y ∈ Tm−1, |yHu| ≥ ρ}.

Also define P0 as the probability that a random point Y that is uniformly distributed

on Tm−1 falls into Aρ(u). Below we give a simple expression for P0 as a function of ρ

and m.

Lemma III.4. Let Y be an (m− 1)-dimensional complex-valued random vector that
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is uniformly distributed over Tm−1. We have P0 = P (Y ∈ Aρ(u)) = (1− ρ2)m−2.

Proof. Without loss of generality we assume u = [1, 0, · · · , 0]T . We have:

P0 = P(|Y1| ≥ ρ) = P(<(Y1)2 + =(Y1)2 ≥ ρ2).

Since Y is uniform on Tm−1, we can write Y = X/‖X‖2, in which X is complex-valued

random vector whose entries are i.i.d. complex-valued Gaussian variables with mean

0 and variance 1. Thus:

P0 = P
((
<(X1)2 + =(X2

1 )
)
/‖X‖2

2 ≥ ρ2
)

= P

(
(1− ρ2)

(
<(X1)2 + =(X1)2

)
≥ ρ2

m−1∑
k=2

<(Xk)
2 + =(Xk)

2

)
.

Define V1 = <(X1)2 +=(X1)2 and V2 =
∑m−1

k=2 <(Xk)
2 +=(Xk)

2. V1 and V2 are inde-

pendent and have chi-squared distributions with 2 and 2(m− 2) degrees of freedom,

respectively (Simon, 2007). Therefore,

P0 =

∞∫
0

∞∫
ρ2v2/(1−ρ2)

χ2
2(v1)χ2

2(m−2)(v2)dv1dv2

=

∞∫
0

χ2
2(m−2)(v2)

∞∫
ρ2v2/(1−ρ2)

1

2
e−v1/2dv1dv2

=

∞∫
0

1

2m−2Γ(m− 2)
vm−3

2 e−v2/2e
− ρ2

2(1−ρ2)
v2dv2

=
1

Γ(m− 2)
(1− ρ2)m−2

∞∫
0

xm−3e−xdx

=
1

Γ(m− 2)
(1− ρ2)m−2Γ(m− 2) = (1− ρ2)m−2,

in which we have made a change of variable x = v2
2(1−ρ2)

.

Under the assumption that the joint pdf of Z exists, the p columns of the U-
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score matrix have joint pdf fU1,...,Up(u1, . . . ,up) on T pm−1 = ×pi=1Tm−1. The following

(δ + 1)-fold average of the joint pdf will play a significant role in Section 3.4.5. This

(δ + 1)-fold average is defined as:

fU∗1,...,U∗δ+1
(u1, . . . ,uδ+1) =

1

(2π)δ+1p
(
p−1
δ

) ×
∑

1≤i1<···<iδ≤p,iδ+1 /∈{i1,··· ,iδ}

2π∫
0

2π∫
0

· · ·
2π∫

0

fUi1
,...,Uiδ

,Uiδ+1
(e
√
−1θ1u1, . . . , e

√
−1θδuδ, e

√
−1θuδ+1) dθ1 · · · dθδ dθ.

Also for a joint pdf fU1,...,Uδ+1
(u1, . . . ,uδ+1) on T δ+1

m−1 define

J(fU1,...,Uδ+1
) = aδ2m−2

∫
S2m−2

fU1,...,Uδ+1
(h(u), . . . , h(u))du.

Note that J(fU1,...,Uδ+1
) is proportional to the integral of fU1,...,Uδ+1

over the manifold

u1 = . . . = uδ+1. The quantity J(fU∗1,...,U∗(δ+1)
) is key in determining the asymp-

totic average number of hubs in a complex-valued correlation network. This will be

described in more detail in Sec. 3.4.5.

Let ~i = (i0, i1, . . . , iδ) be a set of distinct indices, i.e., 1 ≤ i0 ≤ p, 1 ≤ i1 <

. . . < iδ ≤ p and i1, . . . , iδ 6= i0. For a U-score matrix U define the dependency

coefficient between the columns U~i = {Ui0 ,Ui1 , . . . ,Uiδ} and their complementary

k-NN (k-nearest neighbor) set Ak(~i) defined in (3.29) and Fig. 3.2 as

∆p,m,k,δ(~i) =
∥∥∥(fU~i|UAk(

~i)
− fU~i

)/fU~i

∥∥∥
∞
,

where ‖·‖∞ denotes the supremum norm. The average of these coefficients is defined
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as:

‖∆p,m,k,δ‖1 =
1

p
(
p−1
δ

) p∑
i0=1

∑
i1,...,iδ 6=i0

1≤i1<...<iδ≤p

∆p,m,k,δ(~i). (3.15)

3.4.5 Number of hub discoveries in the high-dimensional limit

We now present the main theoretical result on complex-valued correlation screen-

ing. The following theorem gives asymptotic expressions for the mean number of

δ-hubs and the probability of discovery of at least one δ-hub in the graph Gρ(Ψ). It

also gives bounds on the rates of convergence to these approximations as the dimen-

sion p increases and ρ → 1. We use U = [U1, · · · ,Up] as a generic notation for the

U-score representation of the sample (partial) correlation matrix. The asymptotic

expression for the mean E[Nδ,ρ] is denoted by Λ and is given by:

Λ = p

(
p− 1

δ

)
P δ

0J(fU∗1,...,U∗(δ+1)
). (3.16)

Define ηp,δ as:

ηp,δ = p1/δ(p− 1)P0 = p1/δ(p− 1)(1− ρ2)(m−2), (3.17)

where the last equation is due to Lemma III.4. The parameter k below represents

an upper bound on the true hub degree, i.e. the number of non-zero entries in any

row of the population covariance matrix Σ. Also let ϕ(δ) be the function that takes

values ϕ(δ) = 2 for δ = 1 and ϕ(δ) = 1 for δ > 1.

Theorem III.5. Let U = [U1, . . . ,Up] be a (m−1)×p random matrix with Ui ∈ Tm−1

where m > 2. Let δ ≥ 1 be a fixed integer. Assume the joint pdf of any subset of the
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Ui’s is bounded and differentiable. Then, with Λ defined in (3.16),

|E[Nδ,ρ]− Λ| ≤ O
(
ηδp,δ max

{
ηp,δp

−1/δ, (1− ρ)1/2
})
. (3.18)

Furthermore, let N∗δ,ρ be a Poisson distributed random variable with rate E[N∗δ,ρ] =

Λ/ϕ(δ). If (p− 1)P0 ≤ 1, then

∣∣P(Nδ,ρ > 0)− P(N∗δ,ρ > 0)
∣∣ ≤ O

(
ηδp,δ max

{
ηδp,δ (k/p)δ+1 , Qp,k,δ, ‖∆p,m,k,δ‖1, p

−1/δ, (1− ρ)1/2
})

, δ > 1

O
(
ηp,1 max

{
ηp,1 (k/p)2 , ‖∆p,m,k,1‖1, p

−1, (1− ρ)1/2
})
, δ = 1

,

(3.19)

with Qp,k,δ = ηp,δ
(
k/p1/δ

)δ+1 and ‖∆p,m,k,δ‖1 defined in (3.15).

Proof. The proof is similar to the proof of proposition 1 in (Hero and Rajaratnam,

2012). First we prove (3.18). Let φi = I(di ≥ δ) be the indicator of the event that

di ≥ δ, in which di represents the degree of the vertex vi in the graph Gρ(Ψ). We

have Nδ,ρ =
∑p

i=1 φi. With φij being the indicator of the presence of an edge in Gρ(Ψ)

between vertices vi and vj we have the relation:

φi =

p−1∑
l=δ

∑
~k∈C̆i(p−1,l)

l∏
j=1

φikj

p−1∏
q=l+1

(1− φikq) (3.20)

where we have defined the index vector ~k = (k1, . . . , kp−1) and the set

C̆i(p− 1, l) =

{~k : k1 < . . . < kl, kl+1 < . . . < kp−1 kj ∈ {1, . . . , p} − {i}, kj 6= kj′}.

The inner summation in (3.20) simply sums over the set of distinct indices not equal
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to i that index all
(
p−1
l

)
different types of products of the form:

∏l
j=1 φikj

∏p−1
q=l+1(1−

φikq). Subtracting
∑

~k∈C̆i(p−1,δ)

∏δ
j=1 φikj from both sides of (3.20)

φi −
∑

~k∈C̆i(p−1,δ)

δ∏
j=1

φikj

=

p−1∑
l=δ+1

∑
~k∈C̆i(p−1,l)

l∏
j=1

φikj

p−1∏
q=l+1

(1− φikq)

+
∑

~k∈C̆i(p−1,l)

p−1∑
q=δ+1

(−1)q−δ

∑
k′δ+1<...<k

′
q ,{k′δ+1,...,k

′
q}⊂{kδ+1,...,kp−1}

l∏
j=1

φikj

q∏
s=δ+1

φik′s (3.21)

in which we have used the expansion

p−1∏
q=δ+1

(1− φikq) = 1 +

p−1∑
q=δ+1

(−1)q−δ
∑

k′δ+1<...<k
′
q ,{k′δ+1,...,k

′
q}⊂{kδ+1,...,kp−1}

q∏
s=δ+1

φik′s .

The following simple asymptotic representation will be useful in the sequel. For

any i1, . . . , ik ∈ {1, . . . , p}, i1 6= · · · 6= ik 6= i, k ∈ {1, . . . , p− 1},

E

[
k∏
j=1

φiij

]
=

∫
S2m−2

∫
h−1(Aρ(v))

· · ·
∫

h−1(Aρ(v))

fUi1
,...,Uik

,Ui
(h(v1), · · · , h(vk), h(v)) dv1 · · · dvk dv

≤ P k
0 a

k
2m−2Mk|1 (3.22)

where P0, Aρ(u) and the function h(.) are defined in Sec. 3.4.4. Moreover

Mk|1 = max
i1 6=···6=ik+1

∥∥∥fUi1
,...,Uik

|Uik+1

∥∥∥
∞
.

The following simple generalization of (3.22) to arbitrary product indices φij will also
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be needed

E

[
q∏
l=1

φiljl

]
≤ P q

0 a
q
2m−2M|Q|, (3.23)

where Q =unique({il, jl}ql=1) is the set of unique indices among the distinct pairs

{(il, jl)}ql=1 and M|Q| is a bound on the joint pdf of UQ.

Define the random variable

θi =

(
p− 1

δ

)−1 ∑
~k∈C̆i(p−1,δ)

δ∏
j=1

φikj .

We show below that for sufficiently large p

∣∣∣∣E[φi]−
(
p− 1

δ

)
E[θi]

∣∣∣∣ ≤ γp,δ((p− 1)P0)δ+1, (3.24)

where γp,δ = maxδ+1≤l<p{al2m−2Ml|1}
(
e−

∑δ
l=0

1
l!

)
(1 + (δ!)−1) and Ml|1 is a least

upper bound on any l-dimensional joint pdf of the variables {Ui}pj 6=i conditioned on

Ui.

To show inequality (3.24) take expectations of (3.21) and apply the bound (3.22)

to obtain

∣∣∣∣E[φi]−
(
p− 1

δ

)
E[θi]

∣∣∣∣ ≤∣∣∣∣∣
p−1∑
l=δ+1

(
p− 1

l

)
P l

0a
l
2m−2Ml|1 +

(
p− 1

δ

) p−1−δ∑
l=1

(
p− 1− δ

l

)
P δ+l

0 aδ+l2m−2Mδ+l|1

∣∣∣∣∣
≤ A(1 + (δ!)−1), (3.25)

where

A =

p−1∑
l=δ+1

(
p− 1

l

)
((p− 1)P0)lal2m−2Ml|1.

The line (3.25) follows from the identity
(
p−1−δ

l

)(
p−1
δ

)
=
(
p−1
l+δ

)(
l+δ
l

)
and a change of
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index in the second summation on the previous line. Since (p− 1)P0 < 1

|A| ≤ max
δ+1≤l<p

{al2m−2Ml|1}
p−1∑
l=δ+1

(
p− 1

l

)
((p− 1)P0)l

≤ max
δ+1≤l<p

{al2m−2Ml|1}

(
e−

δ∑
l=0

1

l!

)
((p− 1)P0)δ+1.

Application of the mean value theorem to the integral representation (3.22) yields

∣∣E[θi]− P δ
0J(fU∗1−i,...,U∗δ−i,Ui

)
∣∣ ≤ γ̃p,δ((p− 1)P0)δr, (3.26)

where

fU∗1−i,...,U∗δ−i,Ui
(u1, . . . ,uδ+1) =

1

(2π)δ
(
p−1
δ

) ∑
1≤i1<···<iδ≤p
i/∈{i1,··· ,iδ}

2π∫
0

· · ·
2π∫

0

fUi1
,...,Uiδ

,Ui
(e
√
−1θ1u1, . . . , e

√
−1θδuδ,uδ+1) dθ1 · · · dθδ,

r =
√

2(1− ρ), γ̃p,δ = 2aδ+1
2m−2Ṁδ+1|1/δ! and Ṁδ+1|1 is a bound on the norm of the

gradient

∇ui1 ,...,uiδ
fU∗1−i,...,U∗δ−i|Ui

(ui1 , . . . ,uiδ |ui).

Combining (3.24)-(3.26) and the relation r = O((1− ρ)1/2),

∣∣∣∣E[φi]−
(
p− 1

δ

)
P δ

0J(fU∗1,...,U∗(δ+1)
)

∣∣∣∣
≤ O

(
((p− 1)P0)δ max

{
(p− 1)P0, (1− ρ)1/2

})
.
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Summing over i and recalling the definitions (3.16) and (3.17) of Λ and ηp,δ,

|E[Nδ,ρ]− Λ| ≤ O
(
p((p− 1)P0)δ max

{
(p− 1)P0, (1− ρ)1/2

})
= O

(
ηδp,δ max

{
ηp,δp

−1/δ, (1− ρ)1/2
})
.

This establishes the bound (3.18).

Next we prove the bound (3.19) by using the Chen-Stein method (Arratia et al.,

1990). Define:

Ñδ,ρ =
1

ϕ(δ)

p∑
i0=1

∑
1≤i1<...<iδ≤p

δ∏
j=1

φi0ij , (3.27)

Where the second sum is over the indices 1 ≤ i1 < . . . < iδ ≤ p such that ij 6= i0, 1 ≤

j ≤ δ. For ~i def
= (i0, i1, . . . , iδ) define the index set B~i = Bi0,i1,...,iδ = {(j0, j1, . . . , jδ) :

jl ∈ Nk(il) ∪ {il}, l = 0, . . . , δ} ∩ C< where C< = {(j0, . . . , jδ) : 1 ≤ j0 ≤ p, 1 ≤

j1 < · · · < jδ ≤ p, jl 6= j0, 1 ≤ l ≤ δ}. These index the distinct sets of points U~i =

{Ui0 ,Ui1 , . . . ,Uiδ} and their respective k-NN’s. Note that |B~i| ≤ kδ+1. Identifying

Ñδ,ρ =
∑

~i∈C<
∏δ

l=1 φi0il and N∗δ,ρ a Poisson distributed random variable with rate

E[Ñδ,ρ], the Chen-Stein bound (Arratia et al., 1990, Theorem 1) is

2 max
A
|P(Ñδ,ρ ∈ A)− P(N∗δ,ρ ∈ A)| ≤ b1 + b2 + b3, (3.28)

where

b1 =
∑
~i∈C<

∑
~j∈B~i

E

[
δ∏
l=1

φi0il

]
E

[
δ∏
q=1

φj0jq

]
,

b2 =
∑
~i∈C<

∑
~j∈B~i−{~i}

E

[
δ∏
l=1

φi0il

δ∏
q=1

φj0jq

]
,
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and, for p~i = E[
∏δ

l=1 φi0il ],

b3 =
∑
~i∈C<

E

[
E

[
δ∏
l=1

φi0il − p~i

∣∣∣∣∣φ~j : ~j 6∈ B~i

]]
.

Over the range of indices in the sum of b1 E[
∏δ

l=1 φiil ] is of order O(P δ
0 ), by (3.23),

and therefore

b1 ≤ O
(
pδ+1kδ+1P 2δ

0

)
= O

(
η2δ
p,δ(k/p)

δ+1
)
,

which follows from definition (3.17). More care is needed to bound b2 due to the

repetition of characteristic functions φij. Since ~i 6= ~j, E[
∏δ

l=1 φi0il
∏δ

q=1 φj0jq ] is a

multiplication of at least δ + 1 different characteristic functions, hence by (3.23),

E[
δ∏
l=1

φi0il

δ∏
q=1

φj0jq ] = O
(
P δ+1

0

)
.

Therefore, we conclude that

b2 ≤ O
(
pδ+1kδ+1P δ+1

0

)
.

Next we bound the term b3 in (3.28). The set

Ak(~i) = Bc
~i
− {~i} (3.29)

indexes the complementary k-NN of U~i (see Fig. 3.2) so that, using the representation
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i1i0

Figure 3.2: The complementary k-NN set Ak(~i) illustrated for δ = 1 and k = 5. Here
we have ~i = (i0, i1). The vertices i0, i1 and their k-NNs are depicted in
black and blue respectively. The complement of the union of {i0, i1} and
its k-NNs is the complementary k-NN set Ak(~i) and is depicted in red.

(3.23),

b3 =
∑
~i∈C<

E

[
E

[
δ∏
l=1

φi0il − p~i

∣∣∣∣∣UAk(~i)

]]

=
∑
~i∈C<

∫
S
|Ak(~i)|
2m−2

duAk(~i)

 δ∏
l=1

∫
S2m−2

dui0

∫
A(r,ui0 )

duil


(
fU~i|UAk

(u~i|uAk(~i))− fU~i
(u~i)

fU~i
(u~i)

)
fU~i

(u~i)fUAk(
~i)

(uAk(~i))

≤ O
(
pδ+1P δ

0 ‖∆p,m,k,δ‖1

)
= O

(
ηδp,δ‖∆p,m,k,δ‖1

)
.

Note that by definition of Ñδ,ρ we have Ñδ,ρ > 0 if and only if Nδ,ρ > 0. This yields:

|P(Nδ,ρ > 0)− (1− exp(−Λ))| ≤
∣∣∣P(Ñδ,ρ > 0)− P(Nδ,ρ > 0)

∣∣∣+∣∣∣P(Ñδ,ρ > 0)−
(

1− exp(−E[Ñδ,ρ])
)∣∣∣+

∣∣∣exp(−E[Ñδ,ρ])− exp(−Λ)
∣∣∣

≤ b1 + b2 + b3 +O
(∣∣∣E[Ñδ,ρ]− Λ

∣∣∣) (3.30)
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Combining the above inequalities on b1, b2 and b3 yields the first three terms in the

argument of the “max” on the right side of (3.19).

It remains to bound the term |E[Ñδ,ρ]−Λ|. Application of the mean value theorem

to the multiple integral (3.23) gives

∣∣∣∣∣E
[

δ∏
l=1

φiil

]
− P δ

0J
(
fUi1

,...,Uiδ
,Ui

)∣∣∣∣∣ ≤ O
(
P δ

0 r
)
.

Applying relation (3.27) yields

∣∣∣∣E[Ñδ,ρ]− p
(
p− 1

δ

)
P δ

0J
(
fU∗1,...,U∗(δ+1)

)∣∣∣∣ ≤ O
(
pδ+1P δ

0 r
)

= O
(
ηδp,δr

)
.

Combine this with (3.30) to obtain the bound (3.19). This completes the proof of

Theorem III.5.

An immediate consequence of Theorem III.5 is the following result, similar to

Proposition 2 in (Hero and Rajaratnam, 2012), which provides asymptotic expressions

for the mean number of δ-hubs and the probability of the event Nδ,ρ > 0 as p goes to

∞ and ρ converges to 1 at a prescribed rate.

Corollary III.6. Let ρp ∈ [0, 1] be a sequence converging to one as p→∞ such that

ηp,δ = p1/δ(p− 1)(1− ρ2
p)

(m−2) → em,δ ∈ (0,∞). Then

lim
p→∞

E[Nδ,ρp ] = Λ∞ = eδm,δ/δ! lim
p→∞

J(fU∗1,...,U∗(δ+1)
). (3.31)

Assume that k = o(p1/δ) and that for the weak dependency coefficient ‖∆p,m,k,δ‖1,

defined via (3.15), we have limp→∞ ‖∆p,m,k,δ‖1 = 0. Then

P(Nδ,ρp > 0)→ 1− exp(−Λ∞/ϕ(δ)). (3.32)
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Corollary III.6 shows that in the limit p → ∞, the number of detected hubs de-

pends on the true population correlations only through the quantity J(fU∗1,...,U∗(δ+1)
).

In some cases J(fU∗1,...,U∗(δ+1)
) can be evaluated explicitly. Similar to the argument

in (Hero and Rajaratnam, 2012), it can be shown that if the population covariance

matrix Σ is sparse in the sense that its non-zero off-diagonal entries can be arranged

into a k × k submatrix by reordering rows and columns, then

J(fU∗1,...,U∗(δ+1)
) = 1 +O(k/p).

Hence, if k = o(p) as p → ∞, the quantity J(fU∗1,...,U∗(δ+1)
) converges to 1. If Σ

is diagonal, then J(fU∗1,...,U∗(δ+1)
) = 1 exactly. In such cases, the quantity Λ∞ in

Corollary III.6 does not depend on the unknown underlying distribution of the U-

scores. As a result, the expected number of δ-hubs in Gρ(Ψ) and the probability of

discovery of at least one δ-hub do not depend on the underlying distribution. We will

see in Sec. 3.5 that this result is useful in assigning statistical significance levels to

vertices of the graph Gρ(Ψ).

3.4.6 Phase transitions and critical threshold

It can be seen from Theorem III.5 and Corollary III.6 that the number of δ-

hub discoveries exhibits a phase transition in the high-dimensional regime where the

number of variables p can be very large relative to the number of samples m. Specif-

ically, assume that the population covariance matrix Σ is block-sparse as in Section

3.4.5. Then as the correlation threshold ρ is reduced, the number of δ-hub discov-

eries abruptly increases to the maximum, p. Conversely as ρ increases, the number

of discoveries quickly approaches zero. Similarly, the family-wise error rate (i.e. the

probability of discovering at least one δ-hub in a graph with no true hubs) exhibits

a phase transition as a function of ρ. Figure 3.3 shows the family-wise error rate
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Figure 3.3: Family-wise error rate as a function of correlation threshold ρ and number
of samples m for p = 1000, δ = 1. The phase transition phenomenon is
clearly observable in the plot.

obtained via expression (3.32) for δ = 1 and p = 1000, as a function of ρ and the

number of samples m. It is seen that for a fixed value of m there is a sharp transition

in the family-wise error rate as a function of ρ.

The phase transition phenomenon motivates the definition of a critical threshold

ρc,δ as the threshold ρ satisfying the following slope condition:

∂E[Nδ,ρ]/∂ρ = −p.

Using (3.16) the solution of the above equation can be approximated via the expres-

sion below:

ρc,δ =
√

1− (cm,δ(p− 1))−2δ/(δ(2m−3)−2), (3.33)

where cm,δ = bm−1δJ(fU∗1,...,U∗(δ+1)
). The screening threshold ρ should be chosen

greater than ρc,δ to prevent excessively large numbers of false positives. Note that
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the critical threshold ρc,δ also does not depend on the underlying distribution of the

U-scores when the covariance matrix Σ is block-sparse.

Expression (3.33) is similar to the expression obtained in (Hero and Rajaratnam,

2012) for the critical threshold in real-valued correlation screening. However, in the

complex-valued case the coefficient cm,δ and the exponent of the term cm,δ(p− 1) are

different from the real case. This generally results in smaller values of ρc,δ for fixed

m and δ.

Figure 3.4 shows the value of ρc,δ obtained via (3.33) as a function of m for

different values of δ and p. The critical threshold decreases as either the sample size

m increases, the number of variables p decreases, or the vertex degree δ increases.

