Bioinformatics and Genomics: A New SP Frontier?

A. O. Hero

University of Michigan - Ann Arbor

http://www.eecs.umich.edu/~hero

Collaborators: G. Fleury, ESE - Paris

S. Yoshida, A. Swaroop UM - Ann Arbor

T. Carter, C. Barlow Salk - San Diego

Outline

- 1. Bioinformatics background
- 2. Gene microarrays
- 3. Gene clustering and filtering for gene pattern extraction
- 4. Application: development and aging in retina

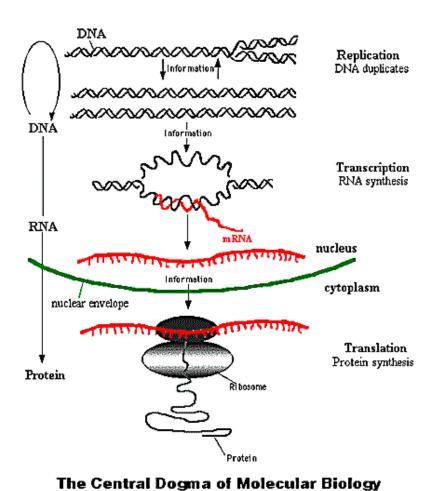


Figure 1: http://www.accessexcellence.org

I. Bioinformatics background

- Every human cell contains 6 feet of double stranded (ds) DNA
- This DNA has 3,000,000,000 basepairs representing 50,000-100,000 genes
- This DNA contains our complete genetic code or *genome*
- DNA regulates all cell functions including response to disease, aging and development
- Gene expression pattern: snapshot of DNA in a cell
- Gene expression profile: DNA mutation or polymorphism over time
- Genetic pathways: changes in genetic code accompanying metabolic and functional changes, e.g. disease or aging.

Genomics: study of gene expression patterns in a cell or organism

Possible Impact

- Understanding role of genetics in cell function and metabolism
- Discovering genetic markers and pathways for different diseases
- Understanding pathogen mechanisms and toxicology studies
- Development of genotype-specific drugs
- Development of genetic computing machines
- In situ genetic monitoring and drug delivery

Kellog Sensory Gene Microarray Node: Objectives

Establish genetic basis for development, aging, and disease in the retina



Figure 2: Sample gene trajectories over time.

II. Gene Microarrays

"Shotgun sequencing"

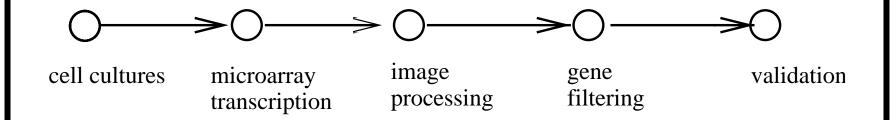


Figure 3: Microarray experiment cycle.

Microarray Image Formation

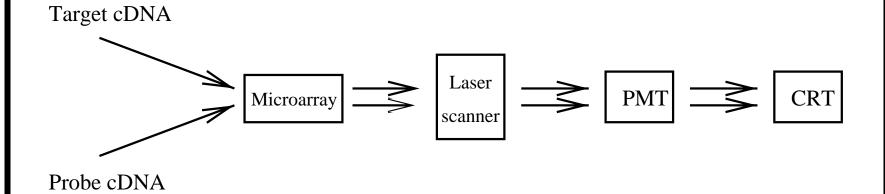


Figure 4: *Image formation process*.

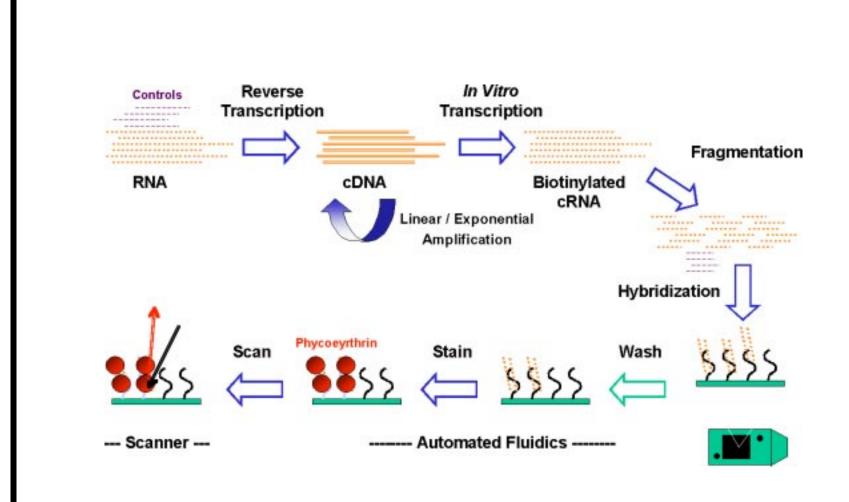


Figure 5: Oligonucleotide (GeneChip) system (pathbox.wustl.edu).

