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Joint Bayesian endmember extraction and linear
unmixing for hyperspectral imagery

Nicolas Dobigeon, Saı̈d Moussaoui, Martial Coulon,
Jean-Yves Tourneret and Alfred O. Hero

Abstract—This paper studies a fully Bayesian algorithm for
endmember extraction and abundance estimation for hyper-
spectral imagery. Each pixel of the hyperspectral image is
decomposed as a linear combination of pure endmember spectra
following the linear mixing model. The estimation of the unknown
endmember spectra is conducted in a unified manner by gener-
ating the posterior distribution of abundances and endmember
parameters under a hierarchical Bayesian model. This model
assumes conjugate prior distributions for these parameters,
accounts for non-negativity and full-additivity constraints, and
exploits the fact that the endmember proportions lie on a lower
dimensional simplex. A Gibbs sampler is proposed to overcome
the complexity of evaluating the resulting posterior distribution.
This sampler generates samples distributed according to the
posterior distribution and estimates the unknown parameters
using these generated samples. The accuracy of the joint Bayesian
estimator is illustrated by simulations conducted on synthetic and
real AVIRIS images.

Index Terms—Hyperspectral imagery, endmember extraction,
linear spectral unmixing, Bayesian inference, MCMC methods.

I. INTRODUCTION

Over the last several decades, much research has been
devoted to the spectral unmixing problem. Spectral unmixing
is an efficient way to solve standard problems encountered in
hyperspectral imagery. These problems include pixel classifi-
cation [1], material quantification [2] and subpixel detection
[3]. Spectral unmixing consists of decomposing a pixel spec-
trum into a collection of material spectra, usually referred to as
endmembers, and estimating the corresponding proportions or
abundances [4]. To describe the mixture, the most frequently
encountered model is the macroscopic model which gives a
good approximation in the reflective spectral domain ranging
from 0.4µm to 2.5µm [5]. The linearization of the non-
linear intimate model proposed by Hapke in [6] results in this
macroscopic model [7]. The macroscopic model assumes that
the observed pixel spectrum is a weighted linear combination
of the endmember spectra.
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As reported in [4], linear spectral mixture analysis (LSMA)
has often been handled as a two step procedure: the endmem-
ber extraction step and the inversion step, respectively. In the
first step of analysis, the macroscopic materials that are present
in the observed scene are identified by using an endmember
extraction algorithm (EEA). The most popular EEAs include
pixel purity index (PPI) [8] and N-FINDR [9], that apply
a linear model for the observations with non-negativity and
full-additivity1 constraints. This model results in endmember
spectra located on the vertices of a lower dimensional sim-
plex. PPI and N-FINDR estimate this simplex by identifying
the largest simplex contained in the data. Another popular
alternative, called vertex component analysis (VCA) has been
proposed in [10]. A common assumption in VCA, PPI and
N-FINDR is that they require pure pixels to be present in
the observed scene, where pure pixels are pixels composed
of a single endmember. Alternatively, Craig [11] and Bowles
[12] have proposed minimum volume transforms (MVT) to
find the smallest simplex that contains all the pixels [11].
However, these MVT-based methods are not fully automated
techniques: they provide results that strongly depend on i)
the algorithm initialization, ii) some ad hoc parameters that
have to be selected by the user. More recently, a new MVT
algorithm has been introduced in [13]. This minimum volume
simplex analysis provides a sub-optimal solution of the non-
convex optimization problem. More generally, the perfor-
mances of the MVT approaches avoid the difficult problem
of direct parameter estimation on the simplex and may be
drastically affected by the presence of outliers and noise. The
interested reader is invited to consult [14] and [15] for a
recent performance comparison of some standard EEAs. The
second step in LSMA, called the inversion step, consists of
estimating the proportions of the materials identified by EEA
[16]. The inversion step can use various strategies such as
least square estimation [17], maximum likelihood estimation
[18] and Bayesian estimation [19].

The central premise of this paper is to propose an algorithm
that estimates the endmember spectra and their respective
abundances jointly in a single step. This approach casts
LSMA as a blind source separation (BSS) problem [20]. In
numerous fields, independent component analysis (ICA) [21]
has been a mainstay approach to solve BSS problems. In
hyperspectral imagery, ICA has also been envisaged [22].
However, as illustrated in [16] and [23], ICA may perform
poorly for LSMA due to the strong dependence between

1The full-additivity constraint, that will be detailed in the following section,
refers to a unit `1-norm.
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the different abundances [24]. Inspired by ICA, dependent
component analysis has been introduced in [25] to exploit
this dependance. However, this approach assumes that the
hyperspectral observations are noise-free. Alternatively, non-
negative matrix factorization (NMF) [26] can also be used to
solve BSS problem under non-negativity constraints. In [27],
an NMF algorithm that consists of alternately updating the
signature and abundance matrices has been successfully ap-
plied to identify constituent in chemical shift imaging. In this
work, the additivity constraint has not been taken into account.
Basic simulations conducted on synthetic images show that
such MNF strategies lead to weak estimation performances.
In [28], an iterative algorithm called ICE (iterated constrained
endmembers) is proposed to minimize a penalized criterion.
As noted in [25], results provided by ICE strongly depend
on the choice of the algorithm parameters. More recently,
Miao et al. have proposed in [29] another iterated optimization
scheme performing NMF with an additivity constraint on the
abundance coefficients. However, as this constraint has been
included in the objective function, it is not necessarily ensured.
In addition the performances of the algorithm in [29] decrease
significantly when the noise level increases.

The Bayesian model studied in this paper uses a Gibbs
sampling algorithm to efficiently solve the constrained spectral
unmixing problem without requiring the presence of pure
pixels in the hyperspectral image. In many works, Bayesian
estimation approaches have been adopted to solve BSS prob-
lems (see for example [30]) like LSMA. The Bayesian for-
mulation allows one to directly incorporate constraints into
the model such as sparsity [31], non-negativity [32] and full
additivity (sum-to-one constraint) [33]. In this paper, prior
distributions are proposed for the abundances and endmember
spectra to enforce the constraints inherent to the hyperspectral
mixing model. These constraints include non-negativity and
full-additivity of the abundance coefficients (as in [19] and
[34]) and non-negativity of the endmember spectra. To our
knowledge, this is the first time that non-negativity constraints
for endmember spectra as well as additivity and non-negativity
constraints for the abundances are jointly considered in a
Bayesian model for hyperspectral imagery. In [34], Parra et
al. propose a Bayesian formulation of the endmember and
abundance estimation problem. However, this approach lies on
a difficult ad hoc autoregressive modeling of the endmember
spectra, which does not necessarily ensure the required posi-
tivity constraints. In addition, this MAP estimation requires the
use of an optimization scheme whose convergence is difficult
to assess.

