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Abstract

Variational energy minimization techniques for surface reconstruction are implemented by evolving an active contour accord-
ing to the solutions of a sequence of elliptic partial differential equations (PDE’s). For these techniques, most current approaches
to solving the elliptic PDE are iterative involving the implementation of costly finite element methods (FEM) or finite difference
methods (FDM). The heavy computational cost of these methods makes practical application to 3D surface reconstruction burden-
some. In this paper, we develop a fast spectral method which is applied to 3D active contour reconstruction of star-shaped surfaces
parameterized in polar coordinates. For this parameterization the Euler-Lagrange equation is a Helmholtz-type PDE governing
a diffusion on the unit sphere. After linearization, we implement a spectral non-iterative solution of the Helmholtz equation by
representing the active surface as a double Fourier series over angles in spherical coordinates. We show how this approach can be
extended to include volumetric grey-level penalties. A number of 3D examples and simulation results are presented to illustrate the
performance of our fast spectral active contour algorithms.
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I. INTRODUCTION

Partial differential equations (PDE’s) have been widely applied to solve many computer vision and im-
age processing problems, such as curvature based contour flow, edge-preserving image smoothing, image
registration via deformable models, and image segmentation. The advantages of applying PDE methods to
image analysis have been summarized in [6]. In particular, some of these problems, such as shape from
shading [16], surface reconstruction [31] and active contours [11], can be formulated in the framework of
variational principles and lead to solving Euler-Lagrange equations of elliptic type as the necessary condition
for a minimum. The need to solve elliptic equations of the general form

r2u� �u = f (1)

arises in these problems. This equation arises from minimizing an energy function defined as the sum of a
data fidelity term and a surface roughness penalty. These methods are thus known as variational methods and
energy minimization methods.

This paper is concerned with implementation of fast variational methods for the reconstruction of smooth
star-shaped 3D surfaces. The majority of variational approaches to 3D object reconstruction solve PDE’s on
a rectangular domain, e.g. the plane
 2 IR2. Such a 2D representation is natural as a 3D surface is simply
a mappingx : 
 ! IR3, i.e. x(v; w) = (x1(v; w); x2(v; w); x3(v; w)), where(v; w) 2 
. These approaches
solve the obtained PDE’s by iterative techniques, such as finite element methods (FEM) and finite difference
methods (FDM). For example, Cohen used FEM to solve the PDE’s in active balloons models [9] and in [33]
Xu used FDM to solve the PDE’s for gradient vector flow. The advantage of FEM methods is their geometric
flexibility, in other words, their ability to perform local mesh refinement. However, FEM/FDM have met with
difficulties for practical 3D imaging applications. The large number of voxels in 3D images causes significant
growth of computation time which is intolerable in most practical applications.

In this paper, we consider fast methods of surface reconstruction and segmentation of 3D star-shape objects
using the active balloon framework introduced by Cohen [9]. The surface functions of such objects and
the associated PDE’s can be defined over the unit sphereS2 instead of a 2D rectangular domain, where
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S2 := f(x; y; z) : x2 + y2 + z2 = 1g in the cartesian coordinate system orS2 := f(r; �; �) : r = 1g in
the spherical coordinate system. With the assumption that the origin has been aligned up with the object
center, any star-shaped 3D surface can be naturally modelled by a single valued radial description function,
f(�; �) : S2 ! IR defined on the unit sphere. Orthogonal functions on the unit sphere, such as spherical
harmonics and double Fourier series have been widely used to decompose the radial descriptorf so that the
statistical information of the corresponding coefficients can be used to guide other image processing tasks,
such as deformation analysis [15] and image segmentation [28]. In fact, radial descriptorf can be applied to
the wide class of any simply connected (no hole) surface which can be embedded into the unit sphere. For
example, Brechb¨uhler proposed to parameterize the surfaces of simply connected 3D objects by defining a
continuous, one-to-one mapping from the surface of the original object to the surface of a unit sphere [5]. The
parameterization is implemented via a constrained optimization procedure. In [30], Tao proposed to build a
statistical shape model of cortical sulci by projecting sulci onto the unit sphere and extracting intersubject
variability of the shape of the sulci and of the mean curvature along the sulcal curves.