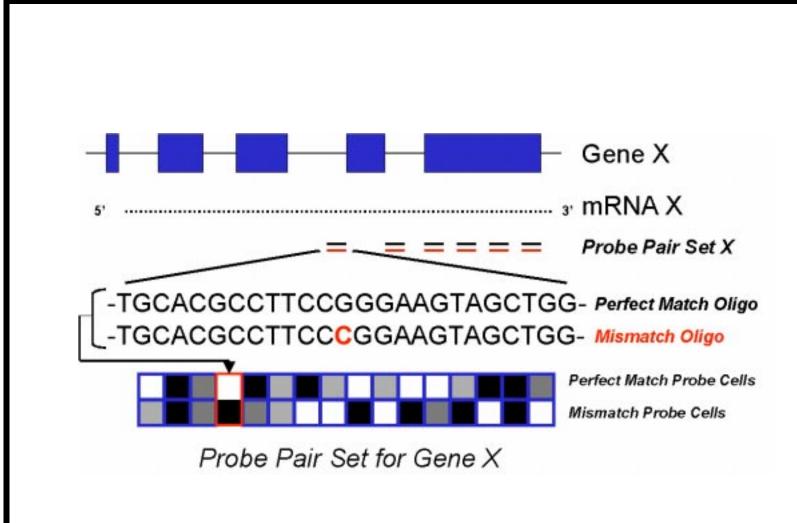
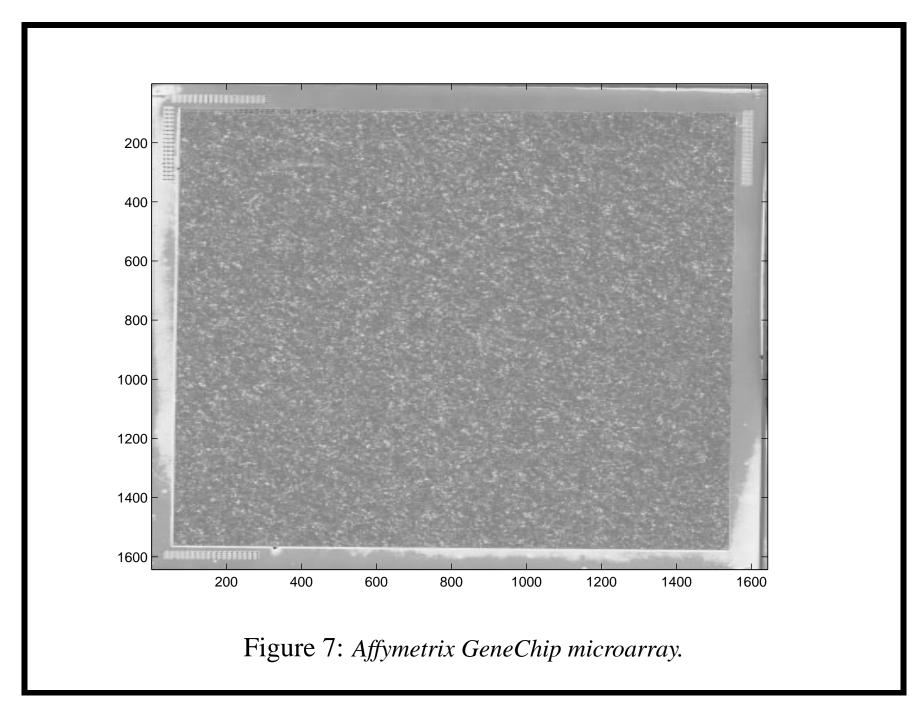


Figure 6: Oligonucleotide PM/MM layout (pathbox.wustl.edu).



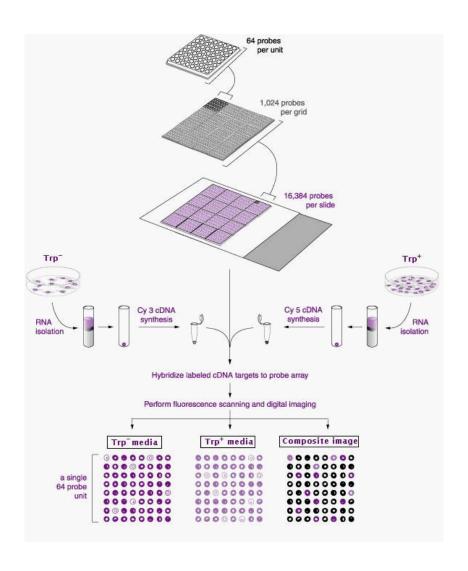


Figure 8: cDNA (Stanford) system (teach.biosci.arizona.edu).