Note that even for ten billion (1010) dimensions (upper triplet of curves in the figure)

only a relatively small number of samples are necessary for complex-valued correlation

screening to be useful. For example, with m = 200 one can reliably discover connected

vertices (δ = 1 in the figure) having correlation greater than ρc,δ = 0.5.

3.5 Application to spectral screening of multivariate Gaus-

sian time series

In this section, the complex-valued correlation hub screening method of Section 3.4

is applied to stationary multivariate Gaussian time series. Assume that the time series

X(1), · · · , X(p) defined in Section 3.3 satisfy the conditions of Corollary III.3. Assume

also that a total of N = n × m time samples of X(1), · · · , X(p) are available. We

divide the N samples into m parts of n consecutive samples and we take the n-point

DFT of each part. Therefore, for each time series, at each frequency fi = (i− 1)/n,

1 ≤ i ≤ n, m samples are available. This allows us to construct a (partial) correlation

graph corresponding to each frequency. We denote the (partial) correlation graph

corresponding to frequency fi and correlation threshold ρi as Gfi,ρi . Gfi,ρi has p vertices
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Figure 3.4: The critical threshold ρc,δ as a function of the sample size m for δ = 1, 2, 3
(curve labels) and p = 10, 1000, 1010 (bottom to top triplets of curves).
The figure shows that the critical threshold decreases as either m or δ
increases. When the number of samples m is small the critical threshold
is close to 1 in which case reliable hub discovery is impossible. However a
relatively small increment in m is sufficient to reduce the critical threshold
significantly. For example for p = 1010, only m = 200 samples are enough
to bring ρc,1 down to 0.5.

v1, v2, · · · , vp corresponding to time series X(1), X(2), · · · , X(p), respectively. Vertices

vk and vl are connected if the magnitude of the sample (partial) correlation between

the DFTs of X(k) and X(l) at frequency fi (i.e. the sample (partial) correlation

between Y (k)(i− 1) and Y (l)(i− 1)) is at least ρi.

Consider a single frequency fi and the null hypothesis, H0, that the correlations

among the time series X(1), X(2), · · · , X(p) at frequency fi are block sparse in the

sense of Section 3.4.5. As discussed in Sec. 3.4.5, under H0 the expected number of

δ-hubs and the probability of discovery of at least one δ-hub in graph Gfi,ρi are not

functions of the unknown underlying distribution of the data. Therefore the results

of Corollary III.6 may be used to quantify the statistical significance of declaring

vertices of Gfi,ρi to be δ-hubs. The statistical significance is represented by the p-value,
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defined in general as the probability of having a test statistic at least as extreme as

the value actually observed assuming that the null hypothesis H0 is true. In the case

of correlation hub screening, the p-value pvδ(j) assigned to vertex vj for being a δ-

hub is the maximal probability that vj maintains degree δ given the observed sample

correlations, assuming that the block-sparse hypothesis H0 is true. The detailed

procedure for assigning p-values is similar to the procedure in (Hero and Rajaratnam,

2012) for real-valued correlation screening and is illustrated in Algorithm 1. Equation

(3.33) helps in choosing the initial threshold ρ∗.

The bottleneck of the computational complexity of Algorithm 1 is finding δth

greatest element of the jth row of the sample (partial) correlation matrix Ψ. This can

be done by performing approximate k-NN algorithm on the U-scores associated with

Ψ in O(m2p). Hence the overall computational complexity of performing spectral

hub screening in all n frequencies is O(nm2p). Without using approximate k-NN

methods, the overall computational complexity is O(nmp2).

Algorithm 1: Spectral hub screening of multivariate time series.
• initialization:
– Select a screening threshold ρ∗;
– Calculate the degree dxj of each vertex in Gρ∗(Ψ);
– Select a value of δ ∈ {1, · · · ,max1≤j≤p d

x
j };

• for j = 1 to p do
find ρj(δ) as the δth greatest element of the jth row of the sample (partial)
correlation matrix;
Approximate the p-value corresponding to vertex vj as
pvδ(j) ≈ 1− exp(−E[Nδ,ρj(δ)]/ϕ(δ)), where E[Nδ,ρj(δ)] is approximated by
the limiting expression (3.31) using J(fU∗1,...,U∗(δ+1)

) = 1;
Approximate the p-value corresponding to the ith independent variable Xi

as pvδ(i) ≈ 1− exp(−ξp,m,δ,ρmod
i (δ));

• Screen variables by thresholding the p-values pvδ(j) at desired significance
level;

Given Corollary III.3, for i 6= j the correlation graphs Gfi,ρi and Gfj ,ρj and their

associated inferences are approximately independent. Thus we can solve multiple

inference problems by first performing correlation hub screening on each graph as
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discussed above and then aggregating the inferences at each frequency in a straight-

forward manner. Examples of aggregation procedures are described below.

3.5.1 Disjunctive hubs

One task that can be easily performed is finding the p-value for a given time series

to be a hub in at least one of the graphs Gf1,ρ1 , · · · ,Gfn,ρn . More specifically, for each

j = 1, . . . , p denote the p-values for vertex vj being a δ-hub in Gf1,ρ1 , · · · ,Gfn,ρn by

pvf1,ρ1,δ(j), · · · , pvfn,ρn,δ(j) respectively. These p-values are obtained using Algorithm

1. Then pvδ(j), the p-value for the vertex vj being a δ-hub in at least one of the

frequency graphs Gf1,ρ1 , · · · ,Gfn,ρn can be approximated as:

P(∃i : dj,fi ≥ δ |H0) ≈ p̂vδ(j) = 1−
n∏
i=1

(1− pvfi,ρi,δ(j)),

in which dj,fi is the degree of vj in the graph Gfi,ρi .

3.5.2 Conjunctive hubs

Another property of interest is the existence of a hub at all frequencies for a

particular time series. In this case we have:

P(∀i : dj,fi ≥ δ |H0) ≈ p̌vδ(j) =
n∏
i=1

pvfi,ρi,δ(j).
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3.5.3 General persistent hubs

The general case is the event that at least K frequencies have hubs of degree at

least δ at vertex vj. For this general case we have:

P(∃i1, . . . , iK : dj,fi1 ≥ δ, . . . dj,fiK ≥ δ |H0) =

n∑
k′=K

∑
i1<...<ik′ ,ik′+1<...<in

{i1,...,in}={1,...,n}

k′∏
l=1

pvfil ,ρil ,δ(j)
n∏

l′=k′+1

(
1− pvfil′ ,ρil′ ,δ(j)

)
.

3.6 Experimental results

3.6.1 Phase transition phenomenon and mean number of hubs

We first performed numerical simulations to confirm Theorem III.5 and Corol-

lary III.6 for complex-valued correlation screening. Samples were generated from p

uncorrelated complex Gaussian random variables. Figure 3.5 shows the number of

discovered 1-hubs for p = 1000 and several sample sizes m. The plots from left to

right correspond to m = 2000, 1000, 500, 100, 50, 20, 10, 6 and 4, respectively. The

phase transition phenomenon is clearly observed in the plot. Table 3.1 shows the

predicted value obtained from formula (3.33) for the critical threshold. As can be

seen in Fig. 3.5, the empirical phase transition thresholds approximately match the

predicted values of Table 3.1. Moreover, to confirm the accuracy of equation (3.31)

in Corollary III.6, we list the number of hubs for m = 100 in Table 3.2. The left

column shows the empirical average number of hubs of degree at least δ = 1, 2, 3, 4 in

a network of i.i.d. complex Gaussian random variables. The numbers in this column

are obtained by averaging 1000 independent experiments. The right column shows

the predicted value of E[Nδ,ρ] obtained via formula (3.31) with J(fU∗1,...,U∗(δ+1)
) = 1

for the i.i.d. case. As we see the empirical and predicted values are close to each

other.
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Figure 3.5: Phase transition phenomenon: the number of 1-hubs in the sample cor-
relation graph corresponding to uncorrelated complex Gaussian variables
as a function of correlation threshold ρ. Here, p = 1000 and the plots
from left to right correspond to m = 2000, 1000, 500, 100, 50, 20, 10, 6 and
4, respectively.

m 2000 1000 500 100 50 20 10 6 4
ρc,δ 0.05 0.07 0.10 0.24 0.35 0.56 0.78 0.94 0.99

Table 3.1: The value of critical threshold ρc,δ obtained from formula (3.33) for p =
1000 complex variables and δ = 1. The predicted ρc,δ approximates the
phase transition thresholds in Fig. 3.5.

degree threshold empirical (E[Nδ,ρ]) predicted (E[Nδ,ρ])
di ≥ δ = 1 284 335
di ≥ δ = 2 45 56
di ≥ δ = 3 5 6
di ≥ δ = 4 0 0

Table 3.2: Empirical average number of discovered hubs vs. predicted average number
of discovered hubs in an uncorrelated complex Gaussian network. Here
p = 1000, m = 100, ρ = 0.28. The empirical values are obtained by
performing 1000 independent experiments.
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3.6.2 Asymptotic independence of spectral components for AR(1) model

To illustrate the asymptotic independence property and convergence rate of The-

orem III.1, we considered the simple case of an AR(1) process,

X(k) = ϕ1X(k − 1) + ε(k), k ≥ 1, (3.34)

in which X(0) = 0, ϕ1 = 0.9 and ε(.) is a stationary Gaussian process with no tem-

poral correlation and standard deviation 1. We performed Monte-Carlo simulations

to compute the correlation between spectral components at different frequencies for

window sizes n = 10, 20, . . . , 250. More specifically, we set k = 1 and l = 2 and em-

pirically estimated |cor (Y (k), Y (l)) | using 50000 Monte-Carlo trials for each value

of window size n. Figure 3.6 shows the result of this experiment. It is observable

that the magnitude of cor (Y (k), Y (l)) is bounded above by the function 10/n. This

observation is consistent with Theorem III.1.

3.6.3 Spectral correlation screening of a band-pass multivariate time se-

ries

Next we analyzed the performance of the proposed complex-valued correlation

screening framework on a synthetic data set for which the expected results are known.

We synthesized a multivariate stationary Gaussian time series using the the follow-

ing procedure. Here we set p = 1000, N = 12000 and m = n = 100. The discrepancy

between N and the product mn is explained below. Let X(k), 0 ≤ k ≤ N −1 be a se-

quence of i.i.d. zero-mean Gaussian random variables (i.e. white Gaussian noise) with

standard deviation of 1. The p time series X(1)(k), . . . , X(p)(k), 0 ≤ k ≤ N − 1 are

obtained from X(k) by band-pass filtering and adding independent white Gaussian
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Figure 3.6: Correlation coefficient |cor (Y (1), Y (2)) | as a function of window size n,
empirically estimated using 50000 Monte-Carlo trials. Here Y (.) is the
DFT of the AR(1) process (3.34). The magnitude of the correlation for
n = 10, 20, . . . , 250 is bounded above by the function 10/n. This obser-
vation is consistent with the convergence rate in Theorem III.1.

noise. Specifically,

X(i)(k) = hi(k) ? X(k) +Ni(k), 1 ≤ i ≤ p, 0 ≤ k ≤ N − 1,

in which ? represents the convolution operator, hi(.) is the impulse response of the

ith band-pass filter and Ni(.) is an independent white Gaussian noise series whose

standard deviation is 0.1. Since stable filtering of a stationary series results in another

stationary series, the obtained seriesX(1)(k), . . . , X(p)(k) are stationary and Gaussian.

For i = 10l, 1 ≤ l ≤ 50, hi(k) is the impulse response of a band-pass filter with pass

band f ∈ [(4l − 1)/400, 4l/400]. We approximate the ideal band-pass filters with

finite impulse response (FIR) Chebyshev filters (Oppenheim et al., 1989). Also for

i = 500 + 10l, 1 ≤ l ≤ 50 we set hi(k) = hi−500(k). For all of the other values of i (i.e.

i 6= 10l) we set hi(k) = 0, 0 ≤ k ≤ N − 1.
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Figure 3.7 shows the signal part of the time series (i.e. hi(k) ? X(k)) for i =

100, 200, 300, 400. It is seen that the first 2000 samples of the signals reflect the

transient response of the filters. These 2000 samples are not included for the purpose

of correlation screening. Hence the actual number of time samples considered is

mn = 10000. Figure 3.8 shows the magnitude of the DFTs of the signals, Y (i)(k), for

i = 50, 100, . . . , 500. The band-pass structure of the signals is clearly observable in

the figure.

0 2000 4000 6000 8000 10000 12000
−0.5

0

0.5
Signal 100 (Freq 0.1)

0 2000 4000 6000 8000 10000 12000
−0.5

0

0.5
Signal 200 (Freq 0.2)

0 2000 4000 6000 8000 10000 12000
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0

0.5
Signal 300 (Freq 0.3)
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0

0.5
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Figure 3.7: Signal part of the band-pass time series X(i)(k) (i.e. hi(k) ? X(k)) for
i = 100, 200, 300, 400.

We first constructed a correlation matrix for the time series X(1)(k), . . . , X(p)(k)

from their simultaneous time samples. Figure 3.9 illustrates the structure of the

thresholded sample correlation matrix and the corresponding correlation graph. Note

that this is a real-valued correlation screening problem in the time domain. The

correlation threshold used here is ρ = 0.2 which is well above the critical threshold

ρc,1 = 0.028 obtained via formula (10) in (Hero and Rajaratnam, 2012) for p = 1000

and N = 10000.

To examine the spectral structure of the correlations in Fig. 3.9, we then performed
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Figure 3.8: DFT magnitude of the band-pass signals hi(k) ? X(k) (i.e.
20 log10(|Y (i)(.)|)) as a function of frequency for i = 50, 100, . . . , 500.

complex-valued correlation screening on the spectra of the time seriesX(1)(k), . . . , X(p)(k).

Figure 3.10 shows the constructed correlation graphs Gf,ρ for f = [0.1, 0.2, 0.3, 0.4]

and correlation threshold ρ = 0.9, which corresponds to a δ = 1 false positive rate

P(Nδ,ρ > 0) ≈ 10−65 (using δ = 1 in the asymptotic relation (3.32) with Λ∞ = eδm,δ/δ!

as specified by (3.31)). Note that the value of the correlation threshold is set to be

higher than the critical threshold ρc = 0.24. It can be observed that performing

complex-valued spectral correlation screening at each frequency correctly discovers

the correlations between the time series which are active around that frequency. As

an example, for f = 0.2 the discovered hubs (for δ = 1) are the time series X(i)(k) for

i ∈ {200, 700}. These time series are the ones that are active at frequency f = 0.2.

Under the null hypothesis of diagonal covariance matrices, the p-values for the dis-

covered hubs are of order 10−65 or smaller. These results show that complex-valued

spectral correlation screening is able to resolve the sources of correlation between time

series in the spectral domain.
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Figure 3.9: (Left) The structure of the thresholded sample correlation matrix in the
time domain. (Right) The correlation graph corresponding to the thresh-
olded sample correlation matrix in the time domain.
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Figure 3.10: Spectral correlation graphs Gf,ρ for f = [0.1, 0.2, 0.3, 0.4] and correlation
threshold ρ = 0.9, which corresponds to a false positive probability of
10−65. The data used here is a set of synthetic time series obtained by
band-pass filtering of a Gaussian white noise series with the band-pass
filters shown in Fig. 3.8. As can be seen, complex correlation screening
is able to extract the correlations at specific frequencies. This is not
directly feasible in the time domain analysis.

3.6.4 Vulnerable asset discovery in financial markets

Asset-wise analysis. We applied the spectral correlation screening method to a

financial data set.

Stock prices are commonly modeled by a geometric Brownian motion (Tsay, 2005).
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Sector # of stocks
Basic Industries 122
Capital Goods 209

Consumer Durables 78
Consumer Non-Durables 117

Consumer Services 335
Energy 110
Finance 334

Health Care 205
Miscellaneous 36

Public Utilities 103
Technology 256

Transportation 37

Table 3.3: Number of stocks in each sector out of the 1942 selected stocks in Russell
3000 index.

This results in a normal distribution for the log-returns which fits our distributional

assumption on the data (see Sec. 3.4.1).

The data set consists of the daily log-returns for those components of Russell 3000

index for which the stock prices from January 2nd 2003 to May 2nd 2013 are available

at Yahoo! Finance. There are 1942 such stocks. A total of N = 2600 samples of daily

log-returns are available for each stock between the mentioned dates. The selected

1942 stocks are from 12 different sectors which cover 96 different industries. The

names of the different sectors and the number of stocks corresponding to each sector

are shown in Table 3.3.

We divided the 2600 samples of each time series into m = 51 half intersecting

windows of length n = 100 (i.e. each window intersects with the previous window

for 50 consecutive samples). The 100-point DFT is then applied to each window to

obtain 51 samples of the spectra of the 1942 time series at 100 different frequencies

fi = (i− 1)/100, 1 ≤ i ≤ 100. We constructed the correlation and partial correlation

graphs Gfi,ρ at each frequency fi. The correlation and partial correlation thresholds

are set to ρ = 0.8 and ρ = 0.9, respectively, which correspond to respective false
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positive probabilities of approximately 10−14 and 10−27 under the null hypothesis

of diagonal covariance matrices. Note that the correlation and partial correlation

thresholds used in this experiment are greater than the critical threshold ρc = 0.36,

obtained via formula (3.33) using p = 1942,m = 51, δ = 1 and J(fU∗1,...,U∗(δ+1)
) = 1

(for larger values of δ, the critical threshold ρc is less than 0.36).

At each frequency f1, · · · , f100 we identified a set of 100 hubs by picking the stocks

with the 100 smallest p-values for δ = 1. Then we computed the top 100 most frequent

stocks among the 100 sets corresponding to each frequency. Let Scor and Sparcor denote

such sets for complex-valued correlation screening and partial correlation screening,

respectively. For the case of correlation screening, Scor only covers 4 (out of 12)

different sectors and 14 (out of 96) different industries. More than half of the stocks

in Scor are from the industry “Real Estate Investment Trust” (REIT) (see Table 3.4)

due to the rather dense correlation network among the REIT stocks. This suggests

that using direct correlations can be rather misleading about the drivers of the market

(or vulnerable assets). More specifically due to such clique-type interconnections in

many real-world data sets, correlation hubs may not necessarily be the most important

variables in the data.

One may think that using pairwise partial correlations would be sufficient since it

only considers causal relationships (assuming Gaussian data). The set Sparcor obtained

by partial correlation screening, covers all 12 sectors and 61 industries (see Table

3.5). However, as opposed to expectations, there are relatively few hubs in important

sectors like Energy and Finance which cover around 23 percent of the original 1942

stocks. Below we show that considering (partial) correlations between subsets of

stocks (i.e. industries in this case) can lead to more intuitive results. Such analysis

further reveals the necessity of hyper-graphs in this context.

Industry-wise analysis. Asset-wise analysis of market data is aimed at discov-

ering a subset of assets that are potential drivers of the market. This type of analysis
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Sector # of stocks
Capital Goods 3

Consumer Services 60
Energy 10
Finance 27

Table 3.4: Number of stocks in each sector for the set Scor.

Sector # of stocks
Basic Industries 4
Capital Goods 12

Consumer Durables 1
Consumer Non-Durables 6

Consumer Services 19
Energy 4
Finance 9

Health Care 16
Miscellaneous 5

Public Utilities 10
Technology 13

Transportation 1

Table 3.5: Number of stocks in each sector for the set Sparcor.
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can be insightful but it mainly relies on the assumption that single stocks can drive

the market. However, due to the small capitalization of each stock compared to the

whole market, this assumption may not be realistic. As an alternative, industry-wise

analysis of the market data could reveal stronger associations.

In order to perform industry-wise analysis, defining an appropriate industry-wise

(partial) correlation matrix is necessary. We define industry-wise (partial) correlations

by averaging over asset-wise (partial) correlation coefficients. More precisely, let

Si, 1 ≤ i ≤ 96, be the set of stocks in industry number i. Note that {Si}96
i=1 is a

partition of the complete set of stocks, S (i.e. ∪96
i=1Si = S and Si ∩ Sj = ∅, 1 ≤ i 6=

j ≤ 96 ). Moreover, let RS,fk (respectively, PS,fk) denote the 1942× 1942 asset-wise

correlation (respectively, partial correlation) matrix at frequency fk. Using RS,fk we

define the (i, j)th entry of the 96× 96 matrix R̃I,fk as:

R̃I,fkij =
1

|Si||Sj|
∑
r∈Si

∑
l∈Sj

RS,fkrl . (3.35)

Similarly define the (i, j)th entry of the 96× 96 matrix P̃I,fk as:

P̃I,fkij =
1

|Si||Sj|
∑
r∈Si

∑
l∈Sj

PS,fkrl . (3.36)

The industry-wise correlation and partial correlation matrices at frequency fk are

then defined as:

RI,fk = D
− 1

2

R̃I,fk
R̃I,fkD

− 1
2

R̃I,fk
, (3.37)

and

PI,fk = D
− 1

2

P̃I,fk
P̃I,fkD

− 1
2

P̃I,fk
, (3.38)
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respectively. In other words, the (partial) correlation coefficient between industry i

and industry j is defined as the normalized average of the (partial) cross-correlation

coefficients between all stocks in industry i and all stocks in industry j.

It can be shown that the industry-wise correlation and partial correlation matrices

constructed above are symmetric and positive definite. Thus we can perform complex-

valued correlation and partial correlation screening at each frequency as before to

discover hub industries. Note that since the notion of number of samples m is not

well defined in the construction of the industry-wise (partial) correlation matrices,

p-values cannot be computed. However, due to the fact that the p-values assigned

via Algorithm 1 in Chapter III are decreasing functions of the quantities ρmod
i (δ), the

ordering of p-values can be easily obtained via sorting ρmod
i (δ) for 1 ≤ i ≤ p.

Similar to the asset-wise analysis of the previous subsection, we discovered a set

of 15 hub industries at each frequency by selecting the industries with smallest p-

values at that frequency for δ = 1. The sets Icor and Iparcor are defined as the 15

most frequent industries among the hub industries obtained at each frequency via

complex-valued correlation and partial correlation screening, respectively. The result

of this analysis is shown in Table 3.6. It is evident that most of the discovered

industries are in the finance, public utilities and energy sectors.

3.7 Conclusion

This chapter presented a spectral method for correlation analysis of stationary

multivariate Gaussian time series with a focus on identifying correlation hubs. The

asymptotic independence of spectral components at different frequencies allows the

problem to be decomposed into independent problems at each frequency, thus im-

proving computational and statistical efficiency for high-dimensional time series. The

method of complex-valued correlation screening is then applied to detect hub vari-

ables at each frequency. Using a characterization of the number of hubs discovered
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Icor Corresponding sector Iparcor Corresponding sector
Bank Finance Bank Finance

Bank (Midwest) Finance Bank (Midwest) Finance
Diversified Co. Consumer Non-Durables Electric Util. (Central) Public Utilities

Machinery Consumer Non-Durables Electric Utility (East) Public Utilities
Petroleum (Producing) Energy Electric Utility (West) Public Utilities

Natural Gas (Div.) Energy Natural Gas (Div.) Energy
Electric Util. (Central) Public Utilities Petroleum (Producing) Energy
Electric Utility (West) Public Utilities Oilfield Svcs/Equip. Energy
Chemical (Specialty) Capital Goods Petroleum (Integrated) Energy

Thrift Finance Semiconductor Public Utilities
Financial Svcs. (Div.) Finance Semiconductor Equip Finance
Electric Utility (East) Public Utilities Thrift Finance
Electrical Equipment Consumer Durables Metals & Mining (Div.) Basic Industries

Electronics Energy Steel Basic Industries
Industrial Services Energy Natural Gas Utility Public Utilities

Table 3.6: Industries in Icor and Iparcor. These industries which are obtained by complex-
valued correlation and partial correlation screening, can be interpreted as the
drivers of the market. It is evident that a majority of the discovered industries
fall in to the finance, public utilities and energy sectors.

by the method, thresholds for hub screening can be selected to avoid an excessive

number of false positives or negatives, and the statistical significance of hub discov-

eries can be quantified. The theory specifically considers the high-dimensional case

where the number of samples at each frequency can be significantly smaller than the

number of time series. Experimental results validated the theory and illustrated the

applicability of complex-valued correlation screening to the spectral domain.
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CHAPTER IV

Variable selection and prediction in high

dimensional linear regression using hub screening

4.1 Introduction

In Chapter II we considered a local hub screening method in (partial) correlation

graphs. In Chapter III we generalized the hub screening theory to the case of complex-

valued random variables. In this Chapter we generalize the hub screening theory to

the case of bipartite graphs. Our goal for such a generalization is to proposes a gen-

eral adaptive procedure for budget-limited predictor design in high dimension called

two-stage Sampling, Prediction and Adaptive Regression via Correlation Screening

(SPARCS). SPARCS can be applied to high dimensional prediction problems in ex-

perimental science, medicine, finance, and engineering, as illustrated by the following.