PDE algorithms on the unit sphere have been widely studied for the numerical simulation of turbulence
and phase transition, weather prediction and the study of ocean dynamics. In 1970’s, spectral methods and
pseudo-spectral methods on the unit sphere emerged as a viable alternative to finite difference and finite ele-
ment methods [2], [3], [23]. It is well known that spectral methods have unsurpassed accuracy for boundary-
less or periodic domain like the unit sphere and a faster rate of convergence than that of FDM and FEM in
solving PDE’s [14]. To further accelerate run-time without loss in accuracy for solving PDE’s on the sphere,
Cheong [8] and Yee [34] have recently devised less computationally demanding alternatives to the spheri-
cal harmonic basis. These results are the prime motivation for applying fast spectral methods to reduce the
computation time for evolving 3D deformable surfaces in active balloon reconstruction for broken edge maps
[18], [9].

Fourier snakes using spherical harmonic representations have been proposed for 3D deformable shape
models by Staib and Duncan [27] and Sz´ekely etal [29]. The Mumford-Shah energy functional [22] was
introduced by Chan to deal with blurred or broken boundary problem [7]. Similar approaches to include
region-based grey-level information in segmentation can also be found in [17] and [32]. The work described
in this paper combines and extends these approaches in several novel ways. First, we adopt a different total
energy functional from [29] and [22] which accounts for an incomplete edge map by using a 3D Chamfer-like
distance function [10] to enforce edge information and an internal energy which combines a surface rough-
ness penalty and a grey-scale region-based penalty similar to that used in [12] and [17]. Second, we adopt
the variational approach of [9] to minimization of the energy functional and we show that the Euler-Lagrange
equations reduce to a non-linear PDE over the unit sphere describing the energy minimizing surface. Third,
temporal evolution of the active surface results directly from linearization of this PDE via successive approx-
imations. This linearization leads to an evolving surface arising from solution of a sequence of homogeneous
Helmholtz PDE’s. Fourth, instead of spherical harmonics we apply the faster Cheong’s double Fourier series
[8] to solve each of these Helmholtz PDE’s. These four attributes are the essence of our fast spectral method.

This paper is organized as follows. In the next section, we briefly review the use of PDE’s and variational
principles as applied to surface reconstruction and 3D active contours. In Section III, the spectral method on
the unit sphere proposed by Cheong is described. Simulation and experimental results are provided in Section
IV; and finally in Section V, we discuss current limitations of the methods and future research directions.
The reader interested in more details and additional applications of surface reconstruction. segmentation, and
registration is referred to the thesis [20].

II. PDE IN SURFACE RECONSTRUCTION AND3D ACTIVE CONTOURS

A. Surface Reconstruction

Let g = g(�; �) be a noisy radial function, called the edge map, obtained from the coarse segmentation of a
star-shaped object. The surface reconstruction problem is to use some form of regularization to approximate
the rough edge mapg(�; �) by a smooth functionf(�; �). Variational approaches to this problem specify the



solutionf as a critical point which minimizes the energy functional [11]:

E(f; g) = �

Z
S2
Y (f; g)d
S2 +

Z
S2
Z(f)d
S2; (2)

whereY measures the distance between the functionf and the coarse segmentation datag, Z is a measure
of reconstruction smoothness, and� controls the tradeoff between the faithfulness to the segmentation data
and smoothness of the surface. The two terms inE represent the faithfulness to the segmentation data, called
the data fidelity term, and the regularization penalty, called the smoothness term, respectively. If we define
the data fidelity as a metricY (f; g) = (f(�; �) � g(�; �))2, the approach becomes penalized least squares
fitting which is the classic reconstruction method. The smoothing term frequently contains the derivative of
the functionf to enforce smoothness. For instance,Z can be defined to beZ(f) = krfk2, wherer is the
gradient operator. With these choices, the energy functional is completely defined,

E(f; g) =

Z
S2
�(f(�; �)� g(�; �))2d
S2 +

Z
S2
krf(�; �)k2d
S2: (3)

The reconstruction objective is to minimizeE(f; g) overf . Using the calculus of variations [13], a stationary
point of the above energy functional can be found by solving the associated Euler-Lagrange equation:

r2f � �(f � g) = 0: (4)

When specialized to spherical coordinates this becomes a elliptic equation of Helmholtz type [1], a fact that
will be used in the sequel. When a time variable is included in the energy minimization functional (3) the
elliptic equation becomes a function over time and space. When indexed by the time variable the solution to
(4) is called an evolving surface or active contour.