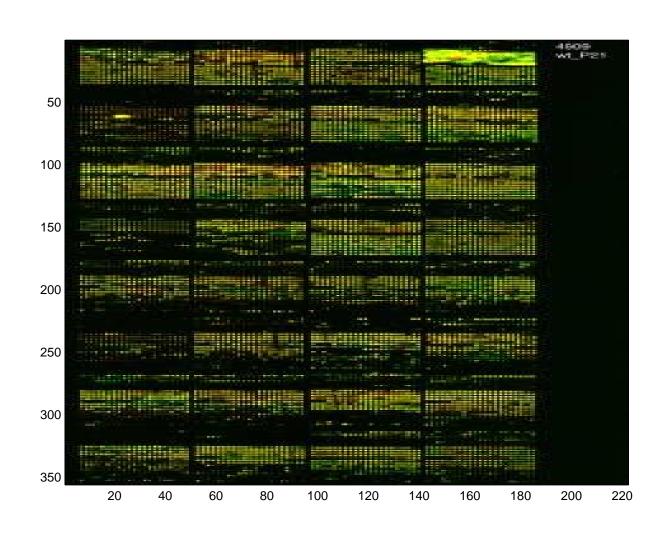


Figure 9: cDNA spotted array.

Control Factors Influencing Variability

- Sample preparation: reagent quality, temperature variations
- Slide manufacture: slide surface quality, dust deposition
- **Hybridization**: sample concentration, wash conditions
- Cross hybridization: similar but different genes bind to same probe
- Image formation: scanner saturation, lens aberations, gain settings
- Imaging and Extraction: spot misalignment, discretization, clutter
- \rightarrow account for data variability
 - Scaling factors: universal intensity amplification factor for a chip
 - Raw Q: noise and other random variations of a chip
 - Background: avg of lowest 2% cell intensity values
 - % P: percentage of transcripts present

Microarray Signal Extraction

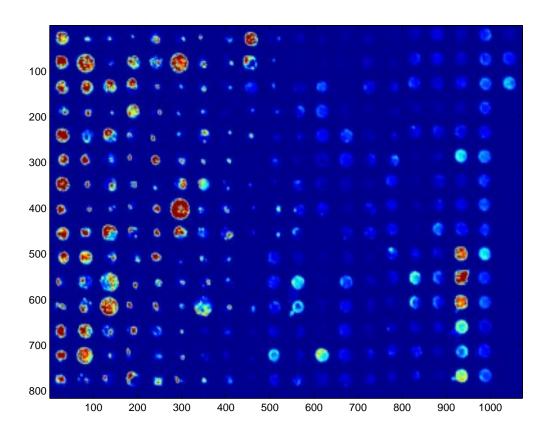
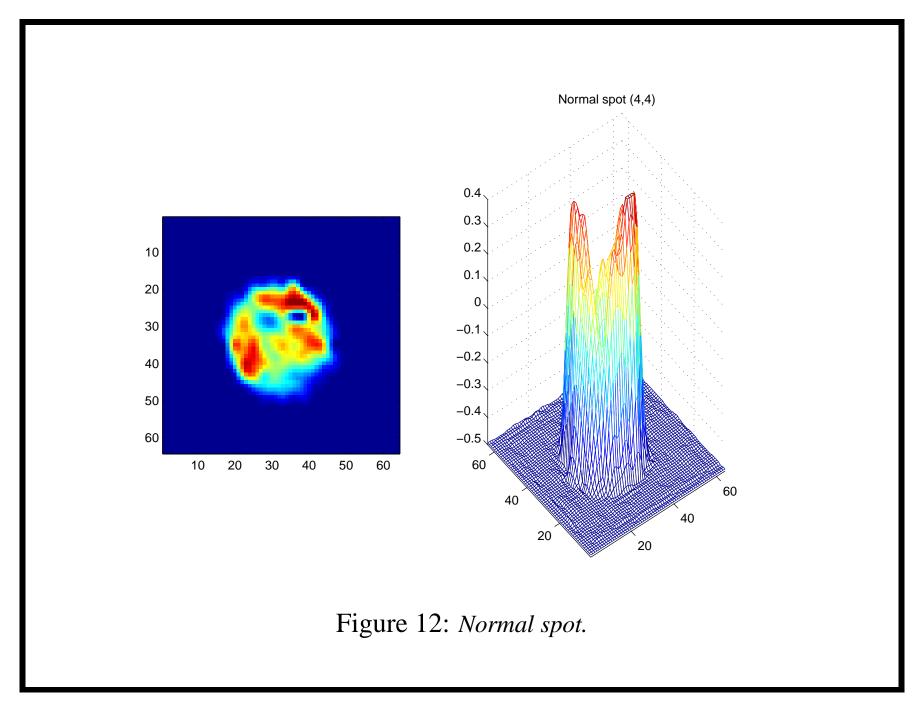
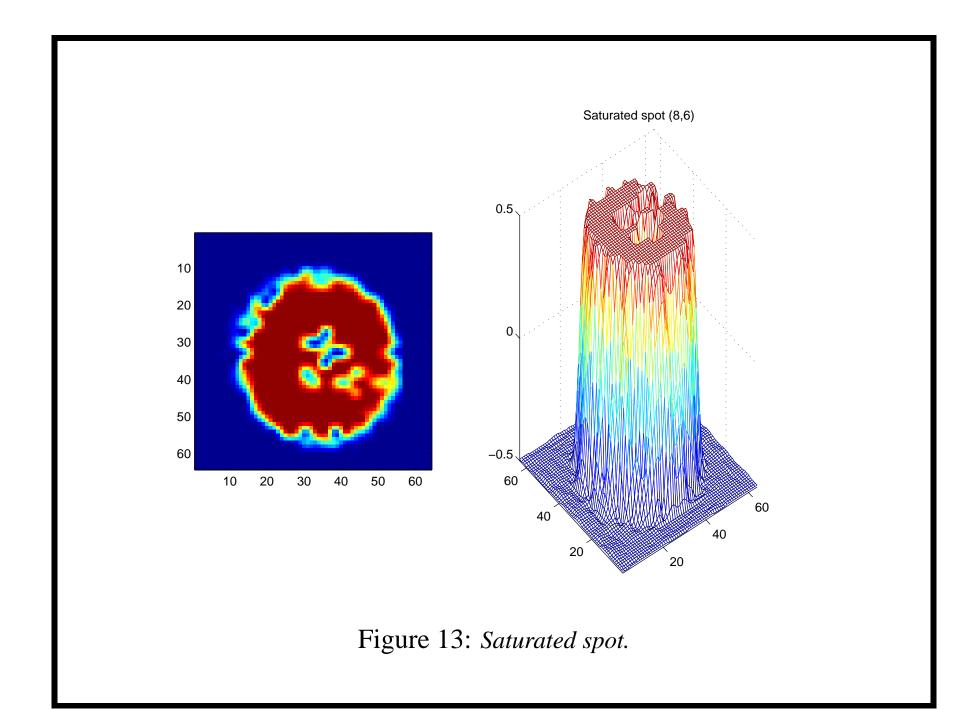