Suppose one wishes to run a sequence of experiments to learn a sparse multivariate

predictor of a dependent variable Y (disease prognosis) based on a p dimensional set of

independent variables X = [X1, . . . , Xp]
T (assayed biomarkers). Assume that the cost

of acquiring the full set of variables X increases linearly in its dimension. SPARCS

breaks the data collection into two stages in order to achieve an optimal tradeoff

between sampling cost and predictor performance. In the first stage we collect a few

(n) expensive samples {yi,xi}ni=1, at the full dimension p � n of X, winnowing the
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number of variables down to a smaller dimension l < p using some form of variable

selection. In the second stage we collect a larger number (t − n) of cheaper samples

of the l variables that passed the screening of the first stage. After the second stage,

a low dimensional predictor is constructed by solving the regression problem using

all t samples of the selected variables. Note that the SPARCS approach is embedded

in the sampling process and is therefore closer to adaptive sampling, such as distilled

sensing of Haupt, Castro and Nowak (2010), than it is to correlation learning, such as

sure independence screening (SIS) of Fan and Lv (2007). SPARCS implements false

positive control on the selected variables, is well suited to small sample sizes, and

is scalable to high dimensions. We establish asymptotic bounds for the Familywise

Error Rate (FWER), specify high dimensional convergence rates for support recovery,

and establish optimal sample allocation rules to the first and second stages.

Much effort has been invested in the sparse regression problem where the objec-

tive is to learn a sparse linear predictor from training data {yi, xi1, xi2, . . . , xip}ni=1

where the number p of predictor variables is much larger that the number n of train-

ing samples. Applications in science and engineering where such “small n large p”

problems arise include: sparse signal reconstruction (Candés et al., 2005; Donoho,

2006); channel estimation in multiple antenna wireless communications (Hassibi and

Hochwald, 2003; Biguesh and Gershman, 2006); text processing of internet documents

(Forman, 2003; Ding et al., 2002); gene expression array analysis (Golub et al., 1999);

combinatorial chemistry (Suh et al., 2009); environmental sciences (Rong, 2011); and

others (Guyon and Elisseeff , 2003). In this n� p setting training a linear predictor

becomes difficult due to rank deficient normal equations, overfitting errors, and high

computation complexity.

A large number of methods for solving this sparse regression problem have been

proposed. These include methods that simultaneously perform variable selection and

predictor design and the methods that perform these two operations separately. The
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former class of methods includes, for example, least absolute shrinkage and selection

operator (LASSO), elastic LASSO, and group LASSO (Guyon and Elisseeff , 2003;

Tibshirani, 1996; Efron et al., 2004; Bühlmann, 2006; Yuan and Lin, 2005; Friedman

et al., 2001; Bühlmann and Van De Geer , 2011). The latter class of methods includes

sequential thresholding approaches such as sure independence screening (SIS); and

marginal regression (Fan and Lv, 2008; Genovese et al., 2009, 2012; Fan et al., 2010).

All of these methods are offline in the sense that they learn the predictor from a

batch of precollected samples of all the variables. In this chapter we propose an

online framework, called two-stage Sampling, Prediction and Adaptive Regression

via Correlation Screening (SPARCS), which unequally and adaptively samples the

variables in the process of constructing the predictor. One of the principal results

of this chapter is that, as compared under common sampling budget constraints,

the proposed SPARCS method results in better prediction performance than offline

methods.

Specifically, the SPARCS method for online sparse regression operates in two-

stages. The first stage, which we refer to as the SPARCS screening stage, collects a

small number of full dimensional samples and performs variable selection on them.

Variable selection can be performed one of two ways, i.e., by screening the sample

cross-correlation between Y and X, as in sure independence screening (SIS), or by

thresholding the generalized Ordinary Least Squares (OLS) solution, which we call

predictive correlation screening (PCS). The second stage of SPARCS, referred to as

the SPARCS regression stage, collects a larger number of reduced dimensional sam-

ples, consisting of the variables selected at the first stage, and regresses the responses

on the the selected variables to build the predictor.

We establish the following theoretical results on SPARCS. First, under a sparse

correlation assumption, we establish a Poisson-like limit theorem for the number of

variables that pass the SPARCS screening stage as p → ∞ for fixed n. This yields

79



a Poisson approximation to the probability of false discoveries that is accurate for

small n and large p. The Poisson-like limit theorem also specifies a phase transition

threshold for the false discovery probability. Second, with n the number of samples

in the first stage, and t the total number of samples, we establish that n needs only

be of order log p for SPARCS to succeed in recovering the support set of the optimal

OLS predictor. Third, given a cost-per-sample that is linear in the number of assayed

variables, we show that the optimal value of n is on the order of log t. The above

three results, established for our SPARCS framework, can be compared to theory

for correlation screening (Hero and Rajaratnam, 2011, 2012), support recovery for

multivariate LASSO (Obozinski et al., 2011), and optimal exploration vs. exploitation

allocation in multi-armed bandits (Audibert et al., 2007).

SPARCS can of course also be applied offline. When implemented in this way,

it can be viewed as an alternative to LASSO-type regression methods (Tibshirani,

1996; Paul et al., 2008; Wainwright, 2009; Huang and Jojic, 2011; Wauthier et al.,

2013). LASSO based methods try to perform simultaneous variable selection and

regression via minimizing an `1-regularized Mean Squared Error (MSE) objective

function. Since the `1-regularized objective function is not differentiable, such an

optimization is computationally costly, specially for large p. Several approaches such

as LARS (Efron et al., 2004; Khan et al., 2007; Hesterberg et al., 2008), gradient

projection methods (Figueiredo et al., 2007; Quattoni et al., 2009), interior point

methods (Kim et al., 2007; Koh et al., 2007) and active-set-type algorithms (Kim

and Park, 2010; Wen et al., 2010, 2012) have been developed to optimize the LASSO

objective function. SPARCS however differs from LASSO as it does not consider a

regularized objective function and instead performs variable selection via thresholding

the min-norm solution to the non-regularized OLS problem.

Offline implementation of the proposed SPARCS method is a variant of correlation

learning, also called marginal regression, simple thresholding, and sure independence
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screening (Genovese et al., 2009, 2012; Fan and Lv, 2008), wherein the simple sample

cross-correlation vector between the response variable and the predictor variables is

thresholded. The theory developed in this chapter yields phase transitions for the

familywise false discovery rate for these methods.

The SPARCS screening stage has some similarity to recently developed correlation

screening and hub screening in graphical models (Hero and Rajaratnam, 2011, 2012).

However, there are important and fundamental differences. The methods in (Hero

and Rajaratnam, 2011, 2012) screen for connectivity in the correlatrion graph, i.e.,

they only screen among the predictor variables {X1, . . . , Xp}. SPARCS screens for the

connections in the bi-partite graph between the response variable Y and the predictor

variables X1, ..., Xp. Thus SPARCS is a supervised learning method that accounts

for Y while the methods of (Hero and Rajaratnam, 2011, 2012) are unsupervised

methods.

SPARCS can also be compared to sequential sampling methods, originating in the

pioneering work of (Wald et al., 1945). This work has continued in various directions

such as sequential selection and ranking and adaptive sampling schemes (Bechhofer

et al., 1968; Gupta and Panchapakesan, 1991). Recent advances include the many

multi-stage adaptive support recovery methods that have been collectively called

distilled sensing (Haupt et al., 2009, 2011; Wei and Hero, 2013a,b) in the compressive

sensing literature. While bearing some similarities, our SPARCS approach differs

from distilled sensing (DS). Like SPARCS, DS performs initial stage thresholding in

order to reduce the number of measured variables in the second stage. However, in

distilled sensing the objective is to recover a few variables with high mean amplitudes

from a larger set of initially measured predictor variables. In contrast, SPARCS

seeks to recover a few variables that are strongly predictive of the response variable

from a large number of initially measured predictor variables and the corresponding

response variable. Furthermore, unlike in DS, in SPARCS the final predictor uses all
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the information on selected variables collected during both stages.

The chapter is organized as follows. Section 4.2 provides a practical motivation

for SPARCS from the perspective of an experimental design problem in biology. It

introduces the under-determined multivariate regression problem and formally de-

fines the two stages of the SPARCS algorithm. Section 4.3 develops high dimensional

convergence results for screening and support recovery performance of SPARCS. Sec-

tion 4.3 also provides theory that specifies optimal sample allocation between the two

stages of SPARCS. Section 4.4 presents simulation comparisons and an application

to symptom prediction from gene expression data.

Figure 4.1: Price of arrays as a function of the number of probes. The dots repre-
sent pricing per slide for Agilent Custom Microarrays G2509F, G2514F,
G4503A, G4502A (May 2014). The cost increases as a function of probe-
set size. Source: BMC Genomics and RNA Profiling Core.

4.2 Two-stage SPARCS method for online sparse regression

In this section we motivate the two-stage SPARCS method for online sparse re-

gression via an experimental design problem in biology. Moreover, we formally define
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each stage of the two-stage SPARCS method.

4.2.1 Motivation and definition for SPARCS

As a practical motivation for SPARCS consider the following sequential design

problem that is relevant to applications where the cost of samples increases with

the number p of variables. This is often the case for example, in gene microarray

experiments: a high throughput “full genome” gene chip with p = 40, 000 gene probes

can be significantly more costly than a smaller assay that tests fewer than p = 15, 000

gene probes (see Fig. 4.1). In this situation a sensible cost-effective approach would

be to use a two-stage procedure: first select a smaller number l of variables on a few

expensive high throughput samples and then construct the predictor on additional

cheaper low throughput samples.

Motivated by the above practical example, we propose SPARCS as the following

two-stage procedure. The first stage of SPARCS, also referred to as the SPARCS

screening stage, performs variable selection and the second stage, also referred to as

the SPARCS regression stage, constructs a predictor using the variables selected at

the first stage. More specifically, assume that there are a total of t samples {yi,xi}ti=1

available. During the first stage a number n ≤ t of these samples are assayed for

all p variables and during the second stage the rest of the t− n samples are assayed

for a subset of l < p of the variables selected in the first stage. Variable selection

at SPARCS screening stage can be performed one of two ways, i.e., by screening the

sample cross-correlation between Y and X, as in sure independence screening (SIS),

or by thresholding the solution to the generalized Ordinary Least Squares (OLS)

problem, which we refer to as predictive correlation screening (PCS). Subsequently,

the SPARCS regression stage uses standard OLS to design a l-variable predictor using

all t samples collected during both stages.

An asymptotic analysis (as the total number of samples t → ∞) of the above
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two-stage predictor is undertaken in Sec. 4.3 to obtain the optimal sample allocation

for stage 1 and stage 2. Assuming that a sample of a single variable has unit cost

and that the total available budget for all of the samples is µ, the asymptotic analysis

yields minimum Mean Squared Error (MSE) when n, t, p, and k satisfy the budget

constraint:

np+ (t− n)k ≤ µ, (4.1)

where k is the true number of active variables in the underlying linear model. The

condition in (4.1) is relevant in cases where there is a bound on the total sampling

cost of the experiment and the cost of a sample increases linearly in its dimension p.

4.2.2 SPARCS screening stage

We start out with some notations. Assume that n i.i.d. paired realizations of

X = [X1, . . . , Xp] and Y are available, where X is a random vector of predictor

variables and Y is a scalar response variable to be predicted. We represent the n× p

predictor data matrix as X and the n×1 response data vector as Y. The p×p sample

covariance matrix Sx for the rows of the data matrix X is defined as:

Sx =
1

n− 1

n∑
i=1

(xi − x)T (xi − x), (4.2)

where xi is the i-th row of data matrix X, and x is the vector average of all n rows

of X. We also denote the sample variance of the elements of Y as sy.

Consider the n × (p + 1) concatenated matrix W = [X,Y]. The sample cross-

covariance vector Sxy is defined as the upper right p× 1 block of the (p+ 1)× (p+ 1)

sample covariance matrix obtained by (4.2) using W as the data matrix instead of X.

The p× p sample correlation matrix Rx is defined as

Rx = D
− 1

2
Sx SxD

− 1
2

Sx , (4.3)
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where DA represents a matrix that is obtained by zeroing out all but diagonal entries

of A. Moreover, the p× 1 sample cross-correlation vector Rxy is defined as:

Rxy = D
− 1

2
Sx Sxy(sy)−

1
2 . (4.4)

The SIS method for the SPARCS screening stage selects the desired number of

variables, l, by picking the l variables that have the largest absolute sample correlation

with the response variable Y . Therefore, SIS performs support recovery by discovering

the entries of Rxy whose absolute value is larger than some threshold.

Next we introduce the under-determined ordinary lest squares (OLS) multivariate

regression problem.

Assume that n < p. We define the generalized Ordinary Least Squares (OLS)

estimator of Y given X as the min-norm solution of the under-determined least squares

regression problem

min
Bxy∈Rp

‖Y− XBxy‖2
F , (4.5)

where ‖A‖F represents the Frobenius norm of matrix A. The min-norm solution to

(4.5) is the vector of regression coefficients

Bxy = (Sx)†Sxy, (4.6)

where A† denotes the Moore-Penrose pseudo-inverse of the matrix A. If the i-th entry

of the regression coefficient vector Bxy is zero then the i-th predictor variable is not

included in the OLS estimator. This is the main motivation for the PCS method for

variable selection at the SPARCS screening stage. More specifically, the PCS method

selects the l entries of Bxy having the largest absolute values. Equivalently, PCS

performs support recovery by discovering the entries of the generalized OLS solution
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Bxy whose absolute value is larger than some threshold.

In Sec. 4.3.3 we will see that, under certain assumptions, SIS and PCS admit

similar asymptotic support recovery guarantees. However, our experimental results

in Sec. 4.4 show that for n � p, if SIS (or LASSO) is used instead of PCS in the

SPARCS screening stage, the performance of the two-stage predictor suffers. This

empirical observation suggests that pre-multiplication of Sxy by the pseudo-inverse

(Sx)† instead of by the diagonal matrix D
−1/2
Sx , can improve the performance of the

SPARCS procedure.

4.2.3 SPARCS regression stage

In the second stage of SPARCS, a number t−n of additional samples are collected

for the l < p variables found by the SPARCS screening stage. Subsequently, a sparse

OLS predictor of Y is constructed using only the l variables designated at the SPARCS

screening stage. Specifically, the predictor coefficients are determined from all of the

t samples according to

(Sx(l))
−1Sxy(l), (4.7)

where Sx(l) and Sxy(l) are the l× l sample covariance matrix and the l× 1 sample cross-

covariance vector obtained for the set of l variables selected by the SPARCS screening

stage.

In Sec. 4.3 we establish high dimensional convergence rates for the two stage

online SPARCS procedure and we obtain asymptotically optimal sample allocation

proportions n/t and (t− n)/t for the first and second stage.
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4.3 Convergence analysis

4.3.1 Notations and assumptions

In this section we introduce some additional notations and state the required

assumptions for our convergence analysis of SPARCS.

The following notations are required for the theorems in this section. The surface

area of the (n− 2)-dimensional unit sphere Sn−2 in Rn−1 is denoted by by an. In the

sequel we often refer to a vector on Sn−2 as a unit norm vector.

Our convergence analysis for SPARCS uses the U-score representations of the

data. More specifically, there exist a (n− 1)× p matrix Ux with unit norm columns,

and a (n − 1) × 1 unit norm vector Uy such that the following representations hold

(Hero and Rajaratnam, 2011, 2012):

Rx = (Ux)TUx, (4.8)

and

Rxy = (Ux)TUy. (4.9)

Assume that U,V are two independent and uniformly distributed random vectors

on Sn−2. For a threshold ρ ∈ [0, 1], let r =
√

2(1− ρ). P0(ρ, n) is then defined as the

probability that either ‖U −V‖2 ≤ r or ‖U + V‖2 ≤ r. P0(ρ, n) can be computed

using the formula for the area of spherical caps on Sn−2 (cf. (Li, 2011)):

P0 = I1−ρ2((n− 2)/2, 1/2), (4.10)

in which Ix(a, b) is the regularized incomplete beta function.

S ⊆ {1, . . . , p} denotes the set of indices of the variables selected by the SPARCS
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screening stage. Moreover, l refers to the number of variables selected at the SPARCS

screning stage, i.e., |S| = l.

For arbitrary joint densities fUx
i ,U

y(u,v), 1 ≤ i ≤ p defined on the Cartesian

product Sn−2 × Sn−2, define

fUx
∗ ,U

y(u,v) =
1

4p

p∑
i=1

∑
s,t∈{0,1}

fUx
i ,U

y(su, tv). (4.11)

The quantity fUx
∗ ,U

y(u,v) is key in determining the expected number of discoveries

in screening the entries of the vector Φxy in (4.30).

In the theorems of this chapter, q represents an upper bound on the number of

entries in any row or column of covariance matrix Σx or cross-covariance vector Σxy

that do not converge to zero as p→∞. We define ‖∆xy
p,n,q‖1, the average dependency

coefficient, as:

‖∆xy
p,n,q‖1 =

1

p

p∑
i=1

∆xy
p,n,q(i) (4.12)

with

∆xy
p,n,q(i) =

∥∥∥(fUx
i ,U

y |UAq(i)
− fUx

i ,U
y)/fUx

i ,U
y

∥∥∥
∞
, (4.13)

in which Aq(i) is defined as the set complement of indices of the q-nearest neighbors

of Ux
i (i.e. the complement of indices of the q entries with largest magnitude in the

i-th row of Σx). Finally, the function J of the joint density fU,V(u,v) is defined as:

J(fU,V) = |Sn−2|
∫

Sn−2

fU,V(w,w)dw. (4.14)

The function J(fU,V) plays a key role in the asymptotic expression for the mean

number of discoveries. Note that when observations are independent, by symmetry,
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the marginal distributions of U -scores are exchangeable, i.e.,

fU(u) = fU(Πu) and fV(v) = fV(Πv), (4.15)

for any (n − 1) × (n − 1) permutation matrix Π. Therefore, the joint distribution

fU,V must yield exchangeable marginals.

We now present two examples for which J(fU,V) has a closed form expression.

Example 1. If the joint distribution fU,V is uniform over the product Sn−2×Sn−2,

J(fU,V) = |Sn−2|
∫

Sn−2

1

|Sn−2|2
dw =

|Sn−2|2

|Sn−2|2
= 1. (4.16)

Example 2. Consider the case where the joint distribution fU,V is separable of the

form

fU,V(u,v) = fU(u)fV(v), (4.17)

i.e., U and V are independent. Let the marginals be von Mises-Fisher distributions

over the sphere Sn−2

fU(u) = Cn−1(κ) exp(κµTu), u ∈ Sn−2, (4.18)

in which µ and κ ≥ 0 are the location parameter and the concentration parameter,

respectively, and Cn−1(κ) is a normalization constant, calculated as:

Cn−1(κ) =
κ(n−1)/2−1

(2π)(n−1)/2I(n−1)/2−1(κ)
, (4.19)

where Im is the modified Bessel function of the first kind of order m. Im(x) can be
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computed up to the desired precision using the expansion:

Im(x) =
∞∑
l=0

(x/2)2l+n

l!Γ(l +m+ 1)
, (4.20)

in which Γ(.) is the gamma function.

Due to exchangeability of fU(u), the only two feasible choices for µ are µ = 1

and µ = −1, where 1 = [1, 1, . . . , 1]T . Hence the joint distribution can be written as:

fU,V(u,v) = fU(u)fV(v) = Cn−1(κ1) exp(κ1µ
T
1 u)Cn−1(κ2) exp(κ2µ

T
2 v)

= Cn−1(κ1)Cn−1(κ2) exp(κ1µ
T
1 u + κ2µ

T
2 v) (4.21)

Assuming µ1 = α11 and µ2 = α21, where α1, α2 ∈ {−1, 1}, we obtain:

fU,V(u,v) = Cn−1(κ1)Cn−1(κ2) exp
(
1T (α1κ1u + α2κ2v)

)
. (4.22)

This yields:

J(fU,V) = |Sn−2|
∫

Sn−2

Cn−1(κ1)Cn−1(κ2) exp
(
(α1κ1 + α2κ2)1Tw

)
dw

= |Sn−2|Cn−1(κ1)Cn−1(κ2)

∫
Sn−2

exp
(
(α1κ1 + α2κ2)1Tw

)
dw

=
|Sn−2|Cn−1(κ1)Cn−1(κ2)

Cn−1(|α1κ1 + α2κ2|)
. (4.23)

Therefore, using (4.19) and (4.20), J(fU,V) can be computed up to the desired pre-

cision.

Further properties as well as intuitive interpretations of J(fU,V) have also been

considered in (Hero and Rajaratnam, 2011).

For the convergence analysis we assume that the response Y is generated from the
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following statistical model:

Y = ai1Xi1 + ai2Xi2 + · · ·+ aikXik +N, (4.24)

where π0 = {i1, · · · , ik} is a set of distinct indices in {1, . . . , p}, X = [X1, X2, · · · , Xp]

is the vector of predictors, Y is the response variable, and N is a noise variable.

Xi1 , · · · , Xik are called active variables and the remaining p − k variables are called

inactive variables. In the sequel, we refer to the set π0 as the support set, and |π0| = k

denotes the number of active variables.

For the purpose of convergence analysis of SPARCS we impose the following three

assumptions on the linear model (4.24).

Assumption IV.1. The rows of the n× p data matrix X are i.i.d. realizations of a

p-dimensional vector X which follows a multivariate elliptically contoured distribution

with mean µx and p × p dispersion matrix Σx, i.e. the probability density function

(pdf) is of the form fX(x) = g
(
(x− µx)

TΣx
−1(x− µx)

)
, where g is a non-negative

function. Also, N is statistically independent of X and follows a univariate elliptically

contoured distribution fN(.) with mean 0 and variance σ2
N . Moreover, the density

functions fX(.) and fN(.) are bounded and differentiable.

Assumption IV.2. Let ρyi represent the true correlation coefficient between response

variable Y and predictor variable Xi. The quantity

ρmin = min
i∈π0,j∈{1,··· ,p}\π0

{|ρyi| − |ρyj|}, (4.25)

is strictly positive and independent of p.

Assumption IV.3. The (n− 1)× p matrix of U-scores satisfies:

n− 1

p
Ux(Ux)T = In−1 + o(1), as p→∞, (4.26)
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in which o(1) is a (n− 1)× (n− 1) matrix whose entries are o(1).

Assumption IV.2 is a common assumption that one finds in performance analysis

of support recovery algorithms (cf. (Obozinski et al., 2011; Fan and Lv, 2008)). In par-

ticular, Assumption IV.2 can be compared to the conditions on the sparsity-overlap

function in (Obozinski et al., 2011) which impose assumptions on the population co-

variance matrix in relation to the true regression coefficients. Assumption IV.2 can

also be compared to Condition 3 introduced in (Fan and Lv, 2008) that imposes lower

bounds on the magnitudes of the true regression coefficients as well as on the true

correlation coefficients between predictors and the response. Assumption IV.3 can be

related to assumptions (A1)-(A3) in (Obozinski et al., 2011) in the sense that they

both lead to regularity conditions on the entries and the eigenspectrum of the corre-

lation matrix. Assumption IV.3 is also similar the concentration property introduced

in (Fan and Lv, 2008) as they both yield regularity conditions on the inner products

of the rows of the data matrix. Moreover, Assumption IV.3 can also be considered

as an incoherence-type condition on the U-scores, similar to the incoherence condi-

tions on the design matrix assumed in the compressive sensing literature (Candes and

Romberg, 2007; Tropp and Gilbert, 2007; Carin et al., 2011). It is worth mentioning

that a special case in which Assumption IV.3 is satisfied is the orthogonal setting

where XXT/n = In.