Although finite difference methods (FDM) and finite element methods (FEM) have been employed to solve
the elliptic equation (4), they are iterative and thus have higher computational complexities than the spectral
method that will be introduced in Section II. In Section II-B, we will show that a non-linear PDE similar to
(4) can be used to reconstruct 3D star-shaped surfaces with missing or broken edges. Due to the non-linearity
of this PDE, we will see that it has to be solved by the fast spectral method sequentially in time.

B. Parametric Active Contours on the Unit Sphere

Parametric active contour methods can solve image segmentation problem and surface reconstruction prob-
lem simultaneously. Letx be a mappingx : 
! IR3, where
 is a subset ofIR2, and represent a propagating
surface in a parametric active contour approach, an energy functionalE associated withx can be defined as:

E(x) =

Z



�
[�krxk2 + �kr2xk2] + Pext(x)

�
d
 (5)

where� and� are parameters controlling the smoothness ofx andPext represents a potential function. It
is clear that two kinds of energy constitute the energy functional. The term

R


�krxk2 + �kr2xk2d
,

which is computed from the contourx itself, is called internal energy. The term
R


Pext(x)d
, which is

computed from the image and current location ofx, is called external energy. The force generated by the
internal energy disencourages the stretching and bending of the contour, in other words, has regularization
effect on the contour, while the force generated by the external energy attracts the contour towards the object
boundary. Therefore, the external energy represents the segmentation function of the active contour, and the
internal energy represents the reconstruction function of the active contour. The contourx deforms under
these two kinds of forces to find a minimizer of the energy functionalE.

The external force field plays an important role in active contour methods. Typically, active contours are
drawn towards the desired boundary by the external force which could include one or more of the following



components: a traditional potential force, obtained by computing the negative gradient of an attraction po-
tential defined over the image domain [11], [18]; a pressure force, used by Cohen in his balloon model [11],
which could be either expanding or contracting depending on whether the contour is initialized from inside or
outside; or a gradient vector flow, used by Xu [33] and obtained by diffusion of edge-map’s gradient. The role
of the external force is such that it must contain adequate boundary information to give it sufficient capture
range.

Let I : IR3 ! IR represent the grey scale image volume to be segmented,g := fxg; yg; zgg be the set of
all edge points detected inI, andd(g; (x; y; z)) be the distance from a point(x; y; z) in the evolving surface

x to its nearest edge point, i.e.d(g; (x; y; z))
�
= min(xg;yg;zg)2g k(x; y; z) � (xg; yg; zg)k. Figure 1 illustrates

these relations. Potential functions designed to deform the active contour usually have a global minimum at
the object boundary. Two common types of potential functions are:

P(1)(x) = h1(rI(x)) (6)

P(2)(x) = h2(d(g;x)) (7)

whereh1 andh2 are functions makingP(1) andP(2) convex at the location of object boundary. For instance,
P (x; y; z) = �jrI(x; y; z)j2, P (x; y; z) = �jrG�(x; y; z) � I(x; y; z)j

2 andP (x; y; z) = 1
1+jrIjp

belong
to the type ofP(1). In fact, jrIj serves as an edge detector which locates sharp intensity changes in image
I. Potential functions of the typeP(1) have the disadvantage that the resulting external force has very small
capture range becauseP(1) t 0 in homogeneous intensity areas. Potential functions of typeP(2) solve this
problem by incorporating the use of edge points extracted by local edge detectors. The common choices of
P(2) areP (x; y; z) = d2(g; (x; y; z)), P (x; y; z) = �1

d(g;(x;y;z))
andP (x; y; z) = �e�d

2(g;(x;y;z)). The boundary
location has been broadcasted to many of their neighbors through the value ofd. In our experiment, we chose
d2(g;x), aP(2) type potential function, to generate the external force for the active contour. This external
force will make the active contour evolve towards the boundary along a path of minimal distance.

