
EECS659
Final Exam

Due Wed. Dec. 19, 2001

This take home exam is open book and open notes and you can use any sources that you please.
However you are required to complete the exam by yourself, you are not allowed to collaborate
in any way with anyone. Please answer questions as completely as possible to obtain full credit.
Provide copies of your matlab or other routines you wrote in addition to their output. If you feel
that additional assumptions need to be made to answer any part of a question state your assumption
explicitly. Please make sure that your name, social security number, and signed honor code are on
your exam, and if not using a blue book, make sure all of your pages are stapled in the correct
order before handing in.

1. [33] RLS/LMS via MLE: Assume that the primary signal has the representation Yk =
W T Xk + Nk in terms of the vector of p weights W = [W1, . . . , Wp]T , the reference signal
vector Xk, and the residual noise Nk. Fix k and assume that Nl is independent Gaussian
with zero mean and variance σ2

l = λl−k, l = 1, 2, . . . , k, λ ∈ [0, 1].

(a) Derive the maximum likelihood estimator Ŵk of W based on past and present observa-
tions {(Xi, Yi)}k

i=1 and show that the RLS algorithm gives an exact update Ŵk → Ŵk+1.

(b) Now assume that W has an a priori Gaussian distribution with mean vector µW and
covariance matrix RW . Find the MAP estimate of W , give an exact update algorithm
Ŵk → Ŵk+1, and compare to standard RLS. Comment on the behavior of your algorithm
for RW → 0 and RW →∞.

(c) Under what model for Nk does the LMS algorithm result from the approach of (a)?
Using this model, derive an analog to LMS for random W via the approach of (b).

2. [33] Robust RLS/LMS via MLE: Under the same assumptions as in Problem 1, we now
assume that the residual Nk is i.i.d. with a heavy tailed Student-t distribution, i.e the density

of Nk is pNl
(z) = α

(
1 + (z/λl−k)2

)−(λl−k+1)/2
, where α is a normalizing constant depending

on λ. This formulation is motivated by the desire to reduce the influence of large residual
errors on the weight update algorithm.

(a) Write down the likelihood function for W based on {(Xi, Yi)}k
i=1. Compare this to the

Gaussian likelihood function of Problem (1a) when the residuals Yi −W T Xi are small,
i = 1, . . . , k. Compare the influence of an outlier (large residual) on this likelihood vs
the Gaussian likelihood of (1a) ? Do your results make sense?

(b) Derive an iterative maximum likelihood algorithm for W using steepest descent (gradient
search), Fisher scoring, or other favorite algorithm, and compare to the RLS and LMS
recursions.

(c) Use Matlab or other routine to simulate the algorithm performance and compare to
RLS/LMS.
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3. [33] Generalized Linear Models: As in class you are given that the primary i.i.d. signal
Yk has a specified distribution with parameter θ. From this you are to find the linkage
function g(θ) and the corresponding non-linear representation: Yk = g−1(W T Xk) + Nk for
the primary signal in terms of a linear combination W T Xk of the reference signal components.
The optimal weight vector W is then obtained by maximizing the log-likelihood expressed
in terms of W T Xk. For each of the following find the linkage function and give an iterative
procedure for finding W :

(a) Yk follows a Gaussian distribution with density pY (y) = 1√
2π

exp
(− 1

2(y − θ)2
)
, −∞ <

y < ∞.

(b) Yk follows a geometric distribution with mass function pY (y) = P (Y = y) = 1
1−θθy, y =

0, 1, 2 . . .. Compare to the Poisson example derived in class.

(c) Yk follows an exponential distribution with density pY (y) = θe−θy, y ≥ 0. Compare to
the result of (a) and (b).
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