Lemma IV.4 specifies a class of p×p correlation matrices Ωx for which Assumption

IV.3 is satisfied.

Lemma IV.4. Assume that the population correlation matrix Ωx = D
−1/2
Σx

ΣxD
−1/2
Σx

is of the following weakly block-sparse form

Ωx = Ωbs + Ωe, (4.27)

in which Ωbs is a p×p block-sparse matrix of degree dx (i.e., by re-arranging rows and
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columns of Ωbs all non-zero off-diagonal entries can be collected in a dx × dx block),

and Ωe = [ωij]1≤i,j≤p is a p×p matrix such that ωij = O (f(|i− j|)) for some function

f(.) with f(t) = O(|t|−γ) where γ > 1. If dx = o(p), then Assumption IV.3 holds.

Proof. By block sparsity of Ωbs,Ux can be partitioned as:

Ux = [Ux,Ux
], (4.28)

where Ux = [Ux
1 , · · · ,Ux

dx ] are the U-scores corresponding to the dependent block of

Ωbs and Ux
= [U

x

1 , · · · ,U
x

p−dx ] are the remaining U-scores. Using relations (4.68) and

(4.69) we have:

n− 1

p
Ux(Ux)T =

n− 1

p

(
Ux(Ux)T + Ux

(Ux
)T
)

= In−1 + (n− 1)O(dx/p). (4.29)

Noting that dx = o(p) the result follows.

Using Schur’s complement formula it can be shown that if a matrix Ωx is weakly

block-sparse of the form (4.27) then its inverse is also weakly block-sparse. It is also

worth mentioning that in our high dimensional analysis, a weakly block-sparse matrix

asymptotically behaves similar to a block-sparse matrix.

4.3.2 High dimensional convergence rates for screening

In this section, we establish a Poisson-like limit theorem for the number of variables

that pass the SPARCS screening stage as p → ∞ for fixed n. This yields a Poisson

approximation to the probability of false discoveries that is accurate for small n and

large p. The Poisson-like limit theorem also specifies a phase transition threshold for

the false discovery probability.

Below we show that both SIS and PCS methods for discovering the support set
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are equivalent to discovering the largest entries of some p× 1 vector Φxy having the

following representation:

Φxy = (Zx)TZy, (4.30)

in which Zx is a (n− 1)× p matrix whose columns are unit norm vectors, and Zy is

a (n− 1)× 1 unit norm vector.

Using the U-score representation of the correlation matrices, there exist a (n−1)×p

matrix Ux with unit norm columns, and a (n− 1)× 1 unit norm vector Uy such that

(Hero and Rajaratnam, 2011, 2012):

Rxy = (Ux)TUy. (4.31)

Representation (4.31) immediately shows that SIS is equivalent to discovering non-

zero entries of a vector with representation (4.30). Moreover, we have

Sxy = D
1
2
Sx(U

x)TUy(sy)
1
2 , (4.32)

and:

(Sx)† = D
− 1

2
Sx ((Ux)T (Ux(Ux)T )−2Ux)D

− 1
2

Sx , (4.33)

where DA denotes the diagonal matrix obtained by zeroing out the off-diagonals of

square matrix A. We refer the interested reader to (Hero and Rajaratnam, 2012;

Anderson, 2003) for more information about the calculations of U-scores. Using

representations (4.32) and (4.33), one can write:

Ŷ = ((Sx)†Sxy)TX = (sy)
1
2 (Uy)T (Ux(Ux)T )−1UxD

− 1
2

Sx X. (4.34)
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Defining Ũx = (Ux(Ux)T )−1UxD
− 1

2

(Ux)T (Ux(Ux)T )−2Ux , we have:

Ŷ = (sy)
1
2 (Uy)T ŨxD

1
2

(Ux)T (Ux(Ux)T )−2UxD
− 1

2
Sx X (4.35)

= (sy)
1
2 (Hxy)TD

1
2

(Ux)T (Ux(Ux)T )−2UxD
− 1

2
Sx X, (4.36)

where

Hxy = (Ũx)TUy. (4.37)

Note that the columns of the matrix Ũx lie on Sn−2 since the diagonal entries of the

p × p matrix (Ũx)T Ũx are equal to one. Therefore, a U-score representation of the

generalized OLS solution Bxy can be obtained as:

Bxy = (Sx)†Sxy = D
− 1

2
Sx D

1
2

(Ux)T (Ux(Ux)T )−2UxH
xy(sy)

1
2 , (4.38)

Under the condition that D(Ux)T (Ux(Ux)T )−2Ux has non-zero diagonal entries, the i-th

entry of Bxy is zero if and only if the i-th entry of Hxy is zero, for 1 ≤ i ≤ p. This

motivates screening for non-zero entries of the vector Hxy instead of the entries of

Bxy. In particular, for a threshold ρ ∈ [0, 1], we can undertake variable selection by

discovering the entries of the vector Hxy in (4.37) that have absolute values at least

ρ. This implies that discovering the support via PCS is equivalent to discovering the

non-zero entries of Hxy in (4.37) which admits the representation (4.30).

Now for a threshold ρ ∈ [0, 1], let Nxy
ρ denote the number of entries of a p × 1

vector of the form (4.30) whose magnitude is at least ρ. The following theorem

gives an asymptotic expression for the expected number of discoveries E[Nxy
ρ ], for

fixed n, as p → ∞ and ρ → 1. It also states that under certain assumptions, the

probability of having at least one discovery converges to a given limit. This limit is

equal to the probability that a certain Poisson random variable N∗ with rate equal
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to limp→∞,ρ→1 E[Nxy
ρ ] satisfies: N∗ > 0.

Theorem IV.5. Consider the linear model (4.24). Let {ρp}p be a sequence of thresh-

old values in [0, 1] such that ρp → 1 as p → ∞ and p(1 − ρ2
p)

(n−2)/2 → en. Under

the Assumptions IV.1 and IV.3, if the number of active variables k grows at a rate

slower than p, i.e., k = o(p), then for the number of discoveries Nxy
ρp we have:

lim
p→∞

E[Nxy
ρp ] = lim

p→∞
ξp,n,ρp = ζn, (4.39)

where ξp,n,ρp = pP0(ρ, n) and ζn = enan/(n− 2). Moreover:

lim
p→∞

P(Nxy
ρp > 0) = 1− exp(ζn). (4.40)

Proof. In order to obtain stronger bounds, we prove the Theorem IV.5 under the

weakly block-sparse assumption (4.27). However the proof for the general case where

Assumption IV.3 is satisfied follow similarly. The proof follows directly from Theorem

IV.6 and Lemma IV.7 presented below.

It is worth mentioning that Theorem IV.5 can be generalized to the case where

Assumption IV.3 is not required. However the asymptotic rates for E[Nxy
ρp ] and

P(Nxy
ρp > 0) depend on the underlying distribution of the data in the case that As-

sumption IV.3 is not satisfied. The following theorem asserts such a generalization.

Theorem IV.6. Consider the linear model (4.24) for which Assumption IV.1 is

satisfied. Let Ux = [Ux
1 ,U

x
2 , ...,U

x
p ] and Uy = [Uy] be (n − 1) × p and (n − 1) × 1

random matrices with unit norm columns. Let {ρp}p be a sequence of threshold values

in [0, 1] such that ρp → 1 as p → ∞ and p(1 − ρ2
p)

(n−2)/2 → en. Throughout this

theorem Nxy
ρ denotes the number of entries of the p× 1 vector Gxy = (Ux)TUy whose
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magnitude is at least ρ. We have:

lim
p→∞

E[Nxy
ρp ] = lim

p→∞
ξp,n,ρpJ(fUx

∗ ,U
y) = ζn lim

p→∞
J(fUx

∗ ,U
y), (4.41)

where ξp,n,ρp = pP0(ρ, n) and ζn = enan/(n− 2).

Assume also that q = o(p) and that the limit of average dependency coefficient satisfies

limp→∞ ‖∆xy
p,n,q‖1 = 0. Then:

P(Nxy
ρp > 0)→ 1− exp(−Λxy), (4.42)

with

Λxy = lim
p→∞

E[Nxy
ρp ]. (4.43)

Proof. Let dxi denote the degree of vertex Xi in part x of the graph Gρ(Gxy). We

have:

Nxy
ρ =

p∑
i=1

dxi . (4.44)

The following representation for dxi holds:

dxi = I(Uy ∈ A(r,Ux
i )), (4.45)

where A(r,Ux
i ) is the union of two anti-polar caps in Sn−2 of radius

√
2(1− ρ) cen-

tered at Ux
i and −Ux

i . The following inequality will be helpful:

E[dxi ] =

∫
Sn−2

du

∫
A(r,u)

dv fUx
i ,U

y(u,v) (4.46)
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≤ P0anM
yx
1|1, (4.47)

where Myx
1|1 = maxi ‖fUy |Ux

i
‖∞, and P0 is a simplified notation for P0(ρ, n). Also for

i 6= j we have:

E[dxi d
x
j ] ≤ P 2

0 a
2
nM

xy
2|1, (4.48)

where Mxy
2|1 is a bound on the conditional joint densities of the form fUx

i ,U
x
j |Uy .

Application of the mean value theorem to the integral representation (4.46) yields:

|E[dxi ]− P0J(fUx
i ,U

y)| ≤ γ̃yxP0r, (4.49)

where γ̃yx = 2a2
nṀ

yx
1|1 and Ṁyx

1|1 is a bound on the norm of the gradient:

Ṁyx
1|1 = max

i
‖∇UyfUy |Ux

i
(uy|uxi )‖∞. (4.50)

Using (4.49) and the relation r = O
(
(1− ρ)1/2

)
we conclude:

|E[dxi ]− P0J(fUx
i ,U

y)| ≤ O
(
P0(1− ρ)1/2

)
. (4.51)

Summing up over i we conclude:

|E[Nxy
ρ ]− ξp,n,ρJ(fUx

∗ ,U
y)| ≤ O

(
pP0(1− ρ)1/2

)
= O

(
ηxyp (1− ρ)1/2

)
, (4.52)

where ηxyp = pP0. This concludes (4.41).

To prove the second part of the theorem, we use Chen-Stein method (Arratia et al.,

1990). Define the index set Bxy(i) = N xy
q (i)− {i}, 1 ≤ i ≤ p, where N xy

q (i) is the set

of indices of the q-nearest neighbors of Ux
i . Note that |Bxy(i)| ≤ q. Assume N∗xyρ is a
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Poisson random variable with E[N∗xyρ ] = E[Nxy
ρ ]. Using theorem 1 of (Arratia et al.,

1990), we have:

2 maxA|P(Nxy
ρ ∈ A)− P(N∗xyρ ∈ A)| ≤ b1 + b2 + b3, (4.53)

where:

b1 =

p∑
i=1

∑
j∈Bxy(i)

E[dxi ]E[dxj ], (4.54)

b2 =

p∑
i=1

∑
j∈Bxy(i)

E[dxi d
x
j ], (4.55)

and

b3 =

p∑
i=1

E
[
E
[
dxi − E[dxi ]|dxj : j ∈ Aq(i)

]]
, (4.56)

where Aq(i) = (Bxy(i))c − {i}. Using the bound (4.47), E[dxi ] is of order O(P0).

Therefore:

b1 ≤ O(pkP 2
0 ) = O((ηxyp )2q/p). (4.57)

Since i /∈ Bxy(i), applying (4.48) to each term of the summation (4.55) gives:

b2 ≤ O(pqP 2
0 ) = O((ηxyp )2q/p). (4.58)
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Finally, to bound b3 we have:

b3 =

p∑
i=1

E
[
E
[
dxi − E[dxi ]|UAq(i)

]]
=

p∑
i=1

∫
S
|Aq(i)|
n−2

duAq(i)

∫
Sn−2

duxi

∫
A(r,uxi )

duy

(
fUx

i ,U
y |UAq(i)

(uxi ,u
y|uAq(i))− fUx

i ,U
y(uxi ,u

y)

fUx
i ,U

y(uxi ,u
y)

)
fUx

i ,U
y(uxi ,u

y)fUAq(i)
(uAq(i)) (4.59)

≤ O(pP0‖∆xy
p,n,q‖1) = O(ηxyp ‖∆xy

p,n,q‖1).

Therefore using bound (4.52) we obtain:

|P(Nxy
ρ > 0)− (1− exp(−Λxy))| ≤

|P(Nxy
ρ > 0)− (1− exp(−E[Nxy

ρ ]))| + |exp(−E[Nxy
ρ ])− exp(−Λxy)| ≤

b1 + b2 + b3 + O(|E[Nxy
ρ ]− Λxy|) ≤

b1 + b2 + b3 + O
(
ηxyp (1− ρ)1/2

)
. (4.60)

Combining this with the bounds on b1, b2 and b3, completes the proof of (4.42).

Lemma IV.7. Assume the hypotheses of Theorem IV.5. Assume also that the cor-

relation matrix Ωx is of the weakly block-sparse from (4.27) with dx = o(p). We

have:

Ũx = Ux(1 +O(dx/p)). (4.61)

Moreover, the 2-fold average function J(fUx
∗ ,U

y) and the average dependency coeffi-

cient ‖∆xy
p,n,q‖ satisfy

J(fUx
∗ ,U

y) = 1 +O((k + dx)/p), (4.62)
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‖∆xy
p,n,q‖1 = 0. (4.63)

Furthermore,

J(fŨx
∗ ,U

y) = 1 +O(max{dx/p, dxy/p}) (4.64)

‖∆x̃y
p,n,q‖1 = O(dx/p). (4.65)

Proof. We have:

Ũx = (Ux(Ux)T )−1UxD
− 1

2

(Ux)T (Ux(Ux)T )−2Ux . (4.66)

By block sparsity of Ωbs,Ux can be partitioned as:

Ux = [Ux,Ux
], (4.67)

where Ux = [Ux
1 , · · · ,Ux

dx ] are the U-scores corresponding to the dependent block of

Ωbs and Ux
= [U

x

1 , · · · ,U
x

p−dx ] are the remaining U-scores.

Using the law of large numbers for a sequence of correlated variables (see, e.g.,

Example 11.18 in (Severini, 2005)) since the off-diagonal entries of Ωx that are not

in the dependent block converge to 0 as |i− j| grows, we have

1

p− dx
Ux

(Ux
)T → E[U

x

1(U
x

1)T ] =
1

n− 1
In−1. (4.68)

Since the entries of 1/dxUx(Ux)T are bounded by one, we have:

1

p
Ux(Ux)T = O(dx/p), (4.69)
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where O(u) is an (n− 1)× (n− 1) matrix whose entries are O(u). Hence:

(Ux(Ux)T )−1Ux = (Ux
(
Ux)T + Ux

(Ux
)T
)−1 Ux

=
n− 1

p
(In−1 + O(dx/p))

−1Ux

=
n− 1

p
Ux(1 +O(dx/p)). (4.70)

Hence, as p→∞:

(Ux)T (Ux(Ux)T )−2Ux =

= (
n− 1

p
)2(Ux)TUx(1 +O(dx/p)). (4.71)

Thus:

D(Ux)T (Ux(Ux)T )−2Ux =

(
p

n− 1
In−1(1 +O(dx/p))

)
. (4.72)

Combining (4.72) and (4.70) concludes (4.61).

Now we prove relations (4.62)-(4.65). Define the partition {1, . . . , p} = D ∪Dc of

the index set {1, . . . , p}, where D = {i : Ux
i is asymptotically uncorrelated of Uy}.

We have:

J(fUx
∗ ,U

y) =
1

4p

∑
s,t∈{−1,1}

(
∑
i∈D

+
∑
i∈Dc

)J(fsUx
i ,tU

y), (4.73)

and

‖∆xy
p,n,q‖1 =

1

p
(
∑
i∈D

+
∑
i∈Dc

)∆xy
p,n,q(i). (4.74)

But, J(fsUx
i ,tU

y) = 1 for i ∈ D and ∆xy
p,n,q(i) = 0 for 1 ≤ i ≤ p. Moreover, we have
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|Dc| ≤ dxy, where dxy = k + dx. Therefore,:

J(fUx
∗ ,U

y) = 1 +O(dxy/p). (4.75)

Moreover, since Ũx = Ux (1 +O(dx/p)), fŨx
i ,U

y = fUx
i ,U

y (1 +O(dx/p)). This con-

cludes:

J(fŨx
∗ ,U

y) = 1 +O(max{dx/p, dxy/p}), (4.76)

and

‖∆x̃y
p,n,q‖1 = O(dx/p). (4.77)

Theorem IV.5 plays an important role in identifying phase transitions and in ap-

proximating p-values associated with individual predictor variables. More specifically,

under the assumptions of Theorem IV.5:

P(Nxy
ρp > 0)→ 1− exp(−ξp,n,ρp) as p→∞. (4.78)

The above limit provides an approach for calculating approximate p-values in the

setting where the dimension p is very large. For a threshold ρ ∈ [0, 1] define Gρ(Φxy)

as the undirected bipartite graph (Fig. 5.1) with parts labeled x and y, and vertices

{X1, X2, ..., Xp} in part x and Y in part y. For 1 ≤ i ≤ p, vertices Xi and Y are

connected if |φxyi | > ρ, where φxyi is the i-th entry of Φxy defined in (4.30). Denote

by dxi the degree of vertex Xi in Gρ(Φxy). Note that dxi ∈ {0, 1}. For each 1 ≤ i ≤ p,

denote by ρ(i) the maximum value of the threshold ρ for which dxi = 1 in Gρ(Φxy).

By this definition, we have ρ(i) = |φxyi |. Using Theorem IV.5 the p-value associated
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Part x
X1

X2

Xi

Xp

Part y

Y

Figure 4.2: The first stage of SPARCS is equivalent to discovering the non-zero entries
of the p×1 vector Φxy in (4.30) to find variables Xi that are most predic-
tive of the response Y . This is equivalent to finding sparsity in a bipartite
graph Gρ(Φxy) with parts x and y which have vertices {X1, . . . , Xp} and
Y , respectively. For 1 ≤ i ≤ p, vertex Xi in part x is connected to vertex
Y in part y if |φxyi | > ρ.

with predictor variable Xi can now be approximated as:

pv(i) ≈ 1− exp(−ξp,n,ρ(i)). (4.79)

Similar to the result in (Hero and Rajaratnam, 2011, 2012), there is a phase transition

in the p-values as a function of the threshold ρ. More exactly, there is a critical

threshold ρc such that if ρ > ρc, the average number E[Nxy
ρ ] of discoveries abruptly

decreases to 0 and if ρ < ρc the average number of discoveries abruptly increases to

p. Motivated by this, we define the critical threshold ρc as the threshold that satisfies

the equation ∂E[Nxy
ρ ]/∂ρ = −p. Using (4.39), the value of the critical threshold can

be approximated as:

ρc =
√

1− (anp)−2/(n−4). (4.80)

Note that the expression given in (4.80) bears resemblance to the expression (3.14) in

(Hero and Rajaratnam, 2011). Expression (4.80) is useful in choosing the screening

threshold ρ. Selecting ρ slightly greater than ρc will prevent the bipartite graph

Gρ(Φxy) from having an overwhelming number of edges.
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4.3.3 High dimensional convergence rates for support recovery

In this section we give theoretical upper bounds on the Family-Wise Error Rate

(FWER) when performing variable selection in SPARCS screening stage.

Theorems IV.8 and IV.11 give upper bounds on the probability of selection error

for the SPARCS screening stage by thresholding the vector Rxy (i.e. using SIS), or

the vector Bxy (i.e. using PCS), respectively.

Theorem IV.8. Under Assumptions IV.1 and IV.2, if n ≥ Θ(log p) then for any

l ≥ k, SIS recovers the support π0, with probability at least 1− 1/p, i.e.

P (π0 ⊆ S) ≥ 1− 1/p. (4.81)

Proof. Since P (π0 ⊆ S) increases as the size of the recovered set S increases, it suf-

fices to prove the theorem for l = k. Define an auxiliary random variable Xax such

that Cor(Y,Xax) =
(
maxj∈{1,··· ,p}\π0 |ρyj|+ mini∈π0 |ρyi|

)
/2. Note that by Assump-

tion IV.2 maxj∈{1,··· ,p}\π0 |ρyj| < Cor(Y,Xax) < mini∈π0 |ρyi|. For l = k we have:

P (π0 * S) = P (π0 6= S) =

≤ P

⋃
i∈π0

{|ryi| < |SampCor(Y,Xax)|}
⋃

j∈{1,...,p}\π0

{|ryj| > |SampCor(Y,Xax)|}


≤

∑
i∈π0

P (|ryi| < |SampCor(Y,Xax)|) +
∑

j∈{1,...,p}\π0

P (|ryj| > |SampCor(Y,Xax)|) .(4.82)

Now since Assumptions IV.1 and IV.2 are satisfied, by Lemma IV.9 there exist con-

stants Ci > 0, 1 ≤ i ≤ p and a constant N such that

P (π0 6= S) ≤
∑
i∈π0

exp(−Cin) +
∑

j∈{1,...,p}\π0

exp(−Cjn)

≤ p exp(−Cminn), ∀n > N, (4.83)
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in which Cmin = min1≤i≤pCi = ρmin/6. Hence by letting C = 2/Cmin = 12/ρmin and

n = C log p we have:

P (π0 6= S) ≤ 1

p
, (4.84)

and

P (π0 = S) = 1− P (π0 6= S) ≥ 1− 1

p
, (4.85)

which completes the proof.

The following lemma was used in the proof of Theorem IV.8.

Lemma IV.9. Assume Z1, Z2 and Z are jointly elliptically contoured distributed

random variables from which n joint observations are available. Let ρ1 = Cor(Z,Z1)

and ρ2 = Cor(Z,Z2). Also let r1 = SampCor(Z,Z1) and r2 = SampCor(Z,Z2), be the

corresponding sample correlation coefficients. Assume that |ρ1| > |ρ2|. Then, there

exists C > 0 and N such that:

P {|r2| > |r1|} ≤ exp(−Cn), (4.86)

for all n > N .

Proof. Let Z = [Z2, Z1, Z]T . Assume Z follows an elliptically contoured density

function of the form fZ(z) = |Σz|−1/2g
(
(z− µz)

TΣz
−1(z− µz)

)
. Without loss of

generality assume Var(Z1) = Var(Z2) = Var(Z) = 1. Using a Cholesky factorization

we can represent Z1, Z2 and Z as linear combination of uncorrelated random variables

W1,W2 and W which follow a spherically contoured distribution:

106




Z2

Z1

Z

 =


1 0 0

a b 0

c d e

×

W2

W1

W

 (4.87)

where

ρ1 = ac+ bd, (4.88)

ρ2 = c, (4.89)

a2 + b2 = 1, (4.90)

and

c2 + d2 + e2 = 1. (4.91)

Let W = [W2,W1,W ]T . Assume W follows a spherically contoured density function

of the form fW(w) = |Σw|−1/2h
(
(w − µw)TΣw

−1(w − µw)
)
. Since W follows a

spherically contoured distribution, it has a stochastic representation of the form W =

RU, where R has a marginal density fR(r) = αh(r2)r2, in which α is a normalizing

constant. Moreover U is independent of R and the distribution of U does not depend

on the function h (see, e.g., Chapter 2 in (Anderson, 2003) for more details about

such stochastic representation). Therefore for the U-score analysis, without loss of

generality, we can assume that W follows a multivariate normal distribution. Now

let Uz
1,U

z
2 and Uz denote the U-scores corresponding to Z1, Z2 and Z, respectively.