Moreover, the proposed joint LSMA approach is able to
solve the endmember spectrum estimation problem directly
on a lower dimensional space within a Bayesian framework.
We believe that this is one of the principal factors leading to
performance improvements that we show on simulated and real
data in Sections V and VI. By estimating the parameters on
the lower dimensional space we effectively reduce the number
of degrees of freedom of the parameters relative to other
methods (e.g., [32], [34]), translating into lower estimator
bias and variance. The problem of hyperparameter selection
in our Bayesian model is circumvented by adopting the hie-

rarchical Bayesian approach of [19] that produces a parameter-
independent Bayesian posterior distribution for the endmember
spectra and abundances. To overcome the complexity of the
full posterior distribution, a Gibbs sampling strategy is derived
to approximate standard Bayesian estimators, e.g., the mini-
mum mean squared error (MMSE) estimator. Moreover, as
the full posterior distribution of all the unknown parameters is
available, confidence intervals can be easily computed. These
measures allow one to quantify the accuracy of the different
estimates.

The paper is organized as follows. The observation model
is described in Section II. The different quantities necessary
to the Bayesian formulation are enumerated in Section III.
Section IV presents the proposed Gibbs sampler for joint
abundance and endmember estimation. Simulation results ob-
tained with synthetic and real AVIRIS data are reported in
Sections V and VI respectively. Section VII concludes the
paper. An appendix provides details on our parameterization
of the simplex and selecting relevant and tractable priors.

II. LINEAR MIXING MODEL AND PROBLEM STATEMENT

Consider P pixels of an hyperspectral image acquired in
L spectral bands. According to the linear mixing model
(LMM), described for instance in [4], the L-spectrum yp =
[yp,1, . . . , yp,L]T of the pth pixel (p = 1, . . . , P ) is assumed
to be a linear combination of R spectra mr corrupted by an
additive Gaussian noise

yp =
R∑
r=1

mrap,r + np (1)

where mr = [mr,1, . . . ,mr,L]T denotes the spectrum of the
rth material, ap,r is the fraction of the rth material in the pth
observation, R is the number of materials, L is the number of
available spectral bands and P is the number of observations
(pixels). Moreover, in (1), np = [np,1, . . . , np,L]T is an addi-
tive noise sequence which is assumed to be an independent and
identically distributed (i.i.d.) zero-mean Gaussian sequence
with covariance matrix Σn = σ2IL, where IL is the identity
matrix of dimension L× L, i.e.,

np ∼ N (0L,Σn) . (2)

The proposed model in (2) does not account for any possible
correlation in the noise sequences but has been widely adopted
in the literature [35]–[37]. However, some simulation results
reported in paragraph V-D will show that the proposed algo-
rithm is robust to the violation of the i.i.d. noise assumption.
Note finally that the model in (1) can be easily modified (see
[38]) to handle more complicated noise models with different
variances in each spectral band as in [39], or by taking into
account correlations between spectral bands as in [19].

Due to physical considerations, described in [3], [19] or
[40], the fraction vectors ap = [ap,1, . . . , ap,R]T in (1) satisfy
the following non-negativity and full-additivity (or sum-to-
one) constraints{

ap,r ≥ 0, ∀r = 1, . . . , R,∑R
r=1 ap,r = 1.

(3)



3

In other words, the p abundance vectors belong to the space

A = {a : ‖a‖1 = 1 and a � 0} (4)

where ‖·‖1 is the `1 norm defined as ‖x‖1 =
∑
i |xi|, and

a � 0 stands for the set of inequalities {ar ≥ 0}r=1,...,R.
Moreover, the endmember spectra component mr,l must sat-
isfy the following non-negativity constraints

mr,l ≥ 0, ∀r = 1, . . . , R, ∀l = 1, . . . , L. (5)

Considering all pixels, standard matrix notations yield

Y = MA + N (6)

where

Y = [y1, . . . ,yP ] , M = [m1, . . . ,mR] ,
A = [a1, . . . ,aP ] , N = [n1, . . . ,nP ] . (7)

In this work, we propose to estimate A and M from the
noisy observations Y under the constraints in (3) and (5).
Note that the unconstrained BSS problem for estimating M
and A from Y is ill-posed: if {Y,A} is an admissible
estimate then

{
YH,HTA

}
is also admissible for any unitary

matrix H. In the LSMA problem, this non-uniqueness can
be partially circumvented by additional constraints such as
full-additivity, which enables one to handle the scale inde-
terminacy. Consequently, these unit `1-norm constraints on
the abundance vectors avoid using more complex strategies
for direct estimation of the scale [41]. Despite the constraints
in (3) and (5), uniqueness of the couple {M,A} solution of
the LSMA (6) is not systematically ensured. To illustrate this
problem, 50 admissible solutions2 have been depicted in Fig. 1
for R = 2 endmembers involved in the mixing of P = 2500
pixels [42]. In the following section, the Bayesian model used
for the LSMA is presented.

Fig. 1. Range of admissible solution for two endmember spectra : construc-
tion concrete (left) and red brick (right). The actual endmember (red lines)
are mixed according (1) under the constraints in (3) with random proportions
to obtain P = 2500 pixels. 50 admissible solutions (blue lines) of the BSS
problems in (6) are generated using [42].