Figure 10: Blowup of cDNA spotted array.







Morphological Spot Segmentation (Siddiqui&Hero:ICIP02)

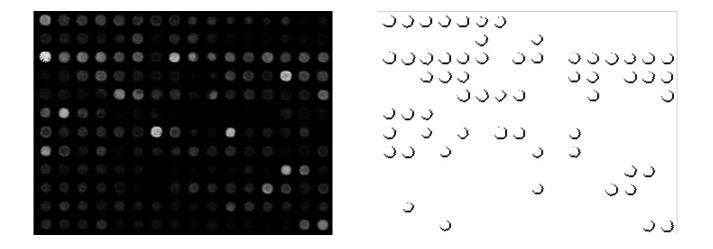


Figure 14: (L) Original cDNA microarray image. (R) after alternating sequential filtering.

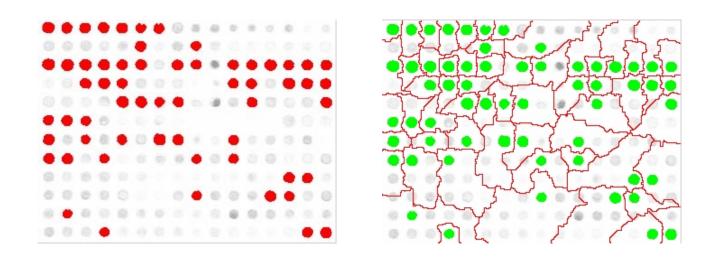
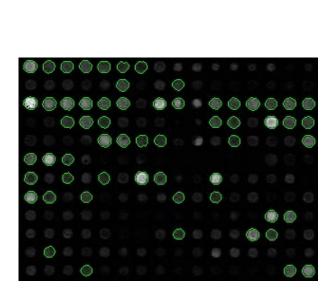


Figure 15: (L) after regional maximum. (R) after watershed



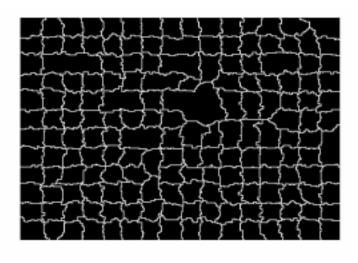


Figure 16: (L) Final segmentation. (R) Spot watershed domains.

Filtered Poisson Measurement Model (Hero:Springer02)

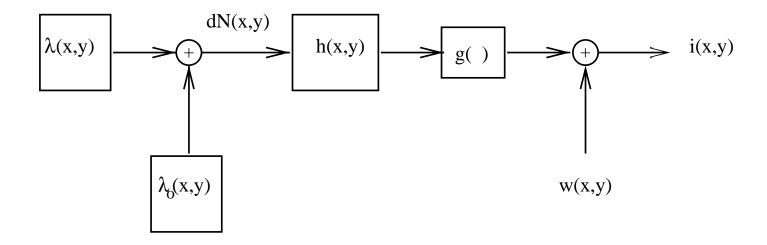


Figure 17: Filtered Poisson model for microarray image.