Similarly, let Uw
1 ,U

w
2 and Uw denote the U-scores corresponding to W1,W2 and W ,
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respectively. Using (4.87) we have the following relations:

Uz
2 = Uw

2 ,

Uz
1 = (aUw

2 + bUw
1 )/‖aUw

2 + bUw
1 ‖2,

Uz = (cUw
2 + dUw

1 + eUw)/‖cUw
2 + dUw

1 + eUw‖2. (4.92)

(4.93)

Hence

r1 = (Uz)TUz
1

=
ac+ bd+ bc(Uw

2 )TUw
1 + ad(Uw

1 )TUw
2 + ae(Uw)TUw

2 + be(Uw)TUw
1

‖cUw
2 + dUw

1 + eUw‖2‖aUw
2 + bUw

1 ‖2

,(4.94)

and

r2 = (Uz)TUz
2 =

c+ d(Uw
1 )TUw

2 + e(Uw)TUw
2

‖cUw
2 + dUw

1 + eUw‖2

. (4.95)

Now let E = {|r2| > |r1|}. We have:

E =
{
|UTU2| > |UTU1|

}
={

‖aUw
2 + bUw

1 ‖2

∣∣c+ d(Uw
1 )TUw

2 + e(Uw)TUw
2

∣∣
>
∣∣ac+ bd+ bc(Uw

2 )TUw
1 + ad(Uw

1 )TUw
2 + ae(Uw)TUw

2 + be(Uw)TUw
1

∣∣ } .(4.96)

Since

‖aUw
2 + bUw

1 ‖2 =
√

(aUw
2 + bUw

1 )T (aUw
2 + bUw

1 ) =
√
a2 + b2 + 2ab(Uw

2 )TUw
1

=
√

1 + 2ab(Uw
2 )TUw

1 ≤ 1 + 2|ab|.|(Uw
2 )TUw

1 |, (4.97)
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and, by using triangle inequality, we have

E ⊆
{

2|abc|.|(Uw
2 )TUw

1 |2 + 2|e|.|(Uw)TUw
2 |.|(Uw

2 )TUw
1 |+ |ad+ bc|.|(Uw

2 )TUw
1 |+

|ae|.|(Uw)TUw
1 |+ |be|.|(Uw)TUw

1 | > |ac+ bd| − |c| } ⊆

{2|abc|.|(Uw
2 )TUw

1 |2 > |ac+ bd| − |c|} ∪ {2|e|.|(Uw)TUw
2 |.|(Uw

2 )TUw
1 | > |ac+ bd| − |c|}

∪{|ad+ bc|.|(Uw
2 )TUw

1 | > |ac+ bd| − |c|} ∪

{|ae|.|(Uw)TUw
1 | > |ac+ bd| − |c|} ∪ {|be|.|(Uw)TUw

1 | > |ac+ bd| − |c|} ⊆

{|(Uw
2 )TUw

1 | > (|ac+ bd| − |c|)/2|abc|} ∪ {|(Uw
2 )TUw

1 | > (|ac+ bd| − |c|)/2|e|} ∪

{|(Uw
2 )TUw

1 | > (|ac+ bd| − |c|)/|ad+ bc|} ∪

{|(Uw)TUw
1 | > (|ac+ bd| − |c|)/|ae|} ∪ {|(Uw)TUw

1 | > (|ac+ bd| − |c|)/|be|}. (4.98)

Note that by assumption |ac+ bd| = |ρ1| > |ρ2| = |c|. Now by Lemma IV.10 we get

P(E) ≤ 5 exp(−αn), (4.99)

with

α =
|ac+ bd| − |c|

max {2|abc|, 2|e|, |ad+ bc|, |ae|, |be|}
≥ ρ1 − ρ2

2
, (4.100)

where the last inequality is obtained via equations (4.88)-(4.91). Letting C = (ρ1 −

ρ2)/3 and N = 12/(ρ1 − ρ2) we have

P(E) = P{|r2| > |r1|} ≤ exp(−Cn), (4.101)

for n > N .

The following lemma was used in the proof of Lemma IV.9.

Lemma IV.10. Let U and V be two independent uniformly distributed random vec-
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tors on Sn−2. For any fixed ε > 0, there exists C > 0 such that:

P{|UTV| > ε} ≤ exp(−Cn). (4.102)

Proof. Without loss of generality assume U = [1, 0, . . . , 0]T . We have

{|UT
2 U1| > ε} = {|v1| > ε}, (4.103)

in which v1 is the first entry of the vector V. Using the formula for the area of

spherical cap (Li, 2011) we obtain

P{|UT
2 U1| > ε} = Iλ(n/2, 1/2), (4.104)

where λ = 1− ε2, and

Ix(a, b) =

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

(4.105)

is the regularized incomplete beta function. Note that:

1/Iλ(n/2, 1/2) =

∫ λ
0
t(n−2)/2/

√
1− tdt+

∫ 1

λ
t(n−2)/2/

√
1− tdt∫ λ

0
t(n−2)/2/

√
1− tdt

=

1 +

∫ 1

λ
t(n−2)/2/

√
1− tdt∫ λ

0
t(n−2)/2/

√
1− tdt

≥ 1 +

∫ 1

λ
t(n−2)/2/

√
1− λdt∫ λ

0
t(n−2)/2/

√
1− λdt

=

1 +
1− λn/2

λn/2
= (
√
λ)n. (4.106)

Therefore by letting C = −1
2

log(λ) = −1
2

log(1− ε2) we obtain

P{|UT
2 U1| > ε} ≤ exp(−Cn). (4.107)
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Theorem IV.11. Under Assumptions IV.1-IV.3, if n ≥ Θ(log p) then for any l ≥ k,

PCS recovers the support π0, with probability at least 1− 1/p, i.e.

P (π0 ⊆ S) ≥ 1− 1/p. (4.108)

Proof. By Assumption IV.3 we have

Ux(Ux)T =
p

n− 1
(In−1 + o(1)) . (4.109)

Therefore:

(
Ux(Ux)T

)−1
=
n− 1

p
(In−1 + o(1)) . (4.110)

Since columns of Ux have unit norm we obtain:

(Ux(Ux)T )−1Ux =
n− 1

p
Ux(1 + o(1)), (4.111)

and

(Ux)T (Ux(Ux)T )−2Ux = (
n− 1

p
)2(Ux)TUx(1 + o(1)). (4.112)

This yields

D(Ux)T (Ux(Ux)T )−2Ux = (
n− 1

p
)2Ip(1 + o(1)), (4.113)

which implies

Ũx = (Ux(Ux)T )−1UxD
− 1

2

(Ux)T (Ux(Ux)T )−2Ux = Ux(1 + o(1)). (4.114)

Therefore screening the entries of Bxy or Hxy is asymptotically equivalent to select-
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ing the support via thresholding the entries of (Ux)TUy, i.e., the sample correlation

coefficients. Therefore the proof follows from Theorem IV.8.

The constant in Θ(log p) of Theorem IV.8 and Theorem IV.11 is increasing in

ρmin. It is shown in the proof of the theorems that 12/ρmin is an upper bound for the

constant in Θ(log p). Note that these theorems on support recovery allow all types of

non-zero correlations (i.e., correlations between active variables, correlations between

inactive variables, and correlations between active and inactive variables) as long as

the corresponding assumptions are satisfied.

Theorems IV.8 and IV.11 can be compared to Thm. 2 in (Obozinski et al., 2011)

and Thm. 1 in (Fan and Lv, 2008) for recovering the support set π0. More specifically,

Thm. 2 in (Obozinski et al., 2011) asserts a similar result as in Theorem IV.8 and

Theorem IV.11 for support recovery via minimizing a LASSO-type objective function.

Also Thm. 1 in (Fan and Lv, 2008) asserts that if n = Θ((log p)α) for some α >

1, SIS recovers the true support with probability no less than 1 − 1/p. Note also

that Theorem IV.8 and Theorem IV.11 state stronger results than the similar results

proven in (Fan and Lv, 2008) and in (Obozinski et al., 2011), respectively, in the sense

that the support recovery guarantees presented in (Fan and Lv, 2008; Obozinski et al.,

2011) are proven for the class of multivariate Gaussian distributions whereas Theorem

IV.8 and Theorem IV.11 consider the larger class of multivariate elliptically contoured

distributions.

4.3.4 High dimensional convergence rates for prediction

The following theorem states the optimal sample allocation rule for the two-stage

SPARCS predictor, in order to minimize the expected MSE as t→∞.

Theorem IV.12. The optimal sample allocation rule for the SPARCS online proce-
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dure introduced in Sec. 4.2 under the cost condition (4.1) is

n =

 O(log t), c(p− k) log t+ kt ≤ µ

0, o.w.
(4.115)

where c is a positive constant that is independent of p.

Proof. First we consider a two-stage predictor similar to the one introduced in Sec.

4.2 with the difference that the n samples which are used in stage 1 are not used in

stage 2. Therefore, there are n and t − n samples used in the first and the second

stages, respectively. We represent this two-stage predictor by n|(t − n). Similarly,

n|t denotes the SPARCS algorithm which uses n samples at the first stage and all of

the t samples at the second stage. The asymptotic results for the n|(t− n) two-stage

predictor will be shown to hold as well for the n|t two-stage predictor.

Using inequalities of the form (5.24) and the union bound, it is straightforward

to see that for any subset π 6= π0 of k elements of {1, · · · , p}, the probability that π

is the outcome of variable selection via SPARCS, is bounded above by pcnπ, in which

0 < cπ < 1 is a constant that is bounded above by exp(−Cmin). The expected MSE

of the n|(t− n) algorithm can be written as:

E[MSE] =
∑

π∈Spk ,π 6=π0

P(π)E[MSEπ] + P(π0)E[MSEπ0 ], (4.116)

where Spk is the set of all k-subsets of {1, · · · , p}, P(π) is the probability that the

outcome of variable selection via SPARCS is the subset π, and MSEπ is the MSE of

OLS stage when the indices of the selected variables are the elements of π. Therefore

the expected MSE is upper bounded as below:

E[MSE] ≤ (1− pcn0 )E[MSEπ] + p
∑

π∈Spk ,π 6=π0

cnπE[MSEπ], (4.117)
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where c0 is a constant which is upper bounded by exp(−Cmin). It can be shown that if

there is at least one wrong variable selected (π 6= π0), the OLS estimator is biased and

the expected MSE converges to a positive constant Mπ as (t−n)→∞. When all the

variables are selected correctly (subset π0), MSE goes to zero with rate O(1/(t−n)).

Hence:

E[MSE] ≤ (1− pcn0 )O(1/(t− n)) + p
∑

π∈Spk ,π 6=π0

cnπMπ

≤ (1− pcn0 )C2/(t− n) + pk+1C1C
n, (4.118)

where C,C1 and C2 are constants that do not depend on n or p but depend on the

quantities
∑

j∈π0 a
2
j and minj∈π0 |aj|/

∑
l∈π0 |al|. Note that C = maxπ∈Spk ,π 6=π0 cπ ≤

exp(−Cmin). This quantity is an increasing function ρmin.

On the other hand since at most t variables could be used in OLS stage, the

expected MSE is lower bounded:

E[MSE] ≥ Θ(1/t). (4.119)

It can be seen that the minimum of (4.118) as a function of n, subject to the con-

straint (4.1), happens for n = O(log t) if c log t ≤ µ−tk
p−k with c = −1/ logC (therefore,

similar to C, c is increasing in ρmin); otherwise it happens for 0. If Θ(log t) ≤ µ−tk
p−k , the

minimum value attained by the upper bound (4.118) is Θ(1/t) which is as low as the

lower bound (4.119). This shows that for large t, the optimal number of samples that

should be assigned to the SPARCS stage of the n|(t − n) predictor is n = O(log t).

As t → ∞, since n = O(log t), the MSE of the n|t predictor proposed in Sec. 4.2

converges to the MSE of the n|(t− n) predictor. Therefore, as t → ∞, n = O(log t)

becomes optimal for the n|t predictor as well.

The constant c above is an increasing function of the quantity ρmin defined in
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(4.25). Theorem IV.12 implies that for a generous budget (µ large) the optimal first

stage sampling allocation is O(log t). However, when the budget is tight it is better

to skip stage 1 (n = 0). Figure 4.3 illustrates the allocation region (for c = 1) as a

function of the sparsity coefficient ρ = 1−k/p. Note that Theorem IV.12 is generally

true for any two-stage predictor which at the first stage, uses a support recovery

method that satisfies the performance bound proposed by Theorem IV.8 or Theorem

IV.11, and at the second stage uses OLS.

Figure 4.3: (Left) surface µ/p = cρ log t + (1 − ρ)t, for c = 1. (Right) contours
indicating optimal allocation regions for µ/p = 30 and µ/p = 60 (ρ =
1 − k/p). As the coefficient c increases, the surface cρ log t + (1 − ρ)t
moves upward and the regions corresponding to n = O(log t) and n = 0,
become smaller and larger, respectively.

4.4 Numerical comparisons

We now present experimental results which demonstrate the performance of SPARCS

when applied to both synthetic and real world data. Throughout this section we refer

to the SPARCS predictors which use SIS or PCS at the first stage as SIS-SPARCS

or PCS-SPARCS, respectively.

a) Efficiency of SPARCS screening stage. We illustrate the performance of the

SPARCS screening stage (i.e., the first stage of the SPARCS predictor) using SIS or

PCS and compare to LASSO (Tibshirani, 1996; Genovese et al., 2012).
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In the first set of simulations we generated an n×p data matrix X with independent

rows, each of which is drawn from a p-dimensional multivariate normal distribution

with mean 0 and block-sparse covariance matrix satisfying (4.27). The p×1 coefficient

vector a is then generated such that exactly 100 entries of a ∈ Rp are active. Each

active entry of a is an independent draw from N (0, 1) distribution, and each inactive

entry of a is zero. Finally, a synthetic response vector Y is generated by a simple

linear model

Y = Xa + N, (4.120)

where N is n× 1 noise vector whose entries are i.i.d. N (0, 0.05). The importance of

a variable is measured by the magnitude of the corresponding entry of a.

We implemented LASSO on the above data set using an active set type algorithm -

asserted to be one the fastest methods for solving LASSO (Kim and Park, 2010). In all

of our implementations of LASSO, the regularization parameter is tuned to minimize

prediction MSE using 2-fold cross validation. To illustrate SPARCS screening stage

for a truly high dimensional example, we set p = 10000 and compared SIS and PCS

methods with LASSO, for a small number of samples. Figure 4.4 shows the results of

this simulation over an average of 400 independent experiments for each value of n.

As we see for small number of samples, PCS and SIS methods perform significantly

better in selecting the important predictor variables. Moreover, the advantage of the

extra pseudo-inverse factor used for variable selection in PCS as compared to SIS is

evident in Fig. 4.4.

b) Efficiency of the SPARCS predictor. To test the efficiency of the proposed

SPARCS predictor, a total of t samples are generated using the linear model (4.120)

from which n = 25 log t are used for the task of variable selection at the first stage.

All t samples are then used to compute the OLS estimator restricted to the selected
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Figure 4.4: Average number of mis-selected variables. Active set implementation of
LASSO (red-dashed) vs. SIS (green-dashed) vs. PCS (solid), p = 10000.
The data is generated via model (4.120). The regularization parameter
of LASSO is set using 2-fold cross validation. It is evident that PCS has
a lower miss-selection error compared to SIS and LASSO.

variables. We chose t such that n = (130 : 10 : 200). The performance is evaluated

by the empirical Root Mean Squared Error

RMSE =

√√√√ m∑
i=1

(yi − ŷi)2/m, (4.121)

where m is the number of simulation trials. Similar to the previous experiment,

exactly 100 entries of a are active and the predictor variables follow a multivariate

normal distribution with mean 0 and block-sparse covariance matrix. Figure 4.5

shows the result of this simulation for p = 10000, in terms of performance (left)

and running time (right). Each point on these plots is an average of 1000 indepen-

dent experiments. Observe that in this low sample regime, when LASSO or SIS are

used instead of PCS in the first stage, the performance suffers. More specifically

we observe that the RMSE of the PCS-SPARCS predictor is uniformly lower than
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n 130 140 150 160 170 180 190 200

PCS-SPARCS vs. SIS-SPARCS 7.7× 10−3 6.7× 10−09 3.2× 10−11 2.4× 10−22 7.8× 10−29 8.1× 10−36 9.2× 10−42 5.3× 10−46

PCS-SPARCS vs. LASSO 3.1× 10−4 8.0× 10−10 7.2× 10−14 3.0× 10−25 1.8× 10−30 5.6× 10−39 1.1× 10−42 6.5× 10−48

Table 4.1: p-values of the one-sided paired t-test for testing the null hypothesis H0: PCS-
SPARCS and SIS-SPARCS (LASSO) have the same average prediction RMSE
in the experiment corresponding to Fig 4.5. Small p-values suggest that PCS-
SPARCS significantly outperforms the others.

the SIS-SPARCS predictor or the two-stage predictor that uses LASSO in the first

stage. Table 4.1 shows the p-values of the one-sided paired t-tests performed for each

value of n, testing the null hypothesis H0: RMSE for PCS-SPARCS and SIS-SPARCS

(LASSO) have the same average in the experiment corresponding to Fig. 4.5. Small

p-values confirm that the null hypothesis is rejected.

Figure 4.5: (Left) Prediction RMSE for the two-stage predictor when n = 25 log t
samples are used for screening at the first stage and all t samples are used
for computing the OLS estimator coefficients at the second stage. The
solid plot shows the RMSE for PCS-SPARCS while the green and red
dashed plots show the RMSE for SIS-SPARCS and LASSO, respectively.
Here, p = 10000. The Oracle OLS (not shown), which is the OLS predic-
tor constructed on the true support set, has average RMSE performance
that is a factor of 2 lower than the curves shown in the figure. This is due
to the relatively small sample size available to these algorithms. (Right)
Average running time as a function of n for the experiment of the plot
on the left. It is evident that due to lower computational complexity,
SIS-SPARCS and PCS-SPARCS run an order of magnitude faster than
LASSO.

To further indicate the advantage of the PCS-SPARCS predictor compared to the

SIS-SPARCS predictor, we performed simulations in which the number of samples
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used at the first stage, n = 500, and the number of samples used at the second stage,

t = 2000, are fixed while the number of variables p increases from p = 1000 to p =

100000. Moreover, exactly 100 entries of the coefficient vector a are active. Similar

to the previous experiments, samples are generated using the linear model (4.120).

However, in order to generate a data set with high multicollinearity, a situation that

is likely to happen in high dimensional data sets (see (Rajaratnam et al., 2014) and

the references therein), here the inactive variables are consecutive samples of an Auto-

Regressive (AR) process of the form:

W (1) = ε(1),

W (i) = φW (i− 1) + ε(i), i = 2, . . . , p− 100, (4.122)

in which ε(i)’s are independent draws of N (0, 1). The result of this experiment for

φ = 0.99 is shown in Fig. 4.6 (Left). The average RMSE values are computed

using 1000 independent experiments. The advantage of using PCS-SPARCS over

SIS-SPARCS is evident in Fig. 4.6 (Left). Note that as the number of variables p

becomes significantly larger than the number of samples n, the performance of both

of the predictors converge to the performance of a random selection and estimation

scheme in which variables are selected at random in the first stage.

Furthermore, to analyze the performance of PCS-SPARCS and SIS-SPARCS for

different levels of multicollinearity in the data, we performed similar experiments for

p = [1000, 5000, 10000] as the value of φ increases from 0.9 to 0.999. Figure 4.6

(Right) shows the result of this simulation. Each point on these plots is the average

of 500 independent experiments. It is evident that similar to the previous experiment,

the PCS-SPARCS predictor outperforms the SIS-SPARCS predictor. An interesting

observation in Fig 4.6 (Right) is that as the multicollinearity coefficient − log10(1−φ)

increases the performance of the PCS-SPARCS predictor improves.
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Figure 4.6: (Left) Prediction RMSE for the two-stage predictor when n = 500 sam-
ples are used at the first stage, and a total of t = 2000 samples are used
at the second stage. The number of variables varies from p = 1000 to
p = 100000. In this experiment, inactive variables are generated via real-
izations of an Auto-Regressive process of the form (4.122) with φ = 0.99
(− log10(1 − φ) = 2). The solid and dashed plots show the RMSE for
PCS-SPARCS and SIS-SPARCS, respectively. The plots show the ad-
vantage of using PCS instead of SIS at the SPARCS screening stage.
(Right) Prediction RMSE as function of the multicollinearity coefficient
− log10(1− φ) for p = [1000, 5000, 10000]. For both PCS-SPARCS (solid)
and SIS-SPARCS (dashed) predictors, the plots with square, triangle and
circle markers correspond to p = 10000, p = 5000 and p = 1000, re-
spectively. These plots show that the PCS-SPARCS predictor uniformly
outperforms the SIS-SPARCS predictor. Observe also that as the mul-
ticollinearity coefficient − log10(1 − φ) increases the performance of the
PCS-SPARCS predictor improves.

c) Estimation of FWER using Monte Carlo simulation. We set p = 1000, k = 10

and n = (100 : 100 : 1000) and using Monte Carlo simulation, we computed the

probability of support recovery error for the PCS method. In order to prevent the

coefficients aj, j ∈ π0 from getting close to zero, the active coefficients were generated

via a Bernoulli-Gaussian distribution of the form:

a ∼ 0.5N (1, σ2) + 0.5N (−1, σ2), (4.123)

Figure 4.7 shows the estimated probabilities. Each point of the plot is an average

of N = 104 experiments. As the value of σ decreases the quantity ρmin defined in
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(4.25) is bounded away from 0 with high probability and the probability of selection

error degrades. As we can see, the FWER decreases at least exponentially with the

number of samples. This behavior is consistent with the result of Theorem IV.11.

Figure 4.7: Probability of selection error as a function of number of samples for PCS.
Probability of selection error is calculated as the ratio of the number of
experiments in which the exact support is not recovered over the total
number of experiments. The entries of the coefficient matrix are i.i.d.
draws from distribution (4.123). Observe that the probability of selection
error decreases at least exponentially with the number of samples. This
behavior is consistent with Theorem IV.11.

d) Application to experimental data. We illustrate the proposed SPARCS predictor

on the Predictive Health and Disease data set, which consists of gene expression levels

and symptom scores of 38 different subjects. The data was collected during a challenge

study for which some subjects become symptomatically ill with the H3N2 flu virus

(Huang et al., 2011). For each subject, the gene expression levels (for p = 12023 genes)

and the clinical symptoms have been recorded at a large number of time points that

include pre-inoculation and post-inoculation sample times. Ten different symptom

scores were measured. Each symptom score takes an integer value from 0 to 4, which

measures the severity of that symptom at the corresponding time. The goal here is to
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learn a predictor that can accurately predict the future symptom scores of a subject

based on her last measured gene expression levels.

We considered each symptom as a scalar response variable and applied the SPARCS

predictor to each symptom separately. In order to do the prediction task, the data

used for the SPARCS predictor consists of the samples of the symptom scores for

various subjects at 4 specified time points (t1, t2, t3, t4) and their corresponding gene

expression levels measured at the previous time points (t1 − 1, t2 − 1, t3 − 1, t4 − 1).

The number of predictor variables (genes) selected in the first stage is restricted to

100. Since, the symptom scores take integer values, the second stage uses multinomial

logistic regression instead of the OLS predictor. Maximum likelihood estimation is

used for computing the multinomial logistic regression coefficients (Albert and Ander-

son, 1984). The performance is evaluated by leave-one-out cross validation. To do

this, the data from all except one subject are used as training samples and the data

from the remaining subject are used as the test samples. The final RMSE is then

computed as the average over the 38 different leave-one-out cross validation trials. In

each of the experiments 18 out of the 37 subjects of the training set, are used in first

stage and all of the 37 subjects are used in the second stage. It is notable that PCS-

SPARCS performs better in predicting the symptom scores for 7 of the 10 symptoms

whereas SIS-SPARCS and LASSO perform better in predicting the symptom scores

for 2 symptoms and 1 symptom, respectively.

Simulations for the case of multidimensional response. The generalization

of PCS to the case where the response Y is a q-dimensional vector is presented in

the Appendix A. Below we briefly present the simulations that was perfomed for the

case of q > 1.