III. BAYESIAN MODEL

A. Likelihood

The linear mixing model defined in (1) and the statistical
properties in (2) of the noise vector np result in a conditionally
Gaussian distribution for the observation of the pth pixel:

2Admissible solutions refer to couples {M,A} that satisfy (3) and (5) and
that follow the model (1) in the noise-free case.

yp|M,ap, σ2 ∼ N
(
Map, σ2IL

)
. Therefore, the likelihood

function of yp can be expressed as

f
(
yp
∣∣M,ap, σ2

)
=
(

1
2πσ2

)L
2

exp

[
−‖yp −Map‖2

2σ2

]
,

(8)
where ‖x‖ =

(
xTx

) 1
2 is the `2 norm. Assuming the inde-

pendence between the noise sequences np (p = 1, . . . , P ), the
likelihood function of all the observations Y is:

f
(
Y
∣∣M,A, σ2

)
=

P∏
p=1

f
(
yp
∣∣M,ap, σ2

)
. (9)

B. Prior model for the endmember spectra

1) Dimensionality reduction: It is interesting to note that
the unobserved matrix X = MA = Y −N is rank deficient
under the linear model (1). More precisely, the set

SM =

{
x ∈ RL; x =

R∑
r=1

λrmr,

R∑
r=1

λr = 1, λr ≥ 0

}
(10)

is a (R − 1)-dimensional convex polytope of RL whose
vertices are the R endmember spectra mr (r = 1, . . . , R)
to be recovered. Consequently, in the noise-free case, X can
be represented in a suitable lower-dimensional subset VK of
RK without loss of information. To illustrate this property,

Fig. 2. Example of hyperspectral data observed in 3 spectral bands. The
mixed pixels (blue points) belong to the R-dimensional convex polytope SM
(red lines) whose vertices are the endmembers spectra m1, . . . ,mR (red
stars). The first two principal axes estimated by a PCA appear in dashed lines
and define the projection subset VK .

P = 1000 pixels resulting from a noise-free mixture of R = 3
endmembers are represented in Fig. 2. As noted in [4], dimen-
sionality reduction is a common step of the LSMA, adopted by
numerous EEAs, such as N-FINDR [9] or PPI [8]. Similarly,
we propose to estimate the projection tr (r = 1, . . . , R) of the
endmember spectra mr in the subspace VK . The identification
of this subspace can be achieved via a standard dimension
reduction procedure. In the sequel, we propose to define VK
as the subspace spanned by K orthogonal axes v1, . . . ,vK
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identified by a principal component analysis (PCA) on the
observations Y [43]

VK = span (v1, . . . ,vK) . (11)

The first two principal axes are identified in Fig. 2 for
the synthetic hyperspectral data. In the following paragraph,
the PCA is described. Note however that this PCA-based
dimension reduction step can be easily replaced by other
projection techniques, such as the maximum noise fraction
(MNF) transform [44] that has been considered in paragraph
V-D.

2) PCA projection: The L×L empirical covariance matrix
Υ of the data Y is given by

Υ =
1
P

P∑
p=1

(yp − ȳ) (yp − ȳ)T (12)

where ȳ is the empirical mean:

ȳ =
1
P

P∑
p=1

yp. (13)

Let {
D = diag (λ1, . . . , λK) ,

V = [v1, . . . ,vK ]T
(14)

denote respectively the diagonal matrix of the K highest
eigenvalues and the corresponding eigenvector matrix of Υ.
The PCA projection tr ∈ RK of the endmember spectrum
mr ∈ RL is obtained as follows

tr = P (mr − ȳ) (15)

with P = D−
1
2 V. Equivalently,

mr = Utr + ȳ (16)

with U = V†D
1
2 where V† ,

(
VTV

)−1
VT = VT is the

pseudo-inverse of V. Note that in the subspace VR−1 obtained
for K = R− 1, the vectors {tr}r=1,...,R form a simplex that
standard EEAs such as N-FINDR [9], MVT [11] and ICE
[28] try to recover. In this paper, we estimate the vertices tr
(r = 1, . . . , R) of this simplex using a Bayesian approach.
The Bayesian prior distributions for the projections tr (r =
1, . . . , R) are introduced in the following paragraph.

3) Prior distribution for the projected spectra: All the
elements of the subspace VK may not be appropriate projected
spectra according to (15). Indeed, the K × 1 vector tr has
to ensure non-negativity constraints (5) of the correspond-
ing reconstructed L × 1 spectra mr. For each endmember
mr, straightforward computations establish that for any r =
1, . . . , R

{ml,r ≥ 0, ∀l = 1, . . . , L} ⇔ {tr ∈ Tr} , (17)

where the set Tr ⊂ VK is defined by the following L
inequalities

Tr =

{
tr; ȳl +

K∑
k=1

ul,ktk,r ≥ 0, l = 1, . . . , L

}
, (18)

with ȳ = [ȳ1, . . . , ȳL]T and U = [ul,k]. A conjugate3 multi-
variate Gaussian distribution (MGD)NTr

(
er, s2rIK

)
truncated

on the set Tr is chosen as prior distribution for tr. The
probability density function (pdf) φTr

(·) of this truncated
MGD is defined by

φTr

(
tr
∣∣er, s2rIK

)
∝ φ

(
tr
∣∣er, s2rIK

)
1Tr

(tr) (19)

where ∝ stands for “proportional to”, φ (·|u,W) is the pdf
of the standard MGD N (u,W) with mean vector u and
covariance matrix W, and 1Tr

(·) is the indicator function on
the set Tr

1Tr
(x) =

{
1, if x ∈ Tr ;
0, overwise. (20)

The normalizing constant KTr

(
er, s2rIK

)
in (19) is defined as

follows

KTr

(
er, s2rIK

)
=
∫
Tr

φ
(
x|er, s2rIK

)
dx. (21)

This paper proposes to choose the mean vectors er (r =
1, . . . , R) in (19) as the projected spectra of pure components
previously identified by EEA, e.g., N-FINDR. The variances
s2r (r = 1, . . . , R) reflect the degree of confidence given to this
prior information. When no additional knowledge is available,
these variances are fixed to large values (s21 = . . . = s2R = 50
in our simulations).

By assuming a priori independence of the vectors tr (r =
1, . . . , R), the prior distribution for the projected endmember
matrix T = [t1, . . . , tR] is

f
(
T | E, s2

)
=

R∏
r=1

φTr

(
tr
∣∣er, s2rIK

)
, (22)

where E = [e1, . . . , eR] and s2 =
[
s21, . . . , s

2
R

]
.