Gabor Superposition - Width MSE

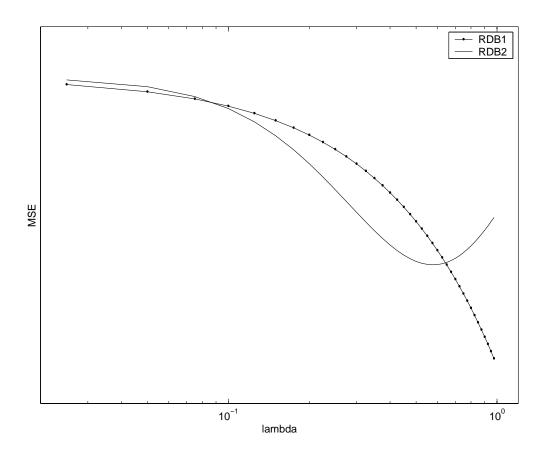


Figure 18: Distortion-rate MSE lower bounds on Gabor widths of $\Phi_j(x,y)$.

Gene Clustering and Filtering (Fleury&etal:ICASSP02)

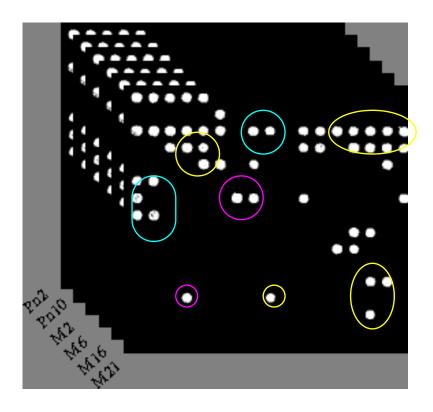


Figure 19: Clustering on the Data Cube.

Objective: Classify time trajectory of gene *i* into one of *K* classes

Gene Trajectory Classification

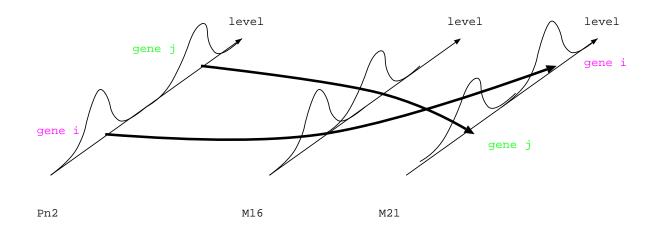


Figure 20: Gene i is old dominant while gene j is young dominant

Objective: classify gene trajectories from sequence of microarray experiments over time (t) and population (m)

$$\theta_i(m,t), m = 1,...,M, t = 1,...,T$$

Clustering and filtering Methods

Principal approaches:

- Hierarchical clustering (kdb trees, CART, gene shaving)
- K-means clustering
- Self organizing (Kohonen) maps
- Vector support machines

Validation approaches:

- Significance analysis of microarrays (SAM)
- Bootstrapping cluster analysis
- Leave-one-out cross-validation
- Replication (additional gene chip experiments, quantitative PCR)

Gene Filtering via Multiobjective Optimization

Gene selection criteria for *i*-th gene $\xi_1(\theta_i), \ldots, \xi_P(\theta_i)$

Possible $\xi_p(\theta_i)$'s for finding uncommon genes

• Squared mean change from t = 1 to t = T:

$$\xi_1(\theta_i) = |\overline{\theta}_i(*,1) - \overline{\theta}_i(*,T)|^2$$

• Standard deviation at t = 1:

$$\xi_2(\theta_i) = \overline{\left(\theta_i(*,1) - \overline{\theta}_i(*,1)\right)^2}$$

• Standard deviation at t = T:

$$\xi_3(\theta_i) = \overline{\left(\theta_i(*,T) - \overline{\theta}_i(*,T)\right)^2}$$

Some possible scalar functions:

- *t*-test statistic (Goss et al 2000): $T_i = \frac{\xi_1(\theta_i)}{\frac{1}{2}\xi_2(\theta_i) + \frac{1}{2}\xi_3(\theta_i)}$
- R^2 statistic (Hastie et al 2000): $R_i^2 = \frac{T_i}{1+T_i}$
- *H* statistic (Sinha etal 1998): $H_i = \frac{\xi_1(\theta_i)}{\sqrt{\xi_2(\theta_i)\xi_3(\theta_i)}}$

Objective: find genes which maximize or minimize the selection criteria

Aggregated Criteria

Let $\{W_p\}_{p=1}^P$ be experimenter's cost "preference pattern"

$$\sum_{p=1}^{P} W_p = 1, \ W_i \ge 0$$

Find optimal gene via:

$$\max_{i} \sum_{p=1}^{P} W_p \xi_p(\theta_i), \quad or \quad \max_{i} \prod_{p=1}^{P} (\xi_p(\theta_i))^{W_p}$$

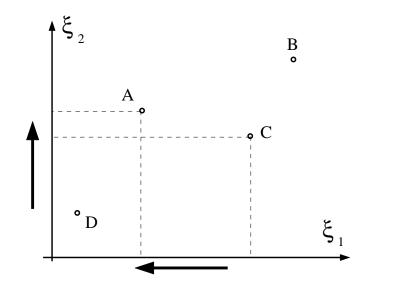
Q. What are the set of optimal genes for all preference patterns?