We set the number of regressor and response variables to p = 200 and q = 20,

respectively, while the number of samples n was varied from 4 to 50. The training

data is generated from the multidimensional version of the model (4.120). Figure 4.8
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Symptom RMSE: LASSO RMSE: SIS-SPARCS RMSE: PCS-SPARCS
Runny Nose 0.7182 0.6896 0.6559
Stuffy Nose 0.9242 0.7787 0.8383
Sneezing 0.7453 0.6201 0.6037
Sore Throat 0.8235 0.7202 0.5965
Earache 0.2896 0.3226 0.3226
Malaise 1.0009 0.7566 0.9125
Cough 0.5879 0.7505 0.5564
Shortness of Breath 0.4361 0.5206 0.4022
Headache 0.7896 0.7500 0.6671
Myalgia 0.6372 0.5539 0.4610
Average for all symptoms 0.6953 0.6463 0.6016

Table 4.2: RMSE of the two-stage LASSO predictor, the SIS-SPARCS predictor and
the PCS-SPARCS predictor used for symptom score prediction. The data
come from a challenge study experiment that collected gene expression and
symptom data from human subjects (Huang et al., 2011). Leave-one-out
cross validation is used to compute the RMSE values.

shows the average number of mis-selected variables for both methods, as a function

of n. The plot is computed by averaging the results of 400 independent experiments

for each value of n. Figure 4.9 shows the average run time on a logarithmic scale,

as a function of n (MATLAB version 7.14 running on 2.80GHz CPU). As we see, for

low number of samples, PCS has better performance than LASSO and is significantly

faster.

4.5 Conclusion

We proposed an online procedure for budget-limited predictor design in high di-

mension called two-stage Sampling, Prediction and Adaptive Regression via Correla-

tion Screening (SPARCS). SPARCS is specifically useful in cases where n� p and the

high cost of assaying all predictor variables justifies a two-stage design: high through-

put variable selection followed by predictor construction using fewer selected variables.

We also proposed theories for high dimensional false discovery rates, support recov-

ery guarantees, and optimal stage-wise sample allocation rule associated with the

SPARCS online procedure. Simulation and experimental results showed advantages
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Figure 4.8: Average number of mis-selected variables for active set implementation
of LASSO (dashed) vs. Predictive Correlation Screening (solid), p =
200, q = 20.

Figure 4.9: Average CPU time for active set implementation of LASSO (dashed) vs.
PCS (solid), p = 200, q = 20.
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of SPARCS as compared to LASSO. Our future work includes using SPARCS in a

multi-stage framework. We believe that multi-stage SPARCS can further improve the

performance of the algorithm while benefiting from high computational efficiency.
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CHAPTER V

Covariance and inverse covariance support

recovery via correlation and partial correlation

thresholding

5.1 Introduction

In this chapter we consider the problem of (inverse) covariance support recovery

using (partial) correlation screening. More specifically, we propose a simple adaptive

thresholding method for discovering the structure of covariance matrix or its inverse

in a high dimensional regime for which n� p. As in previous chapters, the proposed

method is based on thresholding the magnitudes of the entries of the sample corre-

lation or sample partial correlation matrix. We prove theoretical guarantees, similar

to those presented in Chapter IV, for support recovery of the proposed method. The

results in this chapter can be viewed as the generalization of the results in chapter IV

in the context of covariance support recovery instead of variable selection for online

regression.

Discovery of the structure of a high-dimensional covariance matrix or its inverse

(also referred to as (inverse) covariance support recovery) is an attractive problem

which is useful in various contexts. In the context of covariance estimation, discov-

ering the structure of the covariance matrix or the inverse covariance matrix can be
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the first stage of a two-stage esimator of the covriance matrix or its inverse. The

second stage of such two-stage procedure is to estimate the non-zero entries of the

(inverse) covariance matrix given the support recovered at the first stage. The ex-

isting methods on estimation of covariance matrices with pre-specified zeros can be

used in the second stage of such two-stage procedure. Example of such methods

are constrained maximum likelihood estimation via iterative conditional threshoding

(Chaudhuri et al., 2007), maximization of a penalized likelihood with a modified `1

penalty (Bien and Tibshirani, 2011), and partial estimation of a covariance matrix

with given structure (Levina and Vershynin, 2012).

In the context of graphical models, inverse covariance support recovery can be used

to tackle the problem of learning the structure of graphical models. It is well known

that the zeros in the inverse covariance matrix of multivariate normal distribution

imply the absence of an edge in the corresponding graphical model (Bishop et al.,

2006). Discovering such structure is of interest in many applications such as social

networks, epidemiology, and finance. In social networks, discovering the structure

of the underlying graphical model can identify the friendship links between people

in the network (Sadilek et al., 2012). In epidemiology the structure of the graphical

model may represent the links between organisms having the potential to spread an

infectious disease (Newman and Watts, 1999). In finance, a graphical model can be

associated with the causal relationships between assets in a market. Discovering the

structure of such network can be of use in identification of vulnerable assets for the

purpose of risk and portfolio management (Filiz et al., 2012).

In high-dimensional regimes where the number of samples n is relatively small

compared to the number of variables p, the sample covariance matrix performs poorly

in estimating the population covariance matrix (Bickel and Levina, 2008). In this

chapter we show that despite the poor estimation, thresholding the sample (partial)

correlation coefficients can perform well in discovering the true sparsity structure of
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the population (inverse) covariance matrix. To do this we generalize the support

recovery results presented in Chapter IV for the problem of covariance structure

discovery. More specifically, we show that in a purely high-dimensional regime where

n is fixed and p goes to infinity, under certain conditions, the total number of edges

in a (partial) correlation network converges to a Poisson random variable. Using

the proposed Poisson asymptotic result we introduce an algorithm for discovering

the edges of a (partial) correlation network at a specified false discovery rate. We

show that, under the assumption of elliptically contoured distribution, such structure

recovery method only requires n = Θ(log p) samples to recover the true structure

with probability converging to one.

Thresholding based methods for (inverse) covariance regularization can be divided

into two general categories, i.e., universal thresholding methods and adaptive thresh-

olding methods. Universal thresholding methods (see, e.g., (Bickel and Levina, 2008;

Karoui, 2008; Rothman et al., 2009)) perform thresholding by applying a fixed thresh-

old to all entries of an estimate of the (inverse) covariance matrix (often the sample

covariance matrix). In contrast, adaptive thresholding methods (see, e.g., (Cai and

Liu, 2011)) apply different thresholds to the entries of the sample covariance ma-

trix. The methods provided in this chapter can be considered as adaptive methods

for solving the (inverse) covariance support recovery problem since they apply a fixed

threshold to the entries of the sample (partial) correlation matrix (i.e., in general they

apply different thresholds to the entries of the sample (inverse) covariance matrix).

The rest of this chapter is organized as follows. In Sec. 5.2 we introduce the

necessary notation and definitions. Section 5.3 presents the asymptotic theory for

the number of edges in a (partial) correlation network along with the algorithms for

support recovery. In Sec. 5.4 we present our support recovery guarantees for the

proposed algorithm.
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5.2 Notations and Definitions

Assume X = [X1, . . . , Xp] and is a random vector, from which n observations are

available. We represent the n × p data matrix as X. Similar to previous chapters,

we assume that the vector X has an elliptically contoured density with mean µx

and non-singular p × p covariance matrix Σx, i.e. the probability density function

is of the form fX(x) = g
(
(x− µx)

TΣx
−1(x− µx)

)
, in which g is a non-negative

integrable function. The rest of the notation follows that introduced in Chapter II,

unless otherwise specified.

Moreover, we denote the true support of the covariance or the inverse covariance

with Ψ, i.e., for the covariance support recovery problem:

Ψ = {(i, j) : σij 6= 0}, (5.1)

where σij denotes the ijth entry of the covariance matrix Σx. Also for the inverse

covariance support recovery problem:

Ψ = {(i, j) : σij 6= 0}, (5.2)

where σij denotes the ijth entry of the inverse covariance matrix Σ−1
x . We denote

size of the set Ψ as k.

5.3 Support recovery using (partial) correlation thresholding

In this section we introduce our algorithm for support recovery. We also present an

asymptotic Poisson approximation for the number of edges in a (partial) correlation

graph. The asymptotic theory is then used to assign p-values to the edges of a

(partial) correlation network. As a result, we present a version of our support recovery

algorithm that recovers the support at a given statistical significance level.
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5.3.1 Main idea

Below we describe the simple idea of (inverse) covariance support recovery using

(partial) correlation thresholding. Similar to previous chapters let Φ = [φij]1≤i,j≤p be

a generic notation for sample correlation matrix R or its inverse P. For a (partial)

correlation threshold 0 ≤ ρ ≤ 1 we define the recovered support at the threshold ρ by

S = {(i, j) : |φij| ≥ ρ} (5.3)

This algorithm is summarized in Algorithm 2. We show that this simple algorithm

has the sure screening property that the true support is a subset of S with probability

tending to one.

Algorithm 2: Support recovery via thresholding sample (partial) correlation coefficients

• S = {(i, i) : 1 ≤ i ≤ p};
• Let L = the desired number of upper diagonal entries ;
• for l = 1 to L do

Let (i, j) = arg max(k,m)∈{(v,w):1≤v<w≤p}\S |φkm|;
S ← S ∪ {(i, j), (j, i)};

• Return S;

In the next sub-section we present asymptotic results which allow assigning p-

values to the entries of the covariance matrix for being an edge in the (partial) cor-

relation network. This results in a version of the simple algorithm discussed above

which recovers the support at a given statistical significance level.

5.3.2 Asymptotic theory

We define U = [U1, · · · ,Up] as the generic notation for the U -score representation

of matrix Φ, i.e.:

Φ = UTU. (5.4)
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Figure 5.1: (Partial) correlation graph Gρ(Φ) with p vertices v1, · · · , vp. For 1 ≤ i, j ≤
p, vi is connected to vj in Gρ(Φ) if |φij| ≥ ρ.

Similar to previous chapters, for ρ ∈ [0, 1], we define the (partial) correlation graph

(or network) Gρ(Φ) as follows. The vertices of Gρ(Φ) are v1, · · · , vp which correspond

to U1, · · · ,Up respectively. For 1 ≤ i, j ≤ p, vi and vj are connected in Gρ(Φ) if

the magnitude of the sample (partial) correlation coefficient between Xi and Xj is at

least ρ, i.e. |φij| = |UT
i Uj| ≥ ρ.

The following theorem bounds the total variation distance between the total num-

ber of edges in a (partial) correlation graph and a Poisson random variable with rate

Λp,n,ρ defined below:

Λp,n,ρ =
1

2
p(p− 1)P0J(fU•,U∗−•), (5.5)

in which

fU•,U∗−•(u,v) =
1

p

p∑
i=1

1

p− 1

∑
j 6=i

1

2

(
fUi,Uj

(u,v) + fUi,Uj
(u,−v)

)
, (5.6)

and the function J is defined in (2.8). Let Ne be the total number of edges in the

correlation network corresponding to data matrix X. Also let Po(Λp,n,ρ) denote a

Poisson random variable with rate Λp,n,ρ.

Theorem V.1. Let the n× p data matrix X have associated U-scores U and assume

that n > 2. Assume that the joint density of any subset of Ui’s is bounded and
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differentiable. Let the sequence {ρp}p of correlation thresholds be such that ρp → 1

and p(p− 1)
(
1− ρ2

p

)(n−2)/2 → en for some finite constant en. Then:

dTV (Ne, Po(Λp,n,ρ)) ≤ O
(
max

{
(dx/p)

2, ‖∆p,dx‖1, p
−1,
√

1− ρp
})
, (5.7)

where dx is an upper bound on the number of non-zero entries in any row of the

covariance matrix Σx.

Proof. In the proof of Proposition 1 of (Hero and Rajaratnam, 2012), the total varia-

tion distance between the quantity Ñρ,δ and the corresponding Poisson random vari-

able is bounded. For δ = 1, Ñρ,δ is equal to the number of edges Ne. Therefore, the

bound (5.7) follows directly.

Moreover, using similar arguments as in hub screening (Hero and Rajaratnam,

2012) it can be shown that if Σx is block sparse of degree dx, we have:

J(fU•,U∗−•) = 1 +O(dx/p) (5.8)

and

∆i,p,n,dx =

 0, Φ = R

O (dx/p)) , Φ = P.
(5.9)

Therefore:

Λp,n,ρ ≈
1

2
p(p− 1)P0. (5.10)

Theorem V.1 implies that, under appropriate assumptions,

P(Ne > 0)→ 1− exp(−Λp,n,ρ), (5.11)
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as p→∞, and ρ→ 1.

5.3.3 Assigning p-values to edges

Similar to the theory developed in previous chapters, the asymptotic relation

(5.11) allows us to assign approximate p-values to pairs (i, j), 1 ≤ i 6= j ≤ p, for

being an edge in the (partial) correlation graph, under the null hypothesis of sparse

(inverse) covariance matrix

pv(i, j) ≈ 1− exp
(
−Λp,n,|φij |

)
, (5.12)

in which φij is the sample (partial) correlation coefficient between Xi and Xj.

5.3.4 Structure discovery using p-value thresholding

Assume that we assign p-values to edges of the correlation graph using (5.12). In

order to discover the structure of covariance matrix, we threshold the the p-values at a

specified false discovery rate. Since Λp,n,ρ is a decreasing function of ρ, such structure

discovery algorithm is equivalent to thresholding the magnitudes of the entries of the

sample correlation matrix at a specified threshold. This algorithm is summarized in

Algorithm 3.

Algorithm 3: Support recovery via thresholding p-values

• S = {(i, i) : 1 ≤ i ≤ p};
• Let α = the desired significance level;
• for (i, j) ∈ {(v, w) : 1 ≤ v < w ≤ p} do

Let pv(i, j) = 1− exp
(
−Λp,n,|φij |

)
;

if pv(i, j) ≤ α then
S ← S ∪ {(i, j), (j, i)};

• Return S;

Algorithm 2 and Algorithm 3 can be considered as adaptive methods for regular-

izing the (inverse) covariance matrix. In Sec. 5.4 we present our results concerning
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the performance guarantees for such thresholding algorithms.

5.4 Performance guarantees

To establish the consistent support recovery property of the (partial) correlation

thresholding algorithm we impose similar assumptions to the ones stated in Chap-

ter IV for support recovery of the active variables in the SPARCS online regression

procedure.

Assumption V.2. The rows of the n × p data matrix X are i.i.d. realizations of a

p-dimensional vector X which follows a multivariate elliptically contoured distribution

with mean µx and p × p dispersion matrix Σx, i.e. the probability density function

(pdf) is of the form fX(x) = g
(
(x− µx)

TΣx
−1(x− µx)

)
, where g is a non-negative

function. Moreover, the density function fX(.) is bounded and differentiable.

Assumption V.3. Let Γ = [γij]1≤i,j≤p represent the true p× p correlation matrix of

X. The quantity

γmin = min
(i,j)∈Ψ

{|γij|}, (5.13)

is strictly positive and independent of p.

Assumption V.4. The (n− 1)× p matrix of U-scores satisfies:

n− 1

p
Ux(Ux)T = In−1 + o(1), as p→∞, (5.14)

where o(1) is a (n− 1)× (n− 1) matrix whose entries are o(1).

Assumption V.3 is similar to the assumption (14) in (Cai and Liu, 2011) on the

minimum value of the true correlation coefficients. Note that in (Cai and Liu, 2011)

equation (14) assumes a lower bound for the minimum true covariance. However,
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since the variables Yi introduced there are standardized, assumption (14) is indeed

a lower bound for the minimum true correlation coefficient. Assumption V.4 is a

common assumption used in the performance analysis of support recovery algorithms

that require some estimate of the inverse covariance matrix (cf. (Obozinski et al.,

2011; Fan and Lv, 2008)). Assumption V.4 can be compared to the conditions on the

sparsity-overlap function introduced in (Obozinski et al., 2011) and the concentration

property introduced in (Fan and Lv, 2008). In the context of inverse covariance esti-

mation, Assumption V.4 can be related to the common regularity assumptions on the

eigenspectrum of the true covariance matrix (cf. (Lam and Fan, 2009; Yuan, 2010)).

Note that Assumption V.4 is the same as Assumption IV.3 introduced in Chapter

IV. Lemma IV.4 specifies a class of correlation matrices for which Assumption V.4 is

satisfied.

The following two theorems give lower bounds on the probability of correct support

recovery using Algorithm 2.

Theorem V.5. Consider the covariance support recovery problem using Algorithm

2. Under Assumptions V.2 and V.3, if n ≥ Θ(log p) then for any L ≥ (k − p)/2,

Algorithm 2 recovers the support Ψ, with probability at least 1− 1/p, i.e.,

P (Ψ ⊆ S) ≥ 1− 1/p. (5.15)

Proof. The proof is similar to the proof of Theorem V.6 and is omitted.

Theorem V.6. Consider the inverse covariance support recovery problem using Al-

gorithm 2. Under Assumptions V.2-V.4, if n ≥ Θ(log p) then for any L ≥ (k − p)/2,

Algorithm 2 recovers the support Ψ, with probability at least 1− 1/p, i.e.,

P (Ψ ⊆ S) ≥ 1− 1/p. (5.16)
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Proof. By Assumption V.4 we have

Ux(Ux)T =
p

n− 1
(In−1 + o(1)) . (5.17)

Therefore:

(
Ux(Ux)T

)−1
=
n− 1

p
(In−1 + o(1)) . (5.18)

Since columns of Ux have unit norm we obtain:

(Ux(Ux)T )−1Ux =
n− 1

p
Ux(1 + o(1)), (5.19)

and

(Ux)T (Ux(Ux)T )−2Ux = (
n− 1

p
)2(Ux)TUx(1 + o(1)). (5.20)

This yields

D(Ux)T (Ux(Ux)T )−2Ux = (
n− 1

p
)2Ip(1 + o(1)), (5.21)

which implies

Ux
P = (Ux(Ux)T )−1UxD

− 1
2

(Ux)T (Ux(Ux)T )−2Ux = Ux(1 + o(1)). (5.22)

Therefore using representation (2.4) we have

P = (Ux
P)TUx

P = (Ux)TUx(1 + o(1)). (5.23)

Hence under Assumption V.4, Algorithm 2 asymptotically selects the support set

based on the entries of (Ux)TUx, i.e. sample correlation coefficients.
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Since P (Ψ0 ⊆ S) increases as the size of the recovered set S increases, it suffices

to prove the proposition for L = (k− p)/2 (note that due to the symmetry of inverse

covariance matrix, (k − p)/2 is necessarily an integer). We have:

P (Ψ * S) = P (Ψ 6= S)

≤ P

 ⋃
(i,j)∈Ψ,(v,w)/∈Ψ

{|rij| < |rvw|}


≤

∑
(i,j)∈Ψ,(v,w)/∈Ψ

P(|rij| < |rvw|) (5.24)

Now by Lemma IV.9 in Chpter IV there exist constants Cij,vw > 0 and a constant N

such that

P (Ψ 6= S) ≤
∑

(i,j)∈Ψ,(v,w)/∈Ψ

exp(−Cij,vwn)

≤ p4 exp(−Cminn), ∀n > N, (5.25)

in which Cmin = min(i,j)∈Ψ,(v,w)/∈ΨCij,vw = ρmin/6. Hence by letting C = 5/Cmin =

30/ρmin and n = C log p we have:

P (Ψ 6= S) ≤ 1

p
, (5.26)

and

P (π0 = S) = 1− P (π0 6= S) ≥ 1− 1

p
, (5.27)

which completes the proof.

The next two theorems propose a lower bound for the probability of exact support

recovery for covariance and inverse covariance matrices using Algorithm 3.

Theorem V.7. Consider the covariance support recovery problem using Algorithm
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3. Under Assumptions V.2 and V.3, if n ≥ Θ(log p) then there exists 0 ≤ αc ≤ 1

such that using Algorithm 3 at significance level αc recovers the exact support Ψ with

probability at least 1− 1/p, i.e.,

P (Ψ = S) ≥ 1− 1/p. (5.28)

Proof. The proof is similar to the proof of Theorem V.8 and is omitted.

Theorem V.8. Consider the inverse covariance support recovery problem using Al-

gorithm 3. Under Assumptions V.2-V.4, if n ≥ Θ(log p) then there exists 0 ≤ αc ≤ 1

such that using Algorithm 3 at significance level αc recovers the exact support Ψ with

probability at least 1− 1/p, i.e.,

P (Ψ = S) ≥ 1− 1/p. (5.29)

Proof. Since Λp,n,ρ is a decreasing function of ρ, pv(i) = 1−exp(−Λp,n,|φij |) is decreas-

ing in φij. Therefore screening the p-values at a given significance level α is equivalent

to screening the quantities φij at a given threshold ρ. Let ρt be the value of threshold

for which the size of the recovered support set S is exactly k. Using Algorithm 3

at significance level αc = 1 − exp(−Λp,n,ρt) is equivalent to using Algorithm 2 with

L = (k − p)/2. Therefore by Theorem V.6, running Algorithm 3 at significance level

αc will recover a support set S for which:

P (Ψ0 = S) ≥ 1− 1

p
. (5.30)

Theorems V.5 and V.7 can be compared to the support recovery results (also

referred to as sparsity or sparsistency in the literature) presented in (Cai and Liu,

2011). For distributions with exponential-type tail, Theorem 2 in (Cai and Liu, 2011)
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requires that log p = o(n1/3). Moreover, for distributions with polynomial-type tail,

Theorem 2 in (Cai and Liu, 2011) requires that p ≤ c1n
β for some β, c1 > 0. In con-

trast, our proposed covariance support recovery theorems V.5 and V.7 only require

asymptotic number of samples n = Θ(log p) to perform guaranteed support recovery.

However, we make the assumption of elliptically contoured distribution with a corre-

lation matrix that satisfies Assumption V.3. It is worth mentioning that the family of

elliptically contoured distributions includes distributions with exponential tails (such

as multivariate power exponential distribution, cf. (Gómez et al., 1998)) as well as dis-

tributions with polynomial tails (such as multivariate t distribution, cf. (Gupta et al.,

2013)). Note also that the covariance support recovery theorems V.5 and V.7 do not

require sparsity assumptions on the covariance matrix. Also, the inverse covariance

support recovery theorems V.6 and V.8 do not directly impose sparsity assumptions

on the covariance matrix or its inverse. However, Assumption V.4 reflects sparsity

assumption on the population correlation matrix (see Lemma IV.4). Moreover, our

asymptotic results for assigning p-values to the edges of the correlation or partial

correlation network let ρ → 1 which controls the effective sparsity as p → ∞. Note

also that the support recovery results presented in this chapter are different from the

conventional convergence analysis performed in the covariance and inverse covariance

estimation. Here we consider convergence of the support instead of `2 norm type of

converegnce. Finally, it is worth mentioning that to the best of our knowledge none

of the existing methods for covariance and inverse covariance regularization assign

p-values to the entries of the discovered support.
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CHAPTER VI

Future work

6.1 Introduction

In this chapter, I present five possible directions for future research. The first di-

rection is considering a multi-stage version of the PCS method for SPARCS screening

stage presented in Chapter IV. The second direction is proposing a two-stage (in-

verse) covariance estimator using the support recovery methods introduced in Chapter

V. The third direction is screening for general motifs in correlation networks. The

fourth direction is about generalization of correlation and hub screening framework

to hyper-graphs. We use the simulations on the financial data presented in Chapter

III as a motivation for this generalization. Finally, the fifth direction is generalization

of the screening results presented in this thesis to the case of complex-valued random

variables.

6.2 Multi-stage PCS support recovery for SPARCS screen-

ing stage

In Chapter IV we presented theoretical and experimental results which showed the

superiority of predictive correlation screening (PCS) algorithm over the well known

existing methods of LASSO and SIS, in a truly high-dimensional setting. An idea to
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boost such superiority is to use PCS in a multi-stage setting. More specifically, one

can consider the following algorithm for variable selection in high-dimensional linear

regression. First run PCS on all p variables using the n samples to select a subset

S1 of [γp] variables, where [x] denotes the integer part of x and 0 < γ < 1 is a fixed

integer. Next run PCS on variables in S1 using the n samples to select a subset S2

of the [γ2p] variables, and so on. Repeat this procedure k times to obtain subset

Sk with [γkp] predictor variables. Clearly the PCS presented in Chapter IV can be

considered as a special case of the above multi-stage procedure which selects all of

the predictor variables in one stage. As a result, above multi-stage idea will admit

support recovery guarantees as good as those for PCS. More specifically, we believe

that above multi-stage procedure enjoys a smaller constant for Θ(.) in n = Θ(log p)

relation required for support recovery theorems in Chapter IV.