C. Abundance prior

For each observed pixel p, with the full additivity constraint
in (3), the abundance vectors ap (p = 1, . . . , P ) can be
rewritten as

ap =
[

cp
ap,R

]
with cp =

 ap,1
...

ap,R−1

 ,
and ap,R = 1−

∑R−1
r=1 ap,r. Following the model in [19], the

priors chosen for cp (p = 1, . . . , P ) are uniform distributions
on the simplex S defined by

S =
{
cp; ‖cp‖1 ≤ 1 and cp � 0

}
. (23)

Choosing this prior distribution for cp (p = 1, . . . , P ) is
equivalent to electing a Dirichlet distribution D (1, . . . , 1), i.e.,
a uniform distribution on A defined in (4), as prior distribution
for the full abundance vector ap [45, Appendix A]. However,
the proposed reparametrization will prove to be well adapted
to the Gibbs sampling strategy introduced in Section IV.

Under the assumption of statistical independence between
the abundance vectors cp (p = 1, . . . , P ), the full prior

3For the main motivations of choosing conjugate priors, see for instance
[45, Chap. 3].
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distribution for partial abundance matrix C = [c1, . . . , cP ]T

can be written

f (C) ∝
P∏
p=1

1S (cp) . (24)

As noted in [19], the uniform prior distribution reflects
the lack of a priori knowledge about the abundance vector.
Moreover, for the BSS problem here, this imposes a strong
constraint on the size of the simplex to be recovered. As
demonstrated in the Appendix, among two a priori equiprob-
able solutions of the BSS problem, this uniform prior allows
one to favor a posteriori the solution corresponding to the
polytope in the projection subset VK with smallest volume.
This property has also been exploited in [11].

D. Noise variance prior
A conjugate prior is chosen for σ2

σ2 |ν, γ ∼ IG
(ν

2
,
γ

2

)
, (25)

where IG
(
ν
2 ,

γ
2

)
denotes the inverse-gamma distribution with

parameters ν
2 and γ

2 . As in previous works ([46] and [47]), the
hyperparameter ν will be fixed to ν = 2. On the other hand, γ
will be a random and adjustable hyperparameter, whose prior
distribution is defined below.

E. Prior distribution for hyperparameter γ
The prior for γ is a non-informative Jeffreys’ prior [48]

which reflects the lack of knowledge regarding this hyperpa-
rameter

f (γ) ∝ 1
γ

1R+ (γ) . (26)

F. Posterior distribution
The posterior distribution of the unknown parameter vector

θ =
{
C,T, σ2

}
can be computed from marginalization using

the following hierarchical structure

f(θ|Y) =
∫
f(θ, γ|Y)dγ ∝

∫
f(Y|θ)f(θ|γ)f(γ)dγ (27)

where f
(
Y
∣∣θ) and f (γ) are defined in (9) and (26) respec-

tively. Moreover, under the assumption of a priori indepen-
dence between C, T and σ2, the following result can be
obtained

f
(
θ
∣∣γ) = f (C) f

(
T | E, s2

)
f
(
σ2 | ν, γ

)
(28)

where f
(
C | E, s2

)
, f (T) and f

(
σ2 | ν, γ

)
have been de-

fined in Eq.’s (24), (22) and (25), respectively. This hierarchi-
cal structure allows one to integrate out the hyperparameter γ
from the joint distribution f (θ, γ|Y), yielding

f
(
C,T, σ2

∣∣Y) ∝ P∏
p=1

1S (cp)

×
R∏
r=1

exp

[
−‖tr − er‖2

2s2r

]
1Tr

(tr)

×
P∏
p=1

[(
1
σ2

)L
2 +1

exp

(
−‖yp − (UT + ȳ) ap‖2

2σ2

)]
.

(29)

Deriving the Bayesian estimators (e.g., MMSE or MAP) from
the posterior distribution in (29) remains intractable. In such
case, it is very common to use Markov chain Monte Carlo
(MCMC) methods to generate samples asymptotically dis-
tributed according to the posterior distribution. The Bayesian
estimators can then be approximated using these samples. The
next section studies a Gibbs sampling strategy allowing one
to generate samples distributed according to (29).

IV. GIBBS SAMPLER

Random samples (denoted by ·(t) where t is the iteration
index) can be drawn from f

(
C,T, σ2 | Y

)
using a Gibbs

sampler [49]. This MCMC technique consists of generating
samples

{
C(t),T(t),σ2(t)

}
distributed according to the con-

ditional posterior distributions of each parameter.

ALGORITHM 1:

Gibbs sampling algorithm for LSMA

• Preprocessing:
– Compute the empirical mean vector ȳ in (13),
– Compute the matrices D and V in (14) via a PCA,
– Set U =

(
VT V

)−1
VT D

1
2 ,

– For r = 1, . . . , R, choose the a priori estimated
endmembers er ∈ VK in (19),

• Initialization:
– For r = 1, . . . , R, sample t

(0)
r from (19),

– For r = 1, . . . , R, set m
(0)
r = Ut

(0)
r + ȳ,

– Sample σ2(0) from (25),
– Set t← 1,

• Iterations: for t = 1, 2, . . . , do
1. For p = 1, . . . , P , sample c

(t)
p from (32),

2. For r = 1, . . . , R, for k = 1, . . . ,K, sample t(t)k,r from
(37),

3. For r = 1, . . . , R, set m
(t)
r = Ut

(0)
r + ȳ,

4. Sample σ2(t) from (39).
5. Set t← t+ 1.

A. Sampling from f
(
C|T, σ2,Y

)
Straightforward computations yield for each observation

f
(
cp
∣∣T, σ2,yp

)
∝ exp

[
−

(cp − υp)
T Σ−1

p (cp − υp)
2

]
1S (cp) , (30)

where
Σp =

[(
M-R −mR1TR−1

)T
Σ−1

n

(
M-R −mR1TR−1

)]−1

,

υp = Σp

[(
M-R −mR1TR−1

)T
Σ−1

n (yp −mR)
]
,

(31)
with Σ−1

n = 1
σ2 IL, 1R−1 = [1, . . . , 1]T ∈ RR−1 and

where M-R denotes the matrix M whose Rth column has
been removed. As a consequence, cp

∣∣T, σ2,yp is distributed
according to an MGD truncated on the simplex S in (23)

cp
∣∣T, σ2,yp ∼ NS (υp,Σp) . (32)
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Note that samples can be drawn from an MGD truncated on a
simplex using efficient Monte Carlo simulation strategies such
as described in [50].