A. These are non-dominated genes (Pareto optimal)

Defn: Gene i is dominated if there is a $j \neq i$ s.t.

$$\xi_p(\theta_i) \le \xi_p(\theta_j), \ p = 1, \dots, P$$

Pareto Optimal Fronts



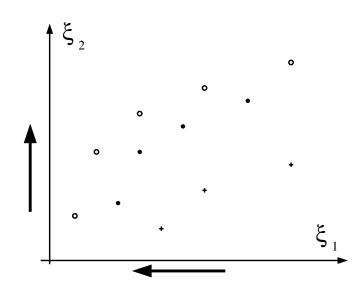


Figure 21: a). Non-dominated property, and b). Pareto optimal fronts, in dual criteria plane.

Pareto Gene Filtering vs. Paired T-test

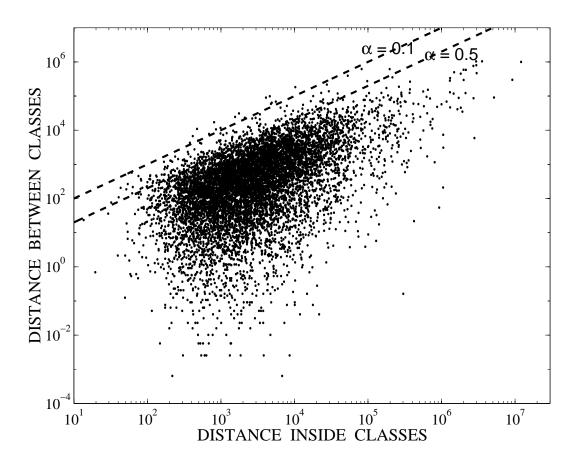


Figure 22: ξ_1 = mean change vs ξ_2 = pooled standard deviation for 8826 mouse retina genes. Superimposed are T-test boundaries

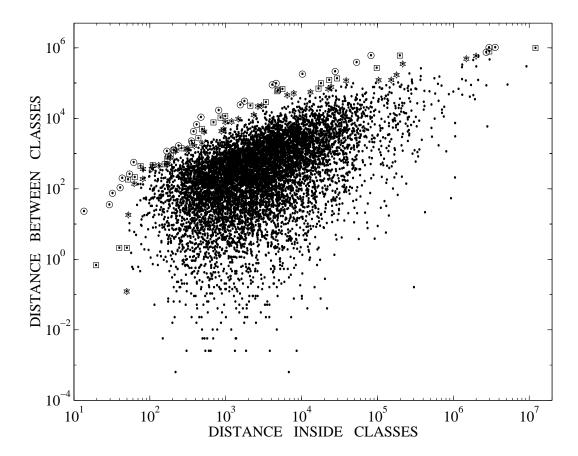


Figure 23: First (circle) second (square) and third (hexagon) Pareto optimal fronts.

Application: Development and Aging in Mouse Retina

Mouse Retina Experiment:

- Retinas of 24 mice sampled and hybridized
- 6 time points: Pn2, Pn10, M2, M6, M16, M21
- 4 mice per time sample
- Affymetrix GeneChip layout with 12422 poly-nucleotides
- Affymetrix attribute analyzed: "AvgDiff"
- Used Affymetrix filter to eliminate all genes labeled "A"

Objective: Find interesting gene trajectories within the set of remaining 8826 genes

Some Gene Trajectories

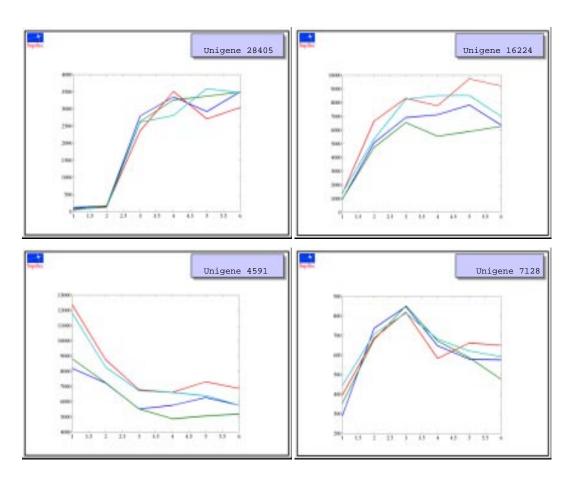


Figure 24: Trajectories.