6.3 Two-stage estimation of the covariance matrix

As we motivated in Chapter V the support recovery methods presented in that

chapter can be used as the first stage of a two-stage procedure for (inverse) covariance

estimation. Considering such two-stage estimator would be a problem of interest. We

showed in Chapter V that the presented support recovery methods are backed with

strong guarantees. As a result, we expect that the two-stage estimator of (inverse)

covariance to be an estimator which can beat state of the art estimators in very high

dimensional situations.

6.4 Screening for general motifs

The hub and edge screening methods discussed in this thesis can be considered as

methods which screen for star sub-graphs in a correlation network. A problem that

has always been interesting to me is screening for a general sub-graph (motif). More
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specifically, can we obtain similar asymptotic results for a general feasible sub-graph

instead of the specific case of a star sub-graph? Based on the limited time that I

have spent on this problem, I am confident that proving similar Poisson theorems for

the number of specific sub-graphs in a (partial) correlation graph is rather straight-

forward. In fact using similar indicator function expansions (an idea which is used

several times across this thesis) along with Chen-Stein method can provide us with

asymptotic Poisson limits. What is more challenging in the case of general motifs is

obtaining an expression for the expected number of motifs. For the special case of

star motifs we were able to come up of with an integral expansion for the expected

number of motifs. The integration region for the case of star motifs is a region of the

form Aρ×Aρ×· · ·×Aρ ⊂ Sn−2×Sn−2×· · ·×Sn−2 (cf. equation (A.20)). However, for

the case of general motifs, it is not generally possible to have a similar separable form

for the integration region as a subset of Sn−2×Sn−2× · · · ×Sn−2. As a result coming

up with an integral expansion for the expectation seems to be a challenging problem.

However, an idea that can be useful to overcome this problem is the similarity of

correlation graphs with random geometric graphs and Erdös-Rényi random graphs.

As an example, if we can bound the total variation distance between the total number

of copies of a certain sub-graph in a correlation graph and in an Erdös-Rényi random

graph (specifically an Erdös-Rényi random graph with edge connectivity probability

P0), then an approximate expression for the mean number of motifs can be obtained.

6.5 Correlation screening on hyper-graphs

Pairwise relationships are often used to investigate the interconnections among a

set of random variables. An important reason for such popularity is that pairwise

relationships can be illustrated on graphs. However, in many real-world problems,

relations among variables are more complex than simple pairwise relations. Hyper-

graph learning studies the higher order relationships among the variables in the data
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(Zhou et al., 2006; Yu et al., 2012; Sun et al., 2008).

The vulnerable asset discovery experiment which was introduced as an application

of the complex-valued correlation and partial screening procedure proposed in Chap-

ter III, can be an example where the insufficiency of pairwise (partial) correlation

relations is evident. We saw in Sec. 3.6.4 that the experimental results became more

sensible when we considered the (partial) correlations between groups of assets (i.e.,

industries) as compared to simply considering (partial) correlations between single

assets.

6.6 Generalization of the results to the complex-valued case

Motivated by the spectral correlation and partial correlation screening results of

Chapter III, the screening results presented in the rest of the chapters of this thesis can

be generalized to the case of complex-valued random variables, in a similar manner.

Such generalizations would allow applying the proposed screening methods in the

spectral domain.
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APPENDIX A

Generalization of SPARCS to regression with

multidimensional response

A.1 Introduction

In this appendix we generalize the asymptotic results of Chapter IV to the case

where the response is multidimensional instead of a scalar. We also present another

approach for proving some of the results presented in Chapter IV.

A.2 Under-determined multivariate regression with multidi-

mensional response

Assume X = [X1, . . . , Xp] and Y = [Y1, . . . , Yq] are random vectors of regres-

sor and response variables, from which n observations are available. We represent

the n × p and n × q data matrices as X and Y, respectively. We assume that

the vector X has an elliptically contoured density with mean µx and non-singular

p × p covariance matrix Σx, i.e. the probability density function is of the form

fX(x) = g
(
(x− µx)TΣx

−1(x− µx)
)
, in which g is a non-negative integrable func-

tion. Similarly, the vector Y, is assumed to follow an elliptically contoured density
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with mean µy and non-singular q × q covariance matrix Σy. We assume that the

joint density function of X and Y is bounded and differentiable. Denote the p × q

population cross covariance matrix between X and Y by Σxy.

The p× p sample covariance matrix S for data X is defined as:

S =
1

n− 1

n∑
i=1

(X(i) −X)T (X(i) −X), (A.1)

where X(i) is the ith row of data matrix X, and X is the vector average of all n rows

of X.

Consider the n × (p + q) concatenated matrix Z = [X,Y]. The sample cross

covariance matrix Syx is defined as the lower left q × p block of the (p+ q)× (p+ q)

sample covariance matrix obtained by (A.1) using Z as the data matrix instead of X.

Assume that p � n. We define the ordinary least squares (OLS) estimator of Y

given X as the min-norm solution of the underdetermined least squares regression

problem

min
B
‖YT −BXT‖2

F , (A.2)

where ‖A‖F represents the Frobenius norm of matrix A. The min-norm solution to

(A.2) is the q × p matrix of regression coefficients

B = Syx(Sx)†, (A.3)

where A† denotes the Moore-Penrose pseudo-inverse of matrix A. If the ith column

of B is zero then the ith variable is not included in the OLS estimator. This is the

main motivation for the proposed partial correlation screening procedure.

The PCS procedure for variable selection is based on the U-score representation

of the correlation matrices. It is easily shown that there exist matrices Ux and Uy
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of dimensions (n − 1) × p and (n − 1) × q respectively, such that the columns of Ux

and Uy lie on the (n − 2)-dimensional unit sphere Sn−2 in Rn−1 and the following

representations hold (Hero and Rajaratnam, 2012):

Syx = D
1
2
Sy((U

y)TUx)D
1
2
Sx , (A.4)

and:

(Sx)† = D
− 1

2
Sx ((Ux)T (Ux(Ux)T )−2Ux)D

− 1
2

Sx , (A.5)

where DM denotes the diagonal matrix obtained by zeroing out the off-diagonals

of matrix M. Note that Ux and Uy are constructed from data matrices X and Y,

respectively.

Throughout the Appendix, we assume the data matrices X and Y have been

normalized in such a way that the sample variance of each variable Xi and Yj is equal

to 1 for 1 ≤ i ≤ p and 1 ≤ j ≤ q. This simplifies the representations (A.4) and (A.5)

to Syx = (Uy)TUx and (Sx)† = (Ux)T (Ux(Ux)T )−2Ux. Using these representations,

one can write:

Ŷ = Syx(Sx)†X = (Uy)T (Ux(Ux)T )−1UxX. (A.6)

Defining Ũx = (Ux(Ux)T )−1UxD
− 1

2

(Ux)T (Ux(Ux)T )−2Ux , we have:

Ŷ = (Uy)T ŨxD
1
2

(Ux)T (Ux(Ux)T )−2UxX (A.7)

= (Hxy)TD
1
2

(Ux)T (Ux(Ux)T )−2UxX, (A.8)

where

Hxy = (Ũx)TUy. (A.9)
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Note that the columns of matrix Ũx lie on Sn−2. This can simply be verified by the

fact that diagonal entries of the p× p matrix (Ũx)T Ũx are equal to one.

The U-score representations of covariance matrices completely specify the regres-

sion coefficient matrix Syx(Sx)†.

We define variable selection by discovering columns of the matrix (A.10) that are

not close to zero. The expected number of discoveries will play an important role in

the theory of false discoveries, discussed below.

From Sec. A.2 we obtain a U-score representation of the regression coefficient

matrix:

Syx(Sx)† = (Hxy)TD
1
2

(Ux)T (Ux(Ux)T )−2Ux . (A.10)

Under the condition that D(Ux)T (Ux(Ux)T )−2Ux has non-zero diagonal entries, the ith

column of Syx(Sx)† is a zero vector if and only if the ith row of Hxy is a zero vector,

for 1 ≤ i ≤ p. This motivates screening for non-zero rows of the matrix Hxy instead

of columns of Syx(Sx)†.

Fix an integer δ ∈ {1, 2, · · · , p} and a real number ρ ∈ [0, 1]. For each 1 ≤ i ≤ p,

we call i a discovery at degree threshold δ and correlation threshold ρ if there are at

least δ entries in ith row of Hxy of magnitude at least ρ. Note that this definition

can be generalized to an arbitrary matrix of the form (Ux)TUy where Ux and Uy are

matrices whose columns lie on Sn−2. For a general matrix of the form (Ux)TUy we

represent the number of discoveries at degree level δ and threshold level ρ as Nxy
δ,ρ.

A.3 Asymptotic theory

The following notations are necessary for the theorems in this section. We denote

the surface area of the (n− 2)-dimensional unit sphere Sn−2 in Rn−1 by an. Assume

that U,V are two independent and uniformly distributed random vectors on Sn−2.
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For a threshold ρ ∈ [0, 1], let r =
√

2(1− ρ). P0 is then defined as the probability

that either ‖U−V‖2 ≤ r or ‖U + V‖2 ≤ r. P0 can be computed using the formula

for the area of spherical caps on Sn−2 (Hero and Rajaratnam, 2012).

Define the index set C as:

C = {(i0, i1, . . . , iδ) :

1 ≤ i0 ≤ p, 1 ≤ i1 < . . . < iδ ≤ q}. (A.11)

For arbitrary joint density fU0,...,Uδ
(u0, . . . ,uδ) defined on the Cartesian product

Sδ+1
n−2 = Sn−2 × · · · × Sn−2, define fUx

• ,U
y
∗1 ,...,U

y
∗δ

(u0,u1, . . . ,uδ) as the average of

fU~i
(s0u0, s1u1, . . . , sδuδ) =

fUx
i0
,Uy

i1
,...,Uy

iδ
(s0u0, s1u1, . . . , sδuδ), (A.12)

for all ~i = (i0, i1, . . . , iδ) ∈ C and sj ∈ {−1, 1}, 0 ≤ j ≤ δ.

In the following theorems, k represents an upper bound on the number of non-zero

entries in any row or column of covariance matrix Σx or cross covariance matrix Σxy.

We define ‖∆xy
p,q,n,k,δ‖1 = |C|−1

∑
~i∈C∆xy

p,q,n,k,δ(
~i), the average dependency coefficient,

as the average of

∆xy
p,q,n,k,δ(

~i) =
∥∥∥(fU~i|UAk(i0)

− fU~i
)/fU~i

∥∥∥
∞
, (A.13)

in which Ak(i0) is defined as the set complement of the union of indices of non-zero

elements of the i0-th column of ΣyxΣ
−1
x . Finally, the function J of the joint density

fU0,...,Uδ
(u0, . . . ,uδ) is defined as:

J(fU0,...,Uδ
) = |Sn−2|δ

∫
Sn−2

fU0,...,Uδ
(u, . . . ,u)du. (A.14)
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The following theorem gives an asymptotic expression for the number of discoveries

in a matrix of the form (Ux)TUy, as p → ∞, for fixed n. Also it states that, under

certain assumptions, the probability of having at least one discovery converges to

a given limit. This limit is equal to the probability that a certain Poisson random

variableN∗δ,ρp with rate equal to limp→∞E[Nxy
δ,ρp

] takes a non-zero value, i.e. it satisfies:

N∗δ,ρp > 0.

Theorem A.1. Let Ux = [Ux
1 ,U

x
2 , ...,U

x
p ] and Uy = [Uy

1,U
y
2, ...,U

y
q ] be (n − 1) × p

and (n− 1)× q random matrices respectively, with Ux
i ,U

y
j ∈ Sn−2 for 1 ≤ i ≤ p, 1 ≤

j ≤ q. Fix integers δ ≥ 1 and n > 2. Assume that the joint density of any subset of

{Ux
1 , ...U

x
p ,U

y
1, ...,U

y
q} is bounded and differentiable. Let {ρp}p be a sequence in [0, 1]

such that ρp → 1 as p→∞ and p 1
δ q(1− ρ2

p)
(n−2)

2 → en,δ. Then,

lim
p→∞

E[Nxy
δ,ρp

] = lim
p→∞

ξp,q,n,δ,ρpJ(fUx
∗ ,U

y
•1,...,U

y
•δ

)

= κn,δ lim
p→∞

J(fUx
∗ ,U

y
•1,...,U

y
•δ

), (A.15)

where ξp,q,n,δ,ρp = p
(
q
δ

)
P δ

0 and κn,δ = (en,δan/(n− 2))δ /δ!.

Assume also that k = o((p
1
δ q)1/(δ+1)) and that the average dependency coefficient

satisfies

limp→∞ ‖∆xy
p,q,n,k,δ‖1 = 0. Then:

p(Nxy
δ,ρp

> 0)→ 1− exp(−Λxy
δ ), (A.16)

with

Λxy
δ = lim

p→∞
E[Nxy

δ,ρp
]. (A.17)

Proof. Define φxi = I(dxi ≥ δ), where dxi is the degree of vertex i in part x in the thresh-
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olded correlation graph. We have: Nxy
δ,ρ =

∑p
i=1 φ

x
i . Define φxyij = I(Uy

j ∈ A(r,Ux
i )),

where A(r,Ux
i ) is the union of two anti-polar caps in Sn−2 of radius

√
2(1− ρ) cen-

tered at Ux
i and −Ux

i . φxi can be expressed as:

φxi =

q∑
l=δ

∑
~k∈C̆(q,l)

l∏
j=1

φxyikj

q∏
m=l+1

(1− φxyikm), (A.18)

where ~k = (k1, ..., kq) and C̆(q, l) = {~k : k1 < k2 < ... < kl, kl+1 < ... < kq, kj ∈

{1, 2, ..., q}, ki 6= kj}.

By subtracting
∑

~k∈C̆(q,l)

∏δ
j=1 φ

xy
ikj

from both sides, we get:

φxi −
∑

~k∈C̆(q,l)

δ∏
j=1

φxyikj =

q∑
l=δ+1

∑
~k∈C̆(q,l)

l∏
j=1

φxyikj

q∏
m=l+1

(1− φxyikm) +

∑
~k∈C̆(q,δ)

q∑
m=δ+1

(−1)m−δ
δ∏
j=1

φxyikj

∑
k′δ+1<...<k

′
m,{k′δ+1,...,k

′
m}⊂{kδ+1,...,kq}

m∏
n=δ+1

φxyik′n . (A.19)

The following inequality will be helpful:

E[
k∏
i=1

φxyiij ] =

∫
Sn−2

dv

∫
A(r,v)

du1...

∫
A(r,v)

duk

fUyi1 ,...,U
y
ik
,Uxi

(u1, ..., uk, v) (A.20)

≤ P k
0 a

k
nM

yx
K|1, (A.21)

where Myx
K|1 = maxi1 6=... 6=ik,i‖fUyi1 ,...,Uyik |Uxi ‖∞.
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Also we have:

E[
m∏
l=1

φxyiljl ] ≤ Pm
0 a

m
nM

yx
|Q|, (A.22)

where Q = unique({il, jl}) is the set of unique indices among the distinct pairs

{{il, jl}}ml=1 and Myx
|Q| is a bound on the joint density of Uxy

Q .

Now define:

θxi =

(
q

δ

)−1 ∑
~k∈C̆(q,δ)

δ∏
j=1

φxyikj . (A.23)

Now, we show that

|E[φxi ]−
(
q

δ

)
E[θxi ]| ≤ γq,δ(qP0)δ+1, (A.24)

where γq,δ = 2emaxδ+1≤l≤q{alnM
yx
l|1}. To show this, take expectations from both sides

of equation (A.19) and apply the bound (A.21) to obtain:

|E[φxi −
(
q

δ

)
E[θxi ]]|

≤
q∑

l=δ+1

(
q

l

)
P l

0a
l
nM

yx
l|1 +

(
q

δ

) q−δ∑
l=1

(
q − δ
l

)
P δ+l

0 aδ+ln Myx
δ+l|1

≤ maxδ+1≤l≤q{alnM
yx
l|1}

(

q∑
l=δ+1

(
q

l

)
P l

0 +

(
q

δ

)
P δ

0

q−δ∑
l=1

(
q − δ
l

)
P l

0)

≤ maxδ+1≤l≤q{alnM
yx
l|1}

((e−
δ∑
l=1

1

l!
)(qP0)δ+1 +

qδ

δ!
P δ

0 (e− 1)(q − δ)P0)

≤ maxδ+1≤l≤q{alnM
yx
l|1}2e(qP0)δ+1, (A.25)
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in which, the third inequality follows from the assumption qP0 ≤ 1 along with the

inequality :

G∑
k=s+1

(
G

k

)
(
t

G
)k ≤

G∑
k=s+1

tk

k!
(A.26)

≤ (e−
s∑

k=0

1

k!
)ts+1, 0 ≤ t ≤ 1.

Application of the mean value theorem to the integral representation (A.20) yields:

|E[θxi ]− P δ
0J(fUy

∗1 ,...,U
y
∗δ ,U

x
i
)| ≤ γ̃yxq,δ(qP0)δr, (A.27)

where γ̃yxq,δ = 2aδ+1
n Ṁyx

δ+1|1/δ! and Ṁyx
δ+1|1 is a bound on the norm of the gradient:

∇Uy
i1
,...,Uy

iδ
fUy
∗1 ,...,U

y
∗δ |U

x
i
(Uy

i1
, ...,Uy

iδ
|Ux

i ). (A.28)

Combining (A.25) and (A.27) and using the relation r = O((1− ρ)1/2) we conclude:

|E[φxi ]−
(
q

δ

)
P δ

0J(fUx
i ,U

y
∗1 ,...,U

y
∗δ

)| ≤

O(pδ(qP0)δmax{pP0, (1− ρ)1/2}). (A.29)

Summing up over i we conclude:

E[Nxy
δ,ρ]− ξ

xy
p,q,n,δ,ρJ(fUx

∗ ,U
y
•1,...,U

y
•δ

) ≤

O(p(pP0)δmax{pP0, (1− ρ)1/2) (A.30)

= O((ηxyp,q,δ)
δmax{ηxyp,q,δp−

1
δ , (1− ρ)1/2}),

where ηxyp,q,δ = p1/δqP0. This concludes (A.15).

To prove the second part of the theorem, we use Chen-Stein method (Arratia et al.,
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1990). Define:

Ñxy
δ,ρ =

∑
0≤i0≤p,0≤i1<...<iδ≤q

δ∏
j=1

φxyi0ij . (A.31)

Assume the vertices i in part x and y of the thresholded graph are shown by ix

and iy respectively. for ~i = (ix0 , i
y
1, ..., i

y
δ), define the index set Bxy

~i
= Bxy

(ix0 ,i
y
1 ,...,i

y
δ )

=

{(jx0 , j
y
1 ..., j

y
δ ) : jx1 ∈ N

xy
k (ix1) ∪ ix1 , j

y
l ∈ N

xy
k (iyl ) ∪ i

y
l , l = 1, ..., δ} ∩ Cxy

< where Cxy
< =

{(j0, ..., jδ) : 1 ≤ j0 ≤ p, 1 ≤ j1 < ... < jδ ≤ q}. Note that |Bxy
~i
| ≤ kδ+1. We have:

Ñxy
δ,ρ =

∑
~i∈Cxy<

δ∏
j=1

φxyi0ij . (A.32)

Assume N∗xyδ,ρ is a Poisson random variable with E[N∗xyδ,ρ ] = Ñxy
δ,ρ. Using theorem 1 of

(Arratia et al., 1990), we have:

2 maxA|p(Ñxy
δ,ρ ∈ A)− p(Ñ∗xyδ,ρ ∈ A)| ≤ b1 + b2 + b3, (A.33)

where:

b1 =
∑
~i∈Cxy<

∑
~j∈Bxy

~i
−~i

E[
δ∏
l=1

φxyi0il ]E[
δ∏

m=1

φxyj0jm ], (A.34)

b2 =
∑
~i∈Cxy<

∑
~j∈Bxy

~i
−~i

E[
δ∏
l=1

φxyi0il

δ∏
m=1

φxyj0jm ], (A.35)

and for p~ixy = E[
∏δ

l=1 φ
xy
i0il

]:

b3 =
∑
~i∈Cxy<

E[E[
δ∏
l=1

φxyi0il − p~ixy |φ
x
~j

: ~j 6∈ Bxy
~i

]]. (A.36)
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Using the bound (A.22), E[
∏δ

l=1 φ
xy
i0il

] is of order O(P δ
0 ). Therefore:

b1 ≤ O(pqδkδ+1P 2δ
0 ) =

= O((ηxyp,q,δ)
2δ(k/(p

1
δ+1 q

δ
δ+1 ))δ+1). (A.37)

Note that, since ~i 6= ~j,
∏δ

l=1 φ
xy
i0il

∏δ
m=1 φ

xy
j0jm

is a multiplication of at least δ + 1

different characteristic functions. Hence by (A.22),

E[
δ∏
l=1

φxyi0il

δ∏
m=1

φxyj0jm ] = O(P δ+1
0 ). (A.38)

Hence, b2 ≤ O(pqδkδ+1P δ+1
0 ) = O((ηxyp,q,δ)

δ+1(k/(p
1
δ q)1/(δ+1))δ+1). Finally, to bound b3

we have:

b3 =
∑
~i∈Cxy<

E[E[
δ∏
l=1

φxyi0il − p~ixy |UAxyk (~i)]] = (A.39)

=
∑
~i∈Cxy<

∫
S
|Axy
k

(~i)|
n−2 dz

A
xy
k

(~i)

(
δ∏
l=1

∫
Sn−2

dzix0

∫
A(r,uxi0

)

duyil)

(
fUxy

~i
|U

A
xy
k

(~i)
(Uxy

~i
|UAxyk (~i))− fUxy

~i
(Uxy

~i
)

fUxy
~i

(Uxy
~i

)
)

fUxy
~i

(Uxy
~i

)fU
A
xy
k

(~i)
(uAxyk (~i)) (A.40)

≤ O(pqδP δ+1
0 ‖∆xy

p,q,n,k,δ‖1) = O((ηxyp,q,δ)
δ‖∆xy

p,q,n,k,δ‖1).
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Therefore:

|p(Nxy
δ,ρ > 0)− (1− exp(−Λxy

δ ))| ≤

|p(Nxy
δ,ρ > 0)− (Ñxy

δ,ρ > 0)|+

|p(Ñxy
δ,ρ > 0)− (1− exp(−E[Ñxy

δ,ρ]))|+

|exp(−E[Ñxy
δ,ρ])− exp(−Λxy

δ )|

≤ 0 + b1 + b2 + b3 +O(|E[Ñxy
δ,ρ]− Λxy

δ |). (A.41)

Hence, it remains to bound O(|E[Ñxy
δ,ρ] − Λxy

δ |). Application of mean value theorem

to the multiple integral (A.20) gives:

|E[
δ∏
l=1

φxyiil ]− P
δ
0J(fUy

i1
,...,Uy

iδ
,Ux

i
)| ≤ O(P δ

0 r). (A.42)

Using relation (A.32) we conclude:

|E[Ñxy
δ,ρ]− p

(
q

δ

)
P δ

0J(fUy
∗1 ,...,U

y
∗δ ,U

x
•)| ≤

O(pqδP δ
0 r) = O((ηxyp,q,δ)

δr). (A.43)

Combining this with inequality (A.41) along with the bounds on b1, b2 and b3, com-

pletes the proof of (A.16).

The following theorem states that when the rows of data matrices X and Y are

i.i.d. elliptically distributed with block sparse covariance matrices, the rate (A.15) in

Theorem A.1 becomes independent of Σx and Σxy. Specifically, the (δ+1)-fold average

J(fUx
• ,U

y
∗1 ,...,U

y
∗δ

) converges to 1 while the average dependency coefficient ‖∆xy
p,q,n,k,δ‖1

goes to 0, as p → ∞. This theorem will play an an important role in identifying

phase transitions and in approximating p-values.