B. Sampling from f
(
T|C, σ2,Y

)
Define T-r as the matrix T whose rth column has been

removed. Then the conditional posterior distribution of tr (r =
1, . . . , R) is

f
(
tr|T-r, cr, σ2,Y

)
∝

exp
[
−1

2
(tr − τ r)

T Λ−1
r (tr − τ r)

]
1Tr (tr) , (33)

with 
Λr =

[
P∑
p=1

a2
p,rU

TΣ−1
n U +

1
s2r

IK

]−1

,

τ r = Λr

[
P∑
p=1

a2
p,rU

TΣ−1
n εp,r +

1
s2r

er

]
,

(34)

and
εp,r = yp − ap,rȳ −

∑
j 6=r

ap,jmj . (35)

Note that mj = Utj + ȳ. As a consequence, the posterior
distribution of tr is the following truncated MGD

tr | T-r, cr, σ2,Y ∼ NTr (τ r,Λr) . (36)

Generating vectors distributed according to this distribution is
a difficult task, mainly due to the truncation on the subset Tr.
An alternative consists of generating each component tk,r of
tr conditionally upon the others t-k,r = {tj,r}j 6=k. More pre-
cisely, by denoting U+

k = {l;ul,k > 0}, U−k = {l;ul,k < 0}
and εl,k,r = ȳl +

∑
j 6=k ul,jtj,r, one can write

tk,r|t-k,r,T-r, cr, σ2,Y ∼ N[t−k,r,t
+
k,r]
(
wk,r, z

2
k,r

)
, (37)

with 
t−k,r = max

l∈U+
k

−εl,k,r
ul,k

,

t+k,r = min
l∈U−k

−εl,k,r
ul,k

,
(38)

and where wk,r and z2
k,r are the conditional mean and variance

respectively, derived from the partitioned mean vector and
covariance matrix [51, p. 324] (see [50] for similar computa-
tions). Generating samples distributed according to the two-
sided truncated Gaussian distribution in (37) can be easily
achieved with the algorithm described in [52].

C. Sampling from f
(
σ2|C,T,Y

)
The conditional distribution of σ2|C,T,Y is the following

inverse Gamma distribution:

σ2|C,T,Y ∼ IG

(
PL

2
,

1
2

P∑
p=1

‖yp −Map‖2
)
. (39)

Simulating according to this inverse Gamma distribution can
be achieved using a Gamma variate generator (see [53, Ch.

TABLE I
ABUNDANCE MEANS AND VARIANCES OF EACH ENDMEMBER IN EACH

REGION OF THE 100× 100 HYPERSPECTRAL IMAGE.

Endm.
Region #1 Region #2 Region #3

mean var. mean var. mean var.
#1 0.60 0.01 0.25 0.01 0.25 0.02

#2 0.20 0.02 0.50 0.01 0.15 0.005

#3 0.20 0.01 0.25 0.02 0.60 0.02

9] and [45, Appendix A]).

To summarize, the hyperparameters that have to be fixed at
the beginning of the algorithm are chose as follows: ν = 2,
s21 = . . . = s2R = 50 and {er}r=1,...,R are set to projected
spectra identified by a standard EEA (e.g., N-FINDR).

V. SIMULATIONS ON SYNTHETIC DATA

To illustrate the accuracy of the proposed algorithm, sim-
ulations are conducted on a 100 × 100 synthetic image. This
hyperspectral image is composed of three different regions
with R = 3 pure materials representative of a sub-urban
scene: construction concrete, green grass and red brick. The
spectra of these endmembers have been extracted from the
spectral libraries distributed with the ENVI software [54] and
are represented in Fig. 3 (top, black lines). The reflectances
are observed in L = 413 spectral bands ranging from 0.4µm
to 2.5µm. These R = 3 components have been mixed with
proportions that have been randomly generated according to
MGDs truncated on the simplex S with means and variances
reported in Table I. The generated abundance maps have
been depicted in Fig. 5 (top) in gray scale where a white
(resp. black) pixel stands for the presence (resp. absence)
of the material. The signal-to-noise ratio has been tuned to
SNRdB = 15dB.

A. Endmember spectrum estimation

The resulting hyperspectral data have been unmixed by the
proposed algorithm. First, the space VK in (11) has been iden-
tified by PCA as discussed in paragraph III-B2. The hidden
mean vectors er (r = 1, . . . , R) of the normal distributions in
(19) have been chosen as the PCA projections of endmembers
previously identified by N-FINDR. The hidden variances s2r
have all been chosen equal to s21 = . . . = s2R = 50 to obtain
vague priors (i.e. large variances). The Gibbs sampler has been
run with NMC = 1300 iterations, including Nbi = 300 burn-
in iterations. The MMSE estimates of the abundance vectors
ap (p = 1, . . . , P ) and the projected spectra tr (r = 1, . . . , R)
have been approximated by computing empirical averages over
the last computed outputs of the sampler

{
a(t)
r

}
t=1,...,NMC

and{
t(t)
r

}
t=1,...,NMC

, following the MMSE principle

x̂MMSE = E [x|y]

≈ 1
NMC −Nbi

NMC∑
t=Nbi+1

x(t).
(40)
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Fig. 3. Actual endmembers (black lines), endmembers estimated by N-FINDR (blue lines), endmembers estimated by VCA (green lines) and endmembers
estimated by proposed approach (red lines).

Fig. 4. Scatter plot in the lower-dimensional space V2: projected dataset
(black points), actual endmembers (black circles), endmembers estimated by
N-FINDR (blue stars), endmembers estimated by VCA (green stars) and
endmembers estimated by proposed approach (red stars). All pixel spectra
do not lie inside ground truth simplex due to simulated measurement noise.