In (5), �krxk2 and�kr2xk2 control the active contour’s elasticity and rigidity separately. The regular-
ization effect coming from�krxk2 can be interpreted as a curvature based flow which has very satisfactory
geometric smoothing properties [19], [24]. A theorem in differential geometry states that any simple closed
curve moving under its curvature collapses to a circle and then disappears. Therefore, a bigger� implies
a bigger stretching force, so that the active contour resists more the stretching, tends to shrink and have an
intrinsic bias toward solutions that reduce the active contour curve length or surface area. On the other hand,
a bigger� implies a larger resistance to tensile stress and bending. If we set� = 0 to allow second-order
discontinuity in the active contour, the equation (5) is then reduced to

E(x) =

Z



�krxk2 + d2(g;x)d
 (8)

For star-shaped contours, it will be convenient to convert the surfacex expressed inIR3, into a radial
description functionf(�; �) which expresses the surface in the object-centered spherical coordinate system.
As we will see, this conversion not only simplifies the contour expression, but also permits speed-up of the
contour evolution by application of spectral methods. When there are missing or broken edges the edge map
g is not specified for all angles�; � and the data fidelity term cannot be directly implemented in (8). To deal
with this we follow a similar procedure to that of Cohenetal [10] and use a Chamfer-like distance function
to compute the data fidelity term. Specifically, we define a modified data fidelity term as

d(g;x) = d(g; f) = kf(�; �)� gf (�; �)k (9)

wheregf(�; �) is defined as the point on edge map which is closest to the pointf(�; �) on the evolving surface

gf(�; �)
�
=

argmin
(xg;yg;zg)2g

k(xg; yg; zg)� (f sin � cos�; f sin � sin�; f cos �)k � (xo; yo; zo)

 (10)



and(xo; yo; zo) represents the coordinates of object center. The functiongf will be referred to as the closest
edge map. See Figure 1 for illustration.

The equation (8) can now be rewritten as:

E(f) =

Z
S2
�krfk2 + (f � gf)

2d
S2 : (11)

Although equation (11) is analogous to equation (3), its associated Euler-Lagrange equation is a little different
as compared to equation (4). Sincegf is a non-linear function off , the calculus of variations leads to a more
complicated Euler-Lagrange equation:

�r2f � f = �(f � gf)
@gf
@f

� gf ; (12)

where@gf=@f is a suitably defined variational of the closest edge map as a function of the surface. While
it would be worthwhile to explore conditions for existence of this variational we will sidestep this issue by
making the approximationj(f � gf)

@gf
@f
j � gf in (12). This approximation can be justified in the case that

the edge surfacegf encloses a large region and thatf is close togf . To apply the fast spectral method to solve
the elliptic PDE (12) has to be linearized so that it becomes a homogeneous Helmholtz-type PDE. We will
describe such a manipulation in Section II-D.

C. Volumetric Penalization

Traditional parametric and geometric active contours solely rely on the local edge detector to stop the
curve propagation. These methods do not use any region-based or volume-based information in the image.
Such active contours can only segment and reconstruct objects whose boundaries are well defined by gradient
jrIj of the image. For objects with blurred or even broken boundaries, traditional active contour may pass
through the boundary. In [7], Chan proposed to use Mumford-Shah energy functional [22] to deal with this
“boundary leakage” problem. Similar approaches to include region-based information in segmentatioin can
also be found in [17] and [32]. We use the same method as in [7] to incorporate the volume information into
the energy functional of 3D active contour. The volume information is introduced as an additional penalty
function. Define a new energy functionalEvol(f) associated withf as:

Evol(f) = 

�Z
inside(f)

(I � uin)
2dV +

Z
outside(f)