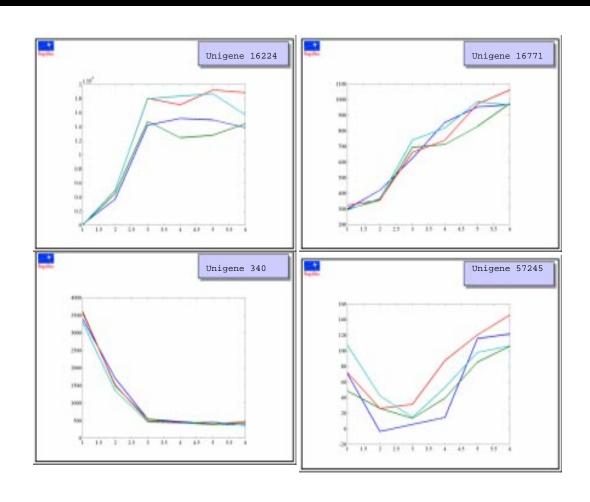


Figure 25: Trajectories.

Pairs of Trajectories for Replicated Segments

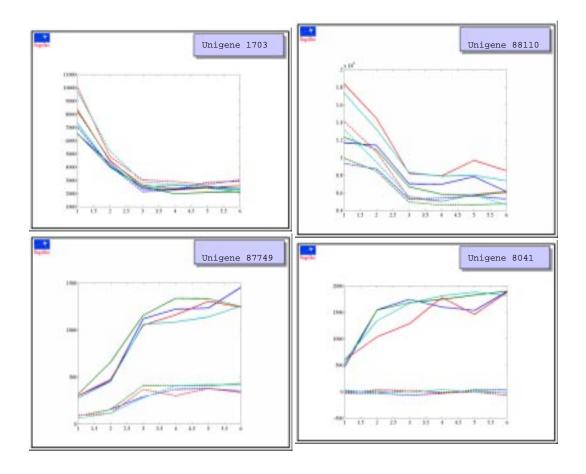


Figure 26: Pairs of trajectories for replicated gene polynucleotide sequence.

Multi-objective Non-parametric Pareto Filtering

Define trend vector: $\psi_i = [b_1, \dots, b_6], b_i \in \{0, 1\}$

- Old dominant filtering criteria:
 - high mean slope from t = Pn1 to t = M21

$$\xi_1(\psi_i) = \overline{b_i(*,*)}$$

• high consistency over $6^4 = 4096$ possible combinations of trajectories

$$\xi_2(\psi_i) = \frac{\text{\# trajectories having } \psi_i = [1, \dots, 1]}{4096}$$

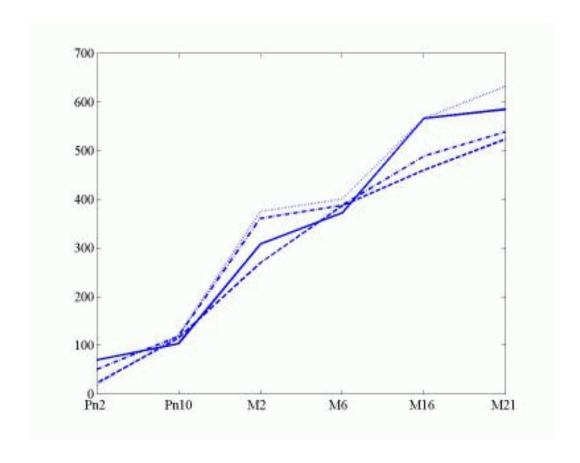


Figure 27: 4 candidate gene profiles from Mus musculus 5' end cDNA (Unigene 86632)

Occurence Histogram

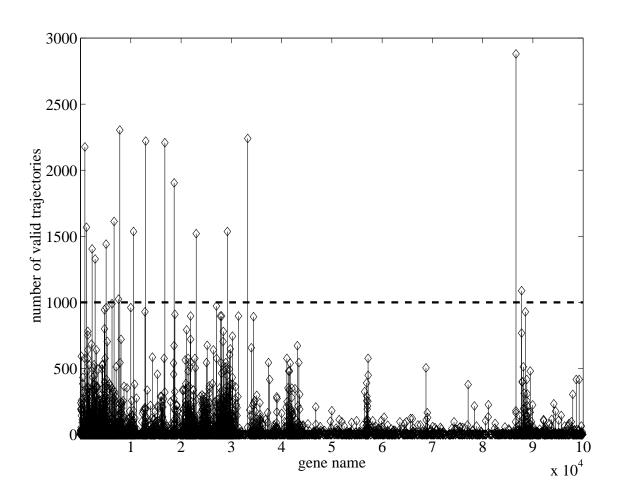


Figure 28: Occurrence histogram with threshold.