The corresponding endmember spectra estimated by the
proposed algorithm are depicted in Fig. 3 (top, red lines).
The proposed algorithm clearly outperforms N-FINDR and
VCA, as shown in Fig. 3. The scatter plot in Fig. 4 provides
additional insight. The N-FINDR and VCA algorithms assume
the presence of pure pixels in the data. However, as none of
these pixels are pure, N-FINDR and VCA provide poorer re-
sults than the proposed joint Bayesian algorithm. To illustrate
this point, the performances of the different algorithms have

been compared via two criteria. First, the mean square errors
(MSEs)

MSE2
r = ‖m̂r −mr‖2 , r = 1, . . . , R (41)

are good quality indicators for the estimates. In addition, an-
other metric frequently encountered in hyperspectral imagery
literature, known as the spectral angle distance (SAD), has
been considered. The SAD measures the angle between the
actual and the corresponding estimated spectrum

SADr = arccos
(
〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
, (42)

where 〈·, ·〉 stands for the scalar product. These performance
criteria computed for the endmember spectra estimated by the
different algorithm have been reported in Table IV. They show
that the proposed method performs significantly better than
the others. The computation times required by each of these
algorithms are reported in Table II for a unoptimized MAT-
LAB 2007b 32bit implementation on a 2.2GHz Intel Core 2.
Obviously, the complexity of the VCA and N-FINDR methods
are lower than the proposed approach. Note however that,
contrary to the joint Bayesian procedure, these standard EEA
have to be coupled with an abundance estimation algorithm.
Moreover they only provide point estimates of the endmember
spectra. Note finally that the computational complexity of N-
FINDR, because it is combinatorial, increases drastically with
the number of pixels and endmembers.

B. Abundance estimation

The MMSE estimates of the abundance vectors for the P =
104 pixels of the image have been computed following the
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TABLE II
COMPUTATIONAL TIMES OF VCA, N-FINDR AND THE PROPOSED

BAYESIAN METHOD FOR UNMIXING P = 32× 32 PIXELS WITH R = 3
ENDMEMBERS.

Bayesian VCA N-FINDR

Times (s) 3250 1 23

MMSE principle in (40)

âp =
1

NMC −Nbi

NMC∑
t=Nbi+1

a(t)
p . (43)

The corresponding estimated abundance maps are depicted in
Fig. 5 (bottom) and are clearly in good agreement with the
simulated maps (top).

Fig. 5. Top: actual endmember abundance maps. Bottom: estimated end-
member abundance maps.

Note that the proposed Bayesian estimation provides the
joint posterior distribution of the unknown parameters. Specif-
ically, these posteriors allow one to derive confidence intervals
regarding the parameters of interest. For instance, the posterior
distributions of the abundance coefficients are depicted in
Fig. 6 for the pixel #100. Note that these estimated posteriors
are in good agreement with the actual values of a100 depicted
in red dotted lines.

Fig. 6. Posterior distributions of ap,r (r = 1, . . . , 3). The actual values are
depicted in red dotted lines.

These results have been compared with estimates provided
by the N-FINDR or VCA algorithms, coupled with an abun-

dance estimation procedure based on the fully constrained
least-squares (FCLS) approach proposed by Heinz et al. [17].
The global abundance MSEs have been computed as

GMSE2
r =

P∑
p=1

(âp,r − ap,r)2 , (44)

where âp,r is the estimated abundance coefficient of the
material #r in the pixel #p. These performance measures have
been reported in Table III and confirm the accuracy of the
proposed Bayesian estimation method. Moreover, note that
neither N-FINDR nor VCA are able to provide confidence
measures as those depicted in Fig 6.

TABLE III
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE

PROPOSED BAYESIAN METHOD: GMSE2 BETWEEN THE ACTUAL AND THE
ESTIMATED ABUNDANCE MAPS.

Bayesian VCA N-FINDR

Endm. #1 25.68 57.43 30.66

Endm. #2 29.97 74.48 46.45

Endm. #3 3.19 83.02 11.22

C. Other simulation scenarios

Simulations with different noise levels (SNRdB =
5dB, 15dB, 25dB) and with other combinations of endmem-
bers (R = 3 and R = 5) are reported in Table IV. First, VCA
and N-FINDR algorithms have been applied on these different
dataset, as well as the proposed approach. In addition, to
complete the performance comparison, a constrained version
of a non-negative matrix factorization algorithm [27] (referred
to as cNMF) has been implemented and evaluated. Finally, the
minimum volume transform (MVT) based strategy described
in [29] (referred to as MVC-NMF) has also been applied
on the synthetic hyperspectral images. Note that this MVC-
NMF algorithm has failed to unmix the pixels when using
R = 5 endmembers for SNR = 5dB. Consequently, as the
results were not significant, they have not been reported in
the Table IV. Estimation performances expressed in terms of
MSE and SAD show that MVC-NMF and cNMF provided the
worst results for these examples. These results also corroborate
the effectiveness of our Bayesian estimation procedure, when
compared with the others EEAs.

D. Robustness to non-i.i.d noise models

In this paragraph, we illustrate the robustness of the pro-
posed algorithm with respect to violation of the i.i.d. noise
assumption. More precisely, a so-called Gaussian shaped noise
inspired by [55] has been considered. The noise correlation
matrix Σn = diag

(
σ2

1 , . . . , σ
2
L

)
is designed such that its

diagonal elements σ2
l (l = 1, . . . , L) follow a Gaussian shape

centered at band L/2

σ2
l = σ2 exp

[
− (l − L/2)2

2η2

]
. (45)

The parameter σ2 can be tuned to choose the SNR whereas
the parameter η adjusts the shape width (η →∞ corresponds
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TABLE IV
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD: MSE2 AND SAD (×10−1) BETWEEN THE ACTUAL

AND THE ESTIMATED ENDMEMBER SPECTRA.