(I � uout)
2dV

�

= 

 Z
S2

 Z f(�;�)

r=0

(I � uin)
2r2dr +

Z B(I)

f(�;�)

(I � uout)
2r2dr

!
d
S2

!
(13)

whereI = I(r; �; �) is the gray level intensity of the 3D image,B(I) represents the boundary of the image
I, anduin anduout are the mean intensities in the interior of the evolving surfacef and respectively outsidef

uin =

R
inside(f) IdV

vol(inside(f))
; uout =

R
outside(f) IdV

vol(outside(f))
: (14)

Here the denominators in (14) are the volume inside and outside the evolving surface. With the assumption
that the image intensity is near homogeneous inside and outside the object boundary, the new energy func-
tional (13) has the same minimizer as (11), which is the contour of the object boundary. It can be adjoined to
the Lagrangian (11) by aggregating the integrals overS2:

E(f) =

Z
S2

�
�krfk2 + (f � gf)

2 +


hZ f

0

(I � uin)
2r2dr +

Z B(I)

f

(I � uout)
2r2dr

i�
d
S2 (15)



Now calculus of variations can be applied to obtain the necessary condition for minimization of this volumet-
rically penalized Lagrangian

�r2f � (f � gf)(1�
@gf
@f

)� z(f; I) = 0 (16)

where

z(f; I) = f 2 � [(I(f)� uin)
2 � (I(f)� uout)

2] + 2(
Æuin

Æf
)

Z f

0

r2(I � uin)dr

+2(
Æuout

Æf
)

Z B(I)

f

r2(I � uout)dr (17)

and

Æuin

Æf
=

R
S2
f 2I(f)d
S2 � uin surf(f)

vol(inside(f))
(18)

Æuout

Æf
= �

R
S2
f 2I(f)d
S2 � uout surf(f)

vol(outside(f))
(19)

where surf(f) =
R
S2
f 2d
S2 is the surface area of the evolving contour.

D. Evolution Algorithm

Comparing equation (16) with (4), it is clear the Euler-Lagrange equation (16) is no longer a homogeneous
Helmholtz PDE. First, the functional dependence ofgf onf makes the equation non-linear inf . Second, the
additive volumetric penalization termz is not linear inf and is not “instantaneous” in(�; �). The same issue
was encountered in [17] and the authors got around it by linearization of inf about the contour computed in
the previous step followed by update propagation. Update propagation is a kind of successive approximation
scheme for which, iterationn + 1, we updatefn in terms of past iteratefn(�0; �0), if fn+1 for (�0; �0) has not
yet been computed, and a partial updatefn+1(�

0; �0) if fn+1 for (�0; �0) has been computed. This succesive
approximation idea can be similarly applied to linearize our equation (16) so that it takes the form of a
homogeneous linear Helmholtz equation. Combining all the non-linear terms in the PDE into a single term
and moving it to the right side of the equation, (16) is rewritten as:

�r2f � f = z(f; I)� (f � gf)
@gf
@f

� gf : (20)

Invoking the assumed dominance conditionj(f � gf)
@gf
@f

)j � gf , and replacing the right hand side of (20)
with with the value offn we obtain a linearized homogeneous Hemholtz equation

�r2fn+1 � fn+1 = z(fn; I)� (fn � gfn)� gfn: (21)

This evolution is different from contour evolution in FDM, which could be implemented by the iteration

ft+�t = ft + [�r2ft � (ft � gft)(1��z(ft; I)]�t (22)

where�t is the FDM time step which indexes the evolving surfaces.
The details of the evolution algorithm is as following:

1. Initialize the evolution withf0 = c, c is determined by the object size;
2. Computegfn(�; �) and update the RHS of (21) withfn andgfn ;



3. Solve PDE�r2fn+1 � fn+1 = z(fn; I) � (fn � gfn)
@gfn
@fn

� gfn with spectral method to get the new
contourfn+1;

4. Compute the error,en+1 =
qPM�1

i=0

PN�1
j=0 (fn(�i;�j)�fn+1(�i;�j)2

MN

5. if en > threshold, go back to 2,
else end.
In the above algorithm,� and are chosen in advance to control the tradeoff between surface fidelity to the
edge map and surface smoothness.