Old Dominant Pareto Fronts

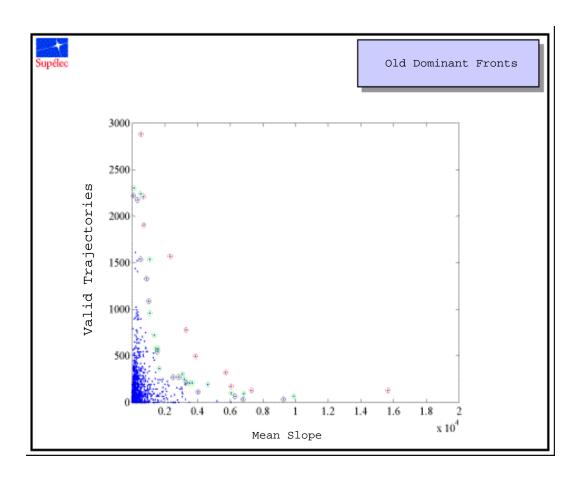


Figure 29: Pareto fronts for old dominant genes.

Resistant Old Dominant Genes in first Three Fronts

• Leave-one-out cross validation

Let ψ_i^{-m} denote one possible set of $T \times (M-1) = 6 \times 3$ samples Cross-validation Algorithm:

Do
$$m = 1, ..., 4^6$$
:

Compute
$$\left(\xi_1(\psi_i^{-m}),\,\xi_2(\psi_i^{-m})\right)$$

Find Genes in First 3 Pareto fronts: G^{-m}

End

Resistant Genes =
$$\cap_{m=1}^{4^6} G^{-m}$$

Unigene #	Affymetrix description
1186	Mouse Carbonic Anhydrase II cDNA
1276	Retinal S-antigen
2965	Mouse opsin gene
3918	ATP-binding casette 10
16224	Guanylate cyclase activator 1a (retina)
16763	Mouse mRNA for aldolase A
16771	Mus musculus H-2K
39200	CGMP phosphodiesterase gamma
42102	Mus musculus tubby like protein 1 mRNA
69061	Guanine binding protein α transducing 1
86632	Mus musculus 5'end cDNA

Table 1: Resistant genes remaining in first three Pareto fronts

Three-objective Pareto Filtering

Objective Extract "aging genes"

- Strictly increasing filtering criteria:
 - persistent positive trend

$$\xi_1(\psi_i) = \overline{\min_t b_i(*,t)} = \max$$

• high consistency over $6^4 = 4096$ possible combinations of trajectories

$$\xi_2(\psi_i) == \frac{\text{\# trajectories having } \psi_i = [1, \dots, 1]}{4096} = \max$$

• no plateau

$$\xi_3(\theta_i) = \overline{[\theta_i(*,t+1) - 2\theta_i(*,t) + \theta_i(*,t-1)]^2} = \min$$

Pairwise Pareto Fronts

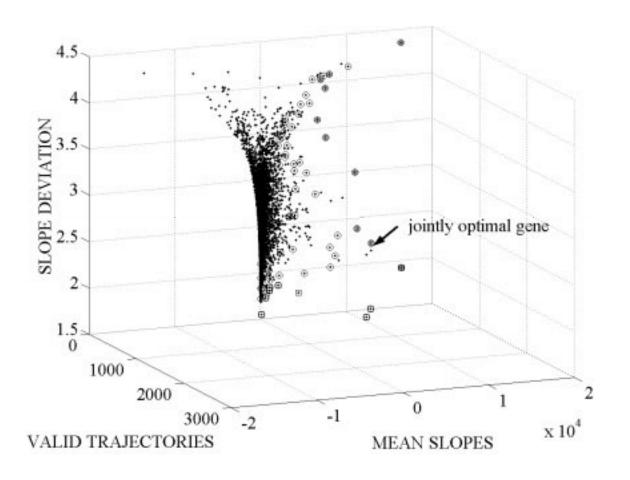


Figure 30: First Pareto fronts for each pair of criteria taken from the set (ξ_1, ξ_2) and ξ_3 . Each one of this front is denoted by squares, circles and stars, respectively.

Aging Genes Found by Pareto Filter

Unigene #	Front	Description
7800	1st	Inositol triphosphate receptor type 2
86632	2nd	Histocompatibility 2, L Region
12956	2nd	Hyperpolarization-activated, cylcic nucleotide-gated K
29213	3rd	RIKEN cDNA 1200015F23 gene
33263	3rd	Histocompatibility 2, D region locus 1
29789	3rd	Expressed sequence A1430822
2289	3rd	RIKEN cDNA 1500015A01 gene
6671	3rd	RIKEN cDNA 1110027O12 gene
16771	4th	MHC class 1 antigen H-2K
34421	4th	Q4 class 1 MHC
6252	4th	Procollagen, type XIX, alpha 1
29357	4th	RIKEN cDNA 1300017C10 gene

Table 2: Resistant aging genes remaining in first four Pareto fronts

Conclusions

- 1. Signal processing has a role to play in many aspects of genomics
- 2. Careful physical modeling of image formation process can yield performance gains
- 3. New methods of data mining are needed to perform robust and flexible gene filtering
- 4. Cross-validation is needed to account for statistical sampling uncertainty
- 5. Joint intensity extraction and gene filtering?
- 6. Optimization algorithms for large data sets?
- 7. Genetic priors: phylogenetic trees, BLAST database, etc?