End.
Bayesian VCA N-FINDR cNMF MVC-NMF

MSE2 SAD MSE2 SAD MSE2 SAD MSE2 SAD MSE2 SAD

SN
R

=
5

dB

R
=

3 #1 1.70 0.63 10.29 1.36 2.69 0.75 16.78 1.59 16.61 1.63

#2 6.56 1.49 7.37 1.51 10.87 1.80 5.15 1.29 30.97 1.10

#3 2.70 0.59 2.94 0.60 2.94 0.60 4.90 0.78 5.80 0.73
R

=
5

#1 0.70 0.01 9.72 1.48 6.32 1.21 14.82 1.86 −− −−
#2 1.05 0.49 12.46 1.73 7.44 1.05 10.48 1.79 −− −−
#3 1.04 0.49 7.26 1.17 1.05 5.61 25.51 2.00 −− −−
#4 1.05 0.49 6.76 0.90 6.76 6.76 25.10 1.71 −− −−
#5 1.04 0.49 2.32 0.60 10.26 0.70 10.67 1.13 −− −−

SN
R

=
1
5

dB

R
=

3 #1 0.10 0.15 1.29 0.48 0.54 0.33 16.77 1.58 8.03 1.27

#2 2.68 0.92 5.18 1.27 5.19 1.26 5.15 1.28 2.43 0.49

#3 0.16 0.12 0.57 0.22 0.57 0.22 4.90 0.78 26.01 0.94

R
=

5

#1 0.15 0.18 2.61 0.78 4.63 1.04 1.83 0.64 73.07 4.27

#2 0.55 0.40 7.62 1.36 7.62 1.36 5.01 0.93 140.12 3.77

#3 0.31 0.22 2.23 0.54 2.32 0.54 6.65 1.02 27.72 2.03

#4 0.39 0.15 5.81 0.74 5.81 0.74 10.56 0.73 129.61 3.58

#5 0.62 0.25 0.80 0.30 6.52 0.77 2.76 0.58 50.47 2.73

SN
R

=
2
5

dB

R
=

3 #1 0.05 0.09 1.14 0.52 1.14 0.52 1.75 0.52 17.94 1.98

#2 2.19 0.83 5.65 1.33 5.65 1.33 2.88 0.95 7.98 1.38

#3 0.17 0.14 0.66 0.22 0.66 0.22 0.82 0.34 30.91 1.04

R
=

5

#1 0.42 0.29 0.70 0.40 0.70 0.40 1.74 0.59 98.49 4.10

#2 0.37 0.34 11.34 1.44 11.11 1.80 3.86 0.77 11.34 1.44

#3 0.46 0.29 1.44 0.48 1.44 0.47 16.25 1.71 10.93 1.36

#4 0.07 0.09 2.36 0.44 5.68 0.52 6.86 0.62 74.02 2.84

#5 0.35 0.20 1.54 0.42 2.92 0.59 1.34 0.46 97.27 3.73

to i.i.d. noise). For this simulation, the parameters σ2 and η
have been fixed to 1.0× 102 and 50 respectively, leading to a
noise level of SNRdB = 15dB.

When the noise is not i.i.d., dimensionality reduction meth-
ods based on eigen-decomposition of observed data correla-
tion matrix Υ introduced in (12) can be inefficient. In this
case, other hyperspectral subspace identification methods have
to be considered. Here the PCA-based dimension reduction
step introduced in paragraph III-B2 was replaced by two
techniques: the well-known MNF transform [44] approach
and the more recent HySime algorithm [55]. Both of them
require to estimate the noise covariance matrix Σn, which
was implemented following [55]. The estimation performances
for the proposed Bayesian estimation procedure coupled with
MNF or HySime are reported in Table V and compared with
VCA and N-FINDR. These results show that the proposed
method i) can be easily used with other dimension reduction
procedures, and ii) is quite robust to the i.i.d. noise assumption.

VI. REAL AVIRIS DATA

A. Moffett Field

This section illustrates the proposed algorithm on a first
real hyperspectral dataset. The considered hyperspectral image
was acquired over Moffett Field (CA, USA) in 1997 by the
JPL spectro-imager AVIRIS [56]. This image has been used

TABLE V
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE
PROPOSED BAYESIAN METHOD IN PRESENCE OF GAUSSIAN SHAPED
NOISE: MSE2 AND SAD (×10−1) BETWEEN THE ACTUAL AND THE

ESTIMATED ENDMEMBER SPECTRA.

Endm.
MNF/Bayes HySime/Bayes VCA N-FINDR

MSE2 SAD MSE2 SAD MSE2 SAD MSE2 SAD

#1 0.26 0.25 0.42 0.31 1.11 0.46 1.11 0.46

#2 1.99 0.79 4.35 1.16 5.78 1.33 5.78 1.33

#3 0.33 0.19 0.57 0.22 1.94 0.41 2.19 0.43

in many works to illustrate hyperspectral signal processing
algorithms [57], [58].

A 50×50 sub-image depicted in Fig. 7 (right) has been un-
mixed using the proposed Bayesian approach. The number of
endmembers has been estimated as in [19]. More precisely, we
retain the first R−1 eigenvalues identified by PCA that capture
95% of the energy contained into the dataset. As detailed in
III-B1, we use also PCA to choose the subset VR−1 defined
in (11). After a short burn-in period Nbi = 50, estimates of
the parameters of interest are computing following the MMSE
principle in (40) with Nr = 450. The R = 3 endmembers
recovered by the proposed joint Bayesian LSMA algorithm
are depicted in Fig. 8 (top). These endmember spectra are
represented in L = 189 spectral bands after removing the
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Fig. 8. Top: the R = 3 endmember spectra estimated by the algorithm in the Moffett Field scene. Bottom: the corresponding abundance maps (black
(respectively, white) means absence (respectively, presence) of the material).

Fig. 7. Real hyperspectral data: Moffett Field image acquired by AVIRIS in
1997 (left) and the region of interest (right) represented in synthetic colors.

water absorption bands4. These endmembers are characteristic
of the coastal area that appears in the image: vegetation, water
and soil. The corresponding abundance maps, shown in Fig. 8
(bottom), are in agreement with the previous results presented
in [19].