III. 3D SPECTRAL APPROACH

As we have discussed in the introduction, FDM [33] and FEM [11] have been used to solve the Euler-
Lagrange equations associated with the surface reconstruction and active contours. However, all of these
methods have difficulties in 3D images due to the large grid size necessary for 3D images. Spectral methods
for solving PDE’s over a 2D rectangular domain are well known for their faster rate of convergence and higher
accuracy as compared to iterative FEM and FDM. These methods usually take advantage of symmetries by
transforming the equation into spectral domain and only requireO(N2 logN) operations for a 2D problem on
N �N grid. It was Simchony who first applied spectral method to solve Poisson equations on 2D rectangles
in computer vision problems [26]. Although similar methods for solving PDE’s over the unit sphere have
been used in numerical weather prediction and the study of ocean dynamics [8], [34], to the best of our
knowledge, they have not been used in 3D computer vision problems.

Since our problem is in spherical geometry, basis functions, such as spherical harmonics, double Fourier
series and Chebyshev polynomials, all have attractive features. A good comparison of these functions is given
by Boyd in [3]. Due to the spherical geometry, some conditions must be imposed on the basis functions to
ensure that the approximated radial function and its corresponding derivative are continuous at poles. For the
details of pole problem, readers are refered to [4]. The spherical harmonics are best with regard to the pole
problems because of the property of the associated Legendre functions, but the Legendre functions also make
the computation of spherical harmonics the most complex among the three basis sets. On the other hand,
double Fourier series can give comparable accuracy and are significantly easier to program. Most of all, the
existing FFT makes double Fourier series the most efficient transform method.

Yee first applied truncated double Fourier series to solve Poisson-type equations on a sphere [34]. However,
Yee’s algorithm had the deficiency of not properly enforcing continuity at the spherical poles, the so called
pole conditions. Recently, Cheong proposed a new method which is similar to Yee’s method, but directly
enforces the pole conditions and leads to increased accuracy and stability for time-stepping PDE solution
procedures [8]. In the subsequent sections, we discuss the application of Cheong’s spectral method to solve
the Helmholtz equations associated with the surface reconstruction problem and evolving 3D active contours.
Notice that� in the equationr2f � �(f � g) = 0 and� in the equation�r2f � (f � gf)(1 �

@gf
@f

) = 0

are both regularization parameters. We can unify the two notations by setting� = 1=� so that after the
linearization, the PDE�r2f � (f � gf)(1 �

@gf
@f

) = 0 also takes the simple homoegenous Helmholtz form
r2f � �(f � g) = 0.

A. The Spectral Method

We describe the spectral method proposed by Cheong in this section. The elliptic equationr2f � �(f �
g) = 0 is a Helmholtz equation. The Laplacian operatorr2 on the unit sphere is of form:

r2 =
1

sin �

@

@�
(sin �

@

@�
) +

1

sin2 �

@2

@2�
: (23)

We assume the value of functionf andg are given on the grid(�j; �k), �j = �(j +0:5)=J and�k = 2�k=K,
whereJ andK are the number of data points along the latitude and longitude, separately. We can expand the



functiong, and similarly forf , with a Fourier series in longitude with a truncationM , e.g.,

g(�; �) =
MX

m=�M

gm(�)e
im�k (24)

wheregm(�) is the complex Fourier coefficient given bygm(�) = 1
K

PK�1
k=0 g(�; �k)e

�im�k , �k = 2�k=K and
K = 2M . The equation (4) can then be written as an ordinary differential equation:

1

sin �

d

d�

�
sin �

d

d�
fm(�)

�
�

m2

sin2 �
fm(�) = �[fm(�)� gm(�)] (25)

The latitude functionfm(�) andgm(�) can be further approximated by the truncated sine or cosine functions,

gm(�j) =
PJ�1

n=0 gn;0 cosn�j; m = 0 (26)

gm(�j) =
PJ

n=1 gn;m sinn�j ; oddm

gm(�j) =
PJ

n=1 gn;m sin �j sinn�j; evenm 6= 0:

This is Cheong’s method and an efficient procedure for calculating the spectral coefficientsgn;m can be found
in [8]. After substitution of (27) into (25), we get an algebraic system of equations in Fourier space:

(n� 1)(n� 2) + �

4
fn�2;m �

n2 + 2m2 + �

2
fn;m +

(n+ 1)(n+ 2) + �

4
fn+2;m

= �[
1

4
gn�2;m �

1

2
gn;m +

1

4
gn+2;m]; m = 0, or odd (27)

and

n(n� 1) + �

4
fn�2;m �

n2 + 2m2 + �

2
fn;m +

n(n+ 1) + �

4
fn+2;m

= �[
1

4
gn�2;m �

1

2
gn;m +

1

4
gn+2;m]; m even6= 0 (28)

wheren = 1; 3; � � � ; J � 1 for oddn, n = 2; 4; � � � ; J for evenn if m 6= 0 andn = 0; 2; � � � ; J � 2 for even
n, n = 1; 3; � � � ; J � 1 for oddn if m = 0. This says the components of even and oddn are uncoupled for a
givenm. The equations (27) and (28) can be rewritten in matrix format,

Bf = Ag (29)

whereB andA are matrices of sizeJ=2� J=2 with tridiagonal components only,f andg are column vectors
whose components are the expansion coefficients offm(�) andgm(�). For example, the subsystem for oddn
looks like this: 0

BBBB@
b1;m c1
a3 b3;m c3

. . . . . . . . .
aJ�3 bJ�3;m cJ�3

aJ�1 bJ�1;m

1
CCCCA

0
BBBB@

f1;m
f3;m

...
fJ�3;m
fJ�1;m

1
CCCCA =

0
BBBB@

2 �1
�1 2 �1

. . . . . . .. .
�1 2 �1

�1 2

1
CCCCA

0
BBBB@

g1;m
g3;m

...
gJ�3;m
gJ�1;m

1
CCCCA



The procedure to solve the equation (4) is as follows: First, we getgn;m, the spectral components ofg(�; �)
by double Fourier series expansion. Then the right hand side of (29) is calculated to obtain the column
vectorg1 = Ag. Finally, the tridiagonal matrix equationBf = g1 is solved andf(�; �) is obtained by
inverse transform offn;m. Notice that the Poisson equationr2f = g is just a special case of Helmholtz
equation, so that a slight modification in the above algorithm will give the solution to homogeneous Poisson
equations. Other homogeneous elliptic equations, such as biharmonic equations can also be solved by this
spectral method.

B. Complexity Analysis

Consider an elliptic equation with a grid size ofN � N on unit sphere. If FEM were used, there would
be a total ofN2 variables with matrix sizeN2 �N2. A crude Gauss elimination method will requireO(N6)
operations and the Gauss-Siedel relaxation will requireO(N4) operations to converge. The number of oper-
ations might be reduced toO(N3), if the algorithms can use the fact that the matrix is sparse,. However the
computational complexity of the spectral method described above is onlyO(N2 logN) (see [8]). The com-
plexity of the spectral method on the unit sphere is in the same order as that of FEM applied on a grid over a
rectangle. We are writing the program for the detailed running time comparison of the FEM and the spectral
method applied in the active contour segmentation. In [25], Shen performed a numerical experiment which
applied two spectral methods and the FDM to solve the same Helmholtz equation on the sphere. The CPU
time comparison in [25] indicates that the spectral method based on double Fourier expansion is significantly
more efficient and/or accurate when compared with the algorithm based on spherical harmonics and on finite
difference. The experiments in [21] showed the similar results.

IV. A PPLICATIONS

Here we illustrate the spectral method for simulated and real 3D image volumes.

A. Surface Reconstruction

For the surface reconstruction problem the algorithm was applied to synthesized segmentation data to show
the effect of different choices of regularization parameter� for different noise levels and for different shapes.
The object center is assumed to be known or to have been estimated in advance.