Theorem A.2. Assume the hypotheses of Theorem A.1 are satisfied. In addition
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assume that the rows of data matrices X and Y are i.i.d. elliptically distributed with

block sparse covariance and cross covariance matrices Σx and Σxy. Then Λxy
δ in the

limit (A.17) in Theorem A.1 is equal to the constant κn,δ given in (A.15). Moreover,

Ũx ≈ Ux.

Proof. We prove the more general theorem below. Theorem A.2 is then a direct

consequence.

Proposition: Let X and Y be n × p and n × q data matrices whose rows are i.i.d.

realizations of elliptically distributed p-dimensional and q-dimensional vectors X and

Y with mean parameters µx and µy and covariance parameters Σx and Σy, respec-

tively and cross covariance Σxy. Let Ux = [Ux
1 , . . . ,U

x
p ] and Uy = [Uy

1, . . . ,U
y
q ] be

the matrices of correlation U-scores. Assume that the covariance matrices Σx and

Σy are block-sparse of degrees dx and dy, respectively (i.e. by rearranging their rows

and columns, all non-diagonal entries are zero except a dx × dx or a dy × dy block).

Assume also that the cross covariance matrix Σxy is block-sparse of degree d1 for x

and degree d2 for y (i.e. by rearranging its rows and columns, all entries are zero

except a d1 × d2 block), then

Ũx = Ux(1 +O(dx/p)). (A.44)

Also assume that for δ ≥ 1 the joint density of any distinct set of U-scores

Ux
i ,U

y
i1
, . . . ,Uy

iδ
is bounded and differentiable over Sδ+1

n−2. Then the (δ+1)-fold average

function J(fUx
• ,U

y
∗1 ,...,U

y
∗δ

) and the average dependency coefficient ‖∆xy
p,n,k,δ‖ satisfy

J(fUx
• ,U

y
∗1 ,...,U

y
∗δ

) = 1 +O(max{d1

p
, δ

(dy − 1)

q
}), (A.45)

‖∆xy
p,q,n,k,δ‖1 = 0. (A.46)
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Furthermore,

J(fŨx
• ,U

y
∗1 ,...,U

y
∗δ

) = 1 +O(max{dx
p
,
d1

p
, δ

(dy − 1)

q
}) (A.47)

‖∆x̃y
p,q,n,k,δ‖1 = O ((dx/p)) . (A.48)

Proof: We have:

Ũx = (Ux(Ux)T )−1UxD
− 1

2

(Ux)T (Ux(Ux)T )−2Ux . (A.49)

By block sparsity of Σx,Ux can be partitioned as:

Ux = [Ux,Ux
], (A.50)

where Ux = [Ux
1 , · · · ,Ux

dx ] and Ux
= [U

x

1 , · · · ,U
x

p−dx ] are dependent and independent

columns of Ux, respectively. Similarly, by block sparsity of Σy,

Uy = [Uy,Uy
], (A.51)

where Uy = [Uy
1, · · · ,U

y
dy

] and Uy
= [U

y

1, · · · ,U
y

q−dy ] are dependent and independent

columns of Uy, respectively. By block sparsity of Σxy, at most d1 variables among

U
x

1 , · · · ,U
x

p−dx , are correlated with columns of Uy. Assume the correlated variables

are among U
x

1 , · · · ,U
x

d2
. Similarly, at most d2 variables among U

y

1, · · · ,U
y

q−dy are

correlated with columns of Ux. Without loss of generality, assume the correlated

variables are among U
y

1, · · · ,U
y

d1
.

The columns of Ux, are i.i.d. and uniform over the unit sphere Sn−2. Therefore,
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as p→∞:

1

p− dx
Ux

(Ux
)T → E[U

x

1(U
x

1)T ] =
1

n− 1
In−1. (A.52)

Also, since the entries of 1/dxUx(Ux)T are bounded by one, we have:

1

p
Ux(Ux)T = O(dx/p), (A.53)

where O(u) is an (n− 1)× (n− 1) matrix whose entries are O(u). Hence:

(Ux(Ux)T )−1Ux = Ux(Ux)T + Ux
(Ux

)TUx

=
n− 1

p
(In−1 + O(dx/p))

−1Ux

=
n− 1

p
Ux(1 +O(dx/p)). (A.54)

Hence, as p→∞:

(Ux)T (Ux(Ux)T )−2Ux =

= (
n− 1

p
)2(Ux)TUx(1 +O(dx/p)). (A.55)

Thus:

D(Ux)T (Ux(Ux)T )−2Ux =

(
p

n− 1
In−1(1 +O(dx/p))

)
. (A.56)

Combining (A.56) and (A.54) concludes (A.44).

Now we prove relations (A.45) and (A.46). Define the partition C = D ∪ Dc of

the index set C defined in (A.11), where D = {~i = (i0, i1, · · · , iδ) : i0 is among p− d1

columns of Ux that are uncorrelated of columns of Uy and at most one of i1, · · · , iδ is

less than or equal to dy} is the set of (δ + 1)-tuples restricted to columns of Ux and
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Uy that are independent. We have:

J(fUx
• ,U

y
∗1 ,...,U

y
∗δ

) = |C|−12−δ
∑

s1,...,sδ∈{−1,1}

(
∑
~i∈D

+
∑
~i∈Dc

)J(fs0Ux
i0
,s1Uy

i1
,...,sδU

y
iδ

), (A.57)

and

‖∆xy
p,q,n,k,δ‖1 = |C|−1(

∑
~i∈D

+
∑
~i∈Dc

)∆xy
p,q,n,k,δ(

~i). (A.58)

But, J(fs0Ux
i0
,s1Uy

i1
,...,sδU

y
iδ

) = 1 for ~i ∈ D and ∆xy
p,q,n,k,δ(

~i) = 0 for ~i ∈ C. Moreover, we

have:

|D|
|C|

= O(
(p− d1)(q − dy + 1)δ

pqδ
). (A.59)

Thus:

J(fUx
• ,U

y
∗1 ,...,U

y
∗δ

) = 1 +O(max{d1

p
, δ

(dy − 1)

q
}). (A.60)

Moreover, since Ũx = Ux(1 + O(dx/p)), fŨx
i0
,Uy

i1
,...,Uy

iδ

= fUx
i0
,Uy

i1
,...,Uy

iδ
(1 + O(dx/p)).

This concludes:

J(fŨx
• ,U

y
∗1 ,...,U

y
∗δ

) = 1 +O(max{dx
p
,
d1

p
, δ

(dy − 1)

q
}), (A.61)

and

‖∆x̃y
p,q,n,k,δ‖1 = O(dx/p). (A.62)
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A.4 Predictive Correlation Screening

Under the assumptions of Theorem A.1 and Theorem A.2:

p(Nxy
δ,ρp

> 0)→ 1− exp(−ξp,q,n,δ,ρp) as p→∞ (A.63)

Using the above limit, approximate p-values can be computed. Fix a degree threshold

δ ≤ q and a correlation threshold ρ∗ ∈ [0, 1]. Define Gρ∗(Hxy) as the undirected

bipartite graph (Fig. A.1) with parts labeled x and y, vertices {X1, X2, ..., Xp} in

part x and {Y1, Y2, ..., Yq} in part y. For 1 ≤ i ≤ p and 1 ≤ j ≤ q, vertices Xi

and Yj are connected if |hxyij | > ρ∗, where hxyij is the (i, j)th entry of Hxy defined

in (A.9). Denote by dxi the degree of vertex Xi in Gρ∗(Hxy). For each value δ ∈

{1, · · · ,max1≤i≤p d
x
i }, and each i, 1 ≤ i ≤ p, denote by ρi(δ) the maximum value of

the correlation threshold ρ for which dxi ≥ δ in Gρ(Hxy). ρi(δ) is in fact equal to the

δth largest value |hxyij |, 1 ≤ j ≤ q. ρi(δ) can be computed using Approximate Nearest

Neighbors (ANN) type algorithms (Jégou et al., 2011; Arya et al., 1998). Now for

each i define the modified threshold ρmod
i (δ) as:

ρmod
i (δ) = wiρi(δ), 1 ≤ i ≤ p, (A.64)

where wi = D(i)/
∑p

j=1D(j), in which D(i) is the ith diagonal element of the diagonal

matrix D
1
2

(Ux)T (Ux(Ux)T )−2Ux (recall Sec. A.2).

Using Theorem A.1 and Theorem A.2 the p-value associated with variable Xi at

degree level δ can be approximated as:

pvδ(i) ≈ 1− exp(−ξp,q,n,δ,ρmod
i (δ)). (A.65)

The set of p-values (A.65), i = 1, . . . , p, provides a measure of importance of each

variable Xi in predicting Yj’s. Under a block-sparsity null hypothesis, the most

161



Part x
X1

X2

Xi

Xp

Part y
Y1

Y2

Yj

Yq

Figure A.1: Predictive correlation screening thresholds the matrix Hxy in (A.10) to
find variables Xi that are most predictive of responses Yj. This is equiv-
alent to finding sparsity in a bipartite graph Gρ∗(Hxy) with parts x and
y which have p and q vertices, respectively. For 1 ≤ i ≤ p and 1 ≤ j ≤ q,
vertex Xi in part x is connected to vertex Yj in part y if |hxyij | > ρ∗.

important variables would be the ones that have the smallest p-values. Similar to

the result in (Hero and Rajaratnam, 2011, 2012), there is a phase transition in the

p-values as a function of threshold ρ. More exactly, there is a critical threshold ρc,δ

such that if ρ > ρc,δ, the average number E[Nxy
δ,ρ] of discoveries abruptly decreases to

0 and if ρ < ρc,δ the average number of discoveries abruptly increases to p. The value

of this critical threshold is:

ρc,δ =
√

1− (cxyn,δp)
−2δ/(δ(n−2)−2), (A.66)

where cxyn,δ = anδJ(fUx
• ,U

y
∗1 ,...,U

y
∗δ

). When δ = 1, the expression given in (A.66) is iden-

tical, except for the constant cxyn,δ, to the expression (3.14) in (Hero and Rajaratnam,

2011).

Expression (A.66) is useful in choosing the PCS correlation threshold ρ∗. Selecting

ρ∗ slightly greater than ρc,δ will prevent the bipartite graph Gρ∗(Hxy) from having an

overwhelming number of edges.

Normally δ = 1 would be selected to find all regressor variables predictive of at

least 1 response variable Yj. A value of δ = d > 1 would be used if the experimenter

were only interested in variables that were predictive of at least d of the responses.
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Pseudo-code for the complete algorithm for variable selection is shown in Fig. 4. The

worse case computational complexity of the PCS algorithm is only O(np log q).

Algorithm 4: Predicive Correlation Screening (PCS) Algorithm
• Initialization:
1. Choose an initial threshold ρ∗ > ρc,δ;
2. Calculate the degree of each vertex on side x of the bipartite graph
Gρ∗(Hxy) ;
3. Select a value of δ ∈ {1, · · · ,max1≤i≤p d

x
i };

for i = 1 to p do
Find ρi(δ) as the δth greatest element of {|hij|, 1 ≤ j ≤ q};
Compute ρmod

i (δ) using (A.64);
Approximate the p-value corresponding to the ith independent variable Xi

as pvδ(i) ≈ 1− exp(−ξp,q,n,δ,ρmod
i (δ)) ;

• Screen variables by thresholding the p-values pvδ(i) at desired significance
level ;

A.5 Two-stage predictor design

Assume there are a total of t samples {Yi,Xi}ti=1 available. During the first stage

a number n ≤ t of these samples are assayed for all p variables and during the second

stage the rest of the t− n samples are assayed for a subset of k ≤ p of the variables.

Subsequently, a k-variable predictor is designed using all t samples collected during

both stages. The first stage of the PCS predictor is implemented by using the PCS

algorithm with δ = 1.

As this two-stage PCS algorithm uses n and t samples in stage 1 and stage 2

respectively, we denote the algorithm above as the n|t algorithm. Experimental results

in Sec. A.7 show that for n � p, if LASSO or correlation learning is used instead

of PCS in stage 1 of the two-stage predictor the performance suffers. An asymptotic

analysis (as the total number of samples t→∞) of the above two-stage predictor can

be performed to obtain optimal sample allocation rules for stage 1 and stage 2. The
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asymptotic analysis discussed in Sec. A.6 provides minimum Mean Squared Error

(MSE) under the assumption that n, t, p, and k satisfy the budget constraint:

np+ (t− n)k ≤ µ, (A.67)

where µ is the total budget available. The motivation for this condition is to bound

the total sampling cost of the experiment.

A.6 Optimal stage-wise sample allocation

We first give theoretical upper bounds on the Family-Wise Error Rate (FWER)

of performing variable selection using p-values obtained via PCS. Then, using the

obtained bound, we compute the asymptotic optimal sample size n used in the first

stage of the two-stage predictor, introduced in the previous section, to minimize the

asymptotic expected MSE.

We assume that the response Y satisfies the following ground truth model:

Y = ai1Xi1 + ai2Xi2 + · · ·+ aikXik + N, (A.68)

where π0 = {i1, · · · , ik} is a set of distinct indices in {1, . . . , p}, X = [X1, X2, · · · , Xp]

is the vector of predictors, Y is the q-dimensional response vector, and N is a noise

vector statistically independent of X. Xi1 , · · · , Xik are called active variables and

the remaining p − k variables are called inactive variables. We assume that the p-

dimensional vector X follows a multivariate normal distribution with mean 0 and

p × p covariance matrix Σ = [σij]1≤i,j≤p, where Σ has the following block diagonal

structure:

σij = σji = 0, ∀ i ∈ π0, j ∈ {1, · · · , p}\π0. (A.69)
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In other words active (respectively inactive) variables are only correlated with the

other active (respectively inactive) variables. Also, we assume that N follows a mul-

tivariate normal distribution with mean 0 and covariance matrix σIq×q.

We use the PCS algorithm of Sec. A.4 with δ = 1 to select the k variables with

the smallest p-values. These selected variables will then be used as estimated active

variables in the second stage. The following theorem gives an upper bound on the

probability of selection error for the PCS algorithm.

Theorem A.3. If n ≥ Θ(log p) then with probability at least 1 − q/p, PCS recovers

the exact support π0.

Proof. First we prove the theorem for q = 1. Without loss of generality assume

Y = a1X1 + a2X2 + · · ·+ akXk + σN, (A.70)

where N is follows the standard normal distribution. Note that since q = 1, a1, · · · , ak

are scalars. Defining b = Σ1/2a, the response Y can be written as:

Y = a1Z1 + a2Z2 + · · ·+ akZk + σN, (A.71)

in which Z1, · · · , Zk are i.i.d. standard normal random variables. Assume U1, · · · ,Up,UN

represent the U-scores (which are in Sn−2) corresponding to Z1, · · · , Zp, N , respec-

tively. It is easy to see:

Uy =
b1U1 + b2U2 + · · ·+ bkUk + σUN
‖b1U1 + b2U2 + · · ·+ bkUk + σUN‖

. (A.72)

If U and V are the U-scores corresponding to two random variables, and r is the

correlation coefficient between the two random variables, we have:

|r| = 1− (min{‖U−V‖, ‖U + V‖})2

2
. (A.73)
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Let ry,i represent the sample correlation between Y and Xi. Here, we want to upper

bound prob{|ry,1| < |ry,k+1|}. We have:

prob{|ry,1| < |ry,k+1|} =

prob{1− (min{‖U1 −Uy‖, ‖U1 + Uy‖})2

2
<

1− (min{‖Uk+1 −Uy‖, ‖Uk+1 + Uy‖})2

2
} = (A.74)

prob{min{‖U1 −Uy‖, ‖U1 + Uy‖} >

min{‖Uk+1 −Uy‖, ‖Uk+1 + Uy‖}} ≤ (A.75)

prob{‖U1 −Uy‖ >

min{‖Uk+1 −Uy‖, ‖Uk+1 + Uy‖}} =

prob{{‖U1 −Uy‖ > ‖Uk+1 −Uy‖} ∪

{‖U1 −Uy‖ > ‖Uk+1 + Uy‖}} ≤

prob{‖U1 −Uy‖ > ‖Uk+1 −Uy‖} +

prob{‖U1 −Uy‖ > ‖Uk+1 + Uy‖} = (A.76)

2 prob{‖U1 −Uy‖ > ‖Uk+1 −Uy‖}, (A.77)

in which, the last inequality holds since Uk+1 is uniform over Sn−2 and is independent

of U1 and Uy. Therefore, it suffices to upper bound p1 := prob{‖U1 − Uy‖ >

‖Uk+1 −Uy‖}. Define:

V = b2U2 + · · ·+ bkUk, (A.78)

and

U∗ = V/‖V‖. (A.79)

By symmetry, U∗ is uniform over Sn−2. Hence:

Uy =
b1U1 + ‖V‖U∗
‖b1U1 + ‖V‖U∗‖

. (A.80)
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Since ‖V‖ ≤ |b2|+ · · ·+ |bk|, we have:

|b1|
‖V‖

≥ |b1|
|b2|+ · · ·+ |bk|

=
|b1|
c1

, (A.81)

where c1 := |b2|+ · · ·+ |bk|. Define:

θ1 = cos−1(UT
y U1), (A.82)

and

θ1 = cos−1(UT
y U∗). (A.83)

It is easy to see that:
sin θ1

sin θ2

≤ c1

|b1|
. (A.84)

For each 0 ≤ θ ≤ π, define:

β1(θ) = max
0≤θ′≤π

θ

θ + θ′
s.t. sin θ

sin θ′
≤ c1

|b1|
. (A.85)

Now fix the point U1 on Sn−2. Define f(θ) as the probability distribution of θ2. Also,

define p(θ) as the probability that the angle between the uniformly distributed (over

Sn−2) point Uk+1 and Uy is less than θ. Since U1 is independent of U∗ and Uk+1 is

independent of Uy, clearly:

p(θ) =

θ∫
0

f(θ′)dθ′. (A.86)

We have:

p1 ≤
π∫

0

p(β1(θ)θ)f(θ)dθ

=

π/2∫
0

(p(β1(θ)θ) + p(β1(π − θ)(π − θ))) f(θ)dθ, (A.87)
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where the last equality holds because f(θ) = f(π − θ). Noting the fact that:

π∫
0

p(θ)f(θ)dθ =

π/2∫
0

(p(θ) +

p(π − θ))f(θ)dθ =

π/2∫
0

f(θ)dθ =
1

2
. (A.88)

we conclude:

p1 ≤
1

2
−

π/2∫
0

{(p(θ)− p(β1(θ)θ)) +

(p(π − θ)− p(β1(π − θ)(π − θ)))}f(θ)dθ. (A.89)

Hence by (A.86), for any 0 < θ0 < π/2:

p1 ≤
1

2
−

π/2∫
θ0

pγ1(θ)f(θ)dθ, (A.90)

in which

pγ1(θ) = p(θ + γ1θ)− p(θ − γ1θ)

= prob{θ − γ1θ ≤ θ2 ≤ θ + γ1θ}, (A.91)

with

γ1 = min
θ0≤θ≤π−θ0

1− β1(θ) = 1− max
θ0≤θ≤π−θ0

β1(θ). (A.92)

It is easy to check that γ1 > 0. Therefore, since pγ1(θ) is an increasing functions of θ

for 0 ≤ θ ≤ π/2, we conclude:

p1 ≤
1

2
−

π/2∫
θ0

pγ1(θ0)f(θ)dθ. (A.93)
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Choose θ0 so that θ0 = π
2+γ1

. We have:

p1 ≤
1

2
− pγ1(π/(2 + γ1))

π/2∫
π/(2+γ1)

f(θ)dθ

=
1

2
−

π(1+γ1)/(2+γ1)∫
π(1−γ1)/(2+γ1)

f(θ)dθ

π/2∫
π/(2+γ1)

f(θ)dθ

≤ 1

2
−

π/2+γ1π/6∫
π/2−γ1π/6

f(θ)dθ

π/2∫
π/2−γ1π/6

f(θ)dθ

≤ 1

2
− 2

 π/2∫
π/2−γ1π/6

f(θ)dθ


2

, (A.94)

in which, the last inequality holds, since 0 < γ1 < 1. Defining λ1 = sin(π/2− γ1π/6)

and using the formula for the area of the spherical cap, we will have:

π/2∫
π/2−γ1π/6

f(θ)dθ =

I1((n− 2)/2, 1/2)− Iλ1((n− 2)/2, 1/2)

2I1((n− 2)/2, 1/2)
, (A.95)

in which

Ix(a, b) =

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

, (A.96)

is the regularized incomplete beta function. Hence:

π/2∫
π/2−γ1π/6

f(θ)dθ =

∫ 1

λ1
t(n−4)/2/

√
1− tdt

2
∫ 1

0
t(n−4)/2/

√
1− tdt

. (A.97)
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Note that we have:

∫ 1

λ1
t(n−4)/2/

√
1− tdt

2
∫ λ1

0
t(n−4)/2/

√
1− tdt

≥
∫ 1

λ1
t(n−4)/2/

√
1− λ1dt

2
∫ 1

0
t(n−4)/2/

√
1− λ1dt

=
1− λ(n−2)/2

1

λ
(n−2)/2
1

:= κ1. (A.98)

Hence:

π/2∫
π/2−γ1π/6

f(θ)dθ ≥
∫ 1

λ1
t(n−4)/2/

√
1− tdt

2(1 + 1/κ1)
∫ 1

λ1
t(n−4)/2/

√
1− tdt

=
κ1

2(κ1 + 1)
=

1− λ(n−2)/2
1

2
. (A.99)

Hence by (A.94):

p1 ≤ λ
(n−2)/2
1 − λn−2

1 ≤ λ
(n−2)/2
1 . (A.100)

Therefore, p1 decreases at least exponentially by n.

Assume P (i) for 1 ≤ i ≤ k, represents the probability that the active variable Xi

is not among the selected k variables. By (A.77) and using the union bound we have:

P (1) ≤ 2(p− k)λ
(n−2)/2
1 . (A.101)

Similar inequalities can be obtained for P (2), · · · , P (k) which depend on λ2, · · · , λk,

respectively. Finally, using the union bound, the probability P that all the active

variables are correctly selected satisfies:

P ≥ 1− 2(p− k)
k∑
i=1

λ
(n−2)/2
i ≥ 1− 2k(p− k)λ(n−2)/2, (A.102)

where λ := max1≤i≤k λi. This concludes that if n = Θ(log p), with probability at least

170



1− 1/p the exact support can be recovered using PCS.

For q > 1, by union bound, the probability of error becomes at most q times larger

and this concludes the statement of theorem A.3.

Theorem A.3 can be compared to Theorem 1 in (Obozinski et al., 2008) for recov-

ering the support π0 by minimizing a LASSO-type objective function. The constant

in Θ(log p) of Theorem A.3 is increasing in the dynamic range coefficient

max
i=1,··· ,q

|π0|−1
∑

j∈π0 |bij|
minj∈π0 |bij|

∈ [1,∞), (A.103)

where B = [b1, · · · ,bp] = Σ1/2A. The worst case (largest constant in Θ(log p))

occurs when there is high dynamic range in some rows of the q × p matrix B.

The following theorem states the optimal sample allocation rule for the two-stage

predictor, as t→∞.

Theorem A.4. The optimal sample allocation rule for the two-stage predictor intro-

duced in Sec. A.5 under the cost condition (A.67) is

n =

 O(log t), c(p− k) log t+ kt ≤ µ

0, o.w.
(A.104)

Proof. Proof is similar to the proof of Theorem IV.12 and is omitted.

A.7 Simulation results

Simulation results for the case of q > 1 can be found in Sec. 4.4.

A.8 Conclusion

In this Appendix, we proposed a generalization of the SPARCS algorithm pre-

sented in Chapter IV to the case of multi-dimensional response. Similar to SPARCS,
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this generalization is specifically useful in cases where n � p and the high cost of

assaying all regressor variables justifies a two-stage design: high throughput variable

selection followed by predictor construction using fewer selected variables. Asymp-

totic analysis and experiments showed advantages of PCS compared to LASSO.
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