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• Most image reconstruction algorithms of interest are biased.  
• Tradeoff between image bias, resolution, and noise.  

Low bias,
but noisy images

Low noise,
but biased images

– For a given amount of bias or resolution, how noisy will the images be?
– How should one quantify bias, resolution, and noise in a meaningful way?
– How are these quantities related?

• More specifically
– what is the fundamental limit of a particular imaging system’s performance, 

independent of the choice of estimation algorithm?



Estimator mean, bias and variance

ˆ θ p = ep
T ˆ θ • Reconstruction at pixel p

• Mean function

• Bias function

• Variance function

mθ ≡ Eθ
ˆ θ p[ ]

bθ ≡ Eθ
ˆ θ p[ ]−θp
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Fundamental Limits on Variance
• CR Bound (biased)

• Alternative form

• Uniform CR Bound (                              )

varθ
ˆ θ p( )≥ ∇mθ[ ]T FY −1 ∇mθ[ ]

varθ
ˆ θ p( )≥ ep + ∇bθ[ ]T FY−1 ep + ∇bθ[ ]
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UCRB Applied to Image Restoration
• Image restoration model: Gaussian blur with additive 

gaussian noise

• UCRB specifies fundamental limit on restoration 
variance using any deconvolution algorithm



Image Restoration Example:
Mean Gradient vs. Point Response

• Bias-gradient norm δ=0.1 (left) and δ=0.5 (right)



Deficiency of UCRB
• Estimator point response functions can have identical bias gradient length, but 

different resolution properties
– Identical bias-gradient length δ = 0.5
– Different spread (or 2nd moment)

• Hence two different systems can have different recoverable resolution, but 
identical bias gradient length and variance



Extended UCRB

• Perform constrained minimization on variance bound

– Subject to the following two constraints:

1) Maximal Bias Variation Constraint

2) Resolution Constraint

• Calculate resulting Bias-Resolution-Variance surface

( ) ( ) ( )θθθ

θ

θ beFbe pY
T

pp
b

∇+∇+≥ −

∇

1 argmin ˆvar

22
δθ ≤∇

C
b

ep + ∇bθ( )T Mp ep + ∇bθ( )
ep + ∇bθ( )T ep + ∇bθ( )

≤ γ 2



Geometric Interpretation of UCRB
with Resolution Constraint

varθ
ˆ θ p( )≥  

arg - min
d ∈B∩ R

  ep + d[ ]T FY−1 ep + d[ ]
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Geometric Interpretation of UCRB
with Resolution Constraint

varθ
ˆ θ p( )≥  

arg - min
d ∈B∩ R

  ep + d[ ]T FY−1 ep + d[ ]

-1
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Geometric Interpretation of UCRB
with Resolution Constraint

varθ
ˆ θ p( )≥  

arg - min
d ∈B∩ R

  ep + d[ ]T FY−1 ep + d[ ]

-1

d min

B = d : d C
2 ≤ δ 2{ }

R = d :
ep + d( )T Mp ep + d( )
ep + d( )T e p + d( )

≤ γ 2
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Bias-Resolution-Variance
Tradeoff Surface

Bias Gradient 
Constraint 

Active

Bias Gradient, 
Resolution 
Constraints 

Active

Critical 
Region



Image Restoration Example
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Tikonov PWLS Estimator: Trajectory #1

• Penalized Weighted 
Least-Squares estimator 
regularized with  
Identity-matrix penalty P

– Penalize squared-
magnitude (energy) of 
individual pixels

Smaller Penalty
(noisier image)

β = 10-6

β = 10-3 

β = 10-1 

Larger Penalty
(smoother image)



Roughness PWLS Estimator: Trajectory #2

• Penalized Weighted 
Least-Squares estimator 
regularized with 
roughness penalty P

– First Order Pixel 
Neighborhood

– Penalize differences 
between neighboring 
pixels
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Larger Penalty
(smoother image)

β = 10-6

β = 10-3 

β = 10-1 

Smaller Penalty
(noisier image)



PWLS Estimator Trajectories #1, #2

• Roughness penalty 
(Laplace) estimator lies 
slightly above bound 
surface

• Bound achieved by 
Identity-regularized 
estimator

Smaller Penalty
(noisier image)

Larger Penalty
(smoother image)



MM T-PWLS Estimator Trajectory #3

• Penalized Weighted 
Least-Squares estimator 
regularized with   
Identity penalty

• Mis-matched Estimator
– 1.5pixel FWHM blur
– Estimator assumes a 

1.75pixel FWHM blur
– Estimator is           

over-compensating

Smaller Penalty
(noisier image)

Larger Penalty
(smoother image)

Additional 
variance due to 
mis-matched 
estimator



MM T-PWLS Estimator: Trajectory #4

Smaller Penalty
(noisier image)

Larger Penalty
(smoother image)

β = 0 

• Penalized Weighted 
Least-Squares estimator 
regularized with   
Identity penalty

• Mis-matched Estimator
– 1.75pixel FWHM blur
– Estimator assumes a 

1.5pixel FWHM blur
– Estimator is           

under-compensating



Conclusions

• Resolution constraint prescibes estimator-
independent CR bound

• Bound can be used to:
– assess optimality of a given reconstruction/restoration 

algorithm in terms of bias-res-var tradeoff
– Perform optimal system design

• Bound is achieved by PWLS estimator with penalty 
matched to the bias gradient norm matrix

• For unknown point spread response bound cannot be 
attained for any estimator
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