B. Cuprite

The proposed algorithm has been also used to analyze the
“alunite hill” that appears in the Cuprite scene, acquired by
AVIRIS over the Cuprite mining site, Nevada, in 1997. The
geologic characteristics of this area of interest, represented
in Fig. 9, have been investigated for instance in [59], [60].
Three materials have been mainly identified in this area
: muscovite, alunite and cuprite. The re-scaled endmember
spectra estimated by the proposed Bayesian strategy have been

4The water vapor absorption bands are usually discarded to avoid poor SNR
in these intervals.

depicted in Fig. 10 (top, red lines) in 50 spectral bands of
interest (as in [9], [60], and [34]). The spectra estimated by the
N-FINDR and VCA algorithms are also shown in this figure
(blue and green lines, respectively), as well as the spectral
signatures extracted from the United States Geological Survey
(USGS) Spectral Library (black lines) [61]. Similarity mea-
sures between the estimated spectra and the USGS signatures,
expressed in terms of SAD and MSE, are reported in Table VI.
The MMSE estimates of the abundance maps computed by the
Bayesian unmixing algorithm are depicted in Fig. 10 (bottom).
In this figure, particularly in the 2nd map abundance, the
alunite hill is clearly recovered. All these results assess the
performance of the proposed strategy.

Fig. 9. Real hyperspectral data: Cuprite image acquired by AVIRIS in 1997
(left) and the region of interest (right) represented in synthetic colors.

VII. CONCLUSIONS

This paper presented a Bayesian model as well as an MCMC
algorithm for unsupervised unmixing of hyperspectral images,
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Fig. 10. Top: the R = 3 endmember spectra estimated by the Bayesian (red lines), N-FINDR (blue lines) and VCA (green lines) algorithms in the Cuprite
scene, compared with the signatures extracted from the USGS spectral library (black lines). Bottom: the corresponding abundance maps estimated by the
Bayesian algorithm (black (respectively, white) means absence (respectively, presence) of the material).

TABLE VI
MSES AND SADS BETWEEN EXTRACTED ENDMEMBERS AND

LABORATORY REFLECTANCES FOR THE BAYESIAN, VCA AND N-FINDR
ALGORITHMS.

Bayesian VCA N-FINDR

MSE2 SAD MSE2 SAD MSE2 SAD

Muscovite 0.35 0.39 0.31 0.37 0.33 0.38

Alunite 0.19 1.00 0.36 1.37 0.21 1.03

Kaolinite 0.42 0.77 1.07 1.23 0.44 0.79

i.e. estimating the endmember spectra in the observed scene
and their respective abundances for each pixel. Appropriate
priors were chosen for the abundance vectors to ensure non-
negativity and sum-to-one constraints inherent to the linear
mixing model. Instead of estimating the endmember spectral
signatures in the observation space, we proposed to estimate
their projections onto a suitable subspace. In this subspace,
which can be identified by a standard dimension reduction
technique such as PCA, MNF and HySime, these projections
were assigned priors that satisfy positivity constraints of
the reconstructed endmember spectra. Due to the complex-
ity of the posterior distribution, a Gibbs sampling scheme
was proposed to generate samples asymptotically distributed
according to this posterior. The available samples were then
used to approximate the Bayesian estimators for the different
parameters of interest. Results of simulations conducted on
synthetic and real hyperspectral image illustrated the accuracy
of the proposed Bayesian method when compared with other
algorithms from the literature. An interesting open question
is whether one can improve performance further by folding
the intrinsic dimension K of the projection subspace VK into

the Bayesian framework, e.g., by applying Bayesian PCA or
Bayesian latent variable models. This question is a topic of
our current research. While this paper introduced a Bayesian
method in the context of hyperspectral unmixing, the method
can also be used for other unmixing applications, such as
blind source separation, that satisfy positivity and sum-to-one
constraints.

APPENDIX
ON THE CHOICE OF UNIFORM DISTRIBUTIONS AS PRIOR
DISTRIBUTIONS FOR ar AND THE SIZE OF THE SIMPLEX

SOLUTION OF THE BSS PROBLEM

In this appendix, we show that choosing uniform
distributions as priors for the abundance vectors allows one to
favor a posteriori, among two a priori equiprobable polytopes
that are admissible solutions of the BSS problem, the solution
corresponding to the smallest polytope.

Property: Let M(1) and M(2) be two R-dimensional convex
polytopes of RL that are admissible solutions of the BSS
constrained problem, i.e.

∃A(1) =
[
a(1)

1 , . . . ,a(1)
R

]T
⊂ AR,

∃A(2) =
[
a(2)

1 , . . . ,a(2)
R

]T
⊂ AR,

(46)

such as Y = M(1)A(1) = M(2)A(2) where A has been
defined in (4). Then

f
(
M(1)|Y

)
≥ f

(
M(2)|Y

)
⇔

vol (SM(1)) ≤ vol (SM(2)) ,

(47)
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where vol (SM(i)) stands for the volume of the polytope
SM(i) ⊂ RL introduced in (10) whose vertices are the
columns of M(i).

Proof : First note that, in absence of noise, as yp = Map,

ap ∼ U (A)⇔ yp|M ∼ U (SM) , (48)

where U (·) stands for the uniform distribution.
Consequently,

f (Y|M) =
[

1
vol (SM)

]P P∏
p

1SM (yp) , (49)

which can be simplified by

f (Y|M) =
[

1
vol (SM)

]P
, (50)

since, by definition, the observed pixels yp (p = 1, . . . , P ) be-
long to the solution polytope SM. Moreover, Bayes’ paradigm
allows one to state:

f (M|Y) =
f (Y|M) f (M)

f (Y)
. (51)

Since the two solutions M(1) and M(2) are a priori equiprob-
able, from (50), it yields:

f
(
M(1)|Y

)
f
(
M(2)|Y

) =
[

vol (SM(2))
vol (SM(1))

]P
. (52)

It follows (47).

�

Note that the equiprobability assumption underlying the so-
lutions SM(2) and SM(2) is not a too restrictive hypothesis.
Indeed if the variances s2r (r = 1, . . . , R) had been chosen
such that the prior distribution in (22) is sufficiently flat, then:

f
(
M(1)

)
≈ f

(
M(2)

)
. (53)

Note also that the projection of the polytope SM(i) onto the
subset VR−1 ⊂ RR−1 is the simplex ST(i) whose vertices are
the columns of T(i).
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