We first performed experiments to compare reconstructions of a sphere and an ellipsoid in order to illustrate
the role of the regularization parameter�. Simulated the effect of isotropic segmentation noise by adding
circular Gaussian segmentation noise to the spherical harmonic coefficients. In Figure 2, the reconstruction
error is plotted versus the value of� = 1=� for two shapes. The straight line represents the standard deviation
of the segmentation noise. The figure shows that for the simple spherical shape, which only contains a single
frequency component, the value of� should be as small as possible in order to filter out segmentation noise,
while for a shape containing higher spatial frequencies, such as the ellipsoid,� should be optimized to control
the tradeoff between denoising and matching high spatial frequencies. Note that as the standard norm of the
gradient is adopted to enforce smoothness, a spherical surface minimizes the energy function for� = 0.
When the edge map is derived from an ellipsoidal surface the optimum value of� lies between101 and102.
If � is too small the evolving surface is overly attracted to the mismatched spherical shape while if� is too
high, the segmentation noise dominates te reconstruction. One possible method for improvement is to use
prior information to induce more suitable shape attractors by implementing a weighted norm on the evolving
surface gradient.

The optimum value of� not only changes with different shapes, but also with different noise levels. In a
second experiment, the choice of� for different segmentation noise levels was investigated. Different levels
of Gaussian noise are added to the ellipsoidal shape. Figure 3 shows that� should be smaller for lowSNR
segmentation data than for highSNR segmentation data, which is as expected. Three reconstructions of the
ellipsoid are presented in Figure 4. As previously described, the goodness of fit of the final reconstructed
surfaces is determined by the value of�.



B. 3D Parametric Active Contours

B.1 Active Contour with Volumetric Penalization

The volumetric penalization method described in Secs. II and III was applied to a synthesized 3D image to
show the effect of leakage prevention. An ellipsoid is contained in a128� 128� 64 image. One side of the
ellipsoid boundary has been blurred with a linear filter, a single slice of which is shown in Figure 8. The set
of edgemaps of the blurred 3D image is shown in Figure 9 and were derived from the blurred image by the
Canny edge detector implemented in the MATLAB functionedge( ). Both the blurred grey-level image and
the set of extracted edgemaps were then used to drive our volumetrically penalized active contour algorithm .
Figure 10(a) shows that without volumetric penalty leakage of the contour occurs in the vicinity of the blurred
boundary. Figure 10(b) illustrates the positive effect of volumetric penalization. In this experiment, we chose
� = 106 and = 5�. The penalization in each direction is proportional tof 2. How to automatically choose
the parameters� and is a topic worthy of additional study.

B.2 Liver Shape Extraction

In this experiment, we applied the active contour algorithm (without volumetric penalty) to 3D human liver
extraction from an actual thoracic X-ray CT scan. The X-ray CT image was obtained as a stack of 2-D image
slices each of size256� 256. Double Fourier series were used to expand the radial function of a 3D sphere
initialized inside the liver volume. The edge maps were again obtained by Canny filtering. The CT slices and
the corresponding edgemaps are shown in Figure 5.

As in the elliposidal surface reconstruction experiment, the center of the liver was estimated in advance.
Although it was not implemented in our experiment, dynamic center estimation could in principle be applied
as the surface evolves. The contour was initialized as a sphere inside the liver. The initial radius was set to
half of the distance from the origin to the edge point closest to it. A32� 32 grid was used for the 3D active
contour. Innth iteration, the closest edge mapgfn is determined fromfn andg. The elliptic equation is then
solved to propagate the active contour to the new positionfn+1. Because the boundary information extracted
by local edge detector has been integrated into the PDE, the average distance from the evolving contour to its
convergent limit is within one pixel after only5 iterations.

Figure 6 shows a slice of the final 3D surface with different values of� = 1=�. When� = 10�3, the con-
tour is over regularized and overly attracted to a spherical surface by the isotropic smoothness penalty. When
� = 10�6, the regularization effect is so weak that the final contour is virtually unregularized. Empirically,
it appears that� = 10�4 yields the closest match to the true outline of the liver. This further emphasizes
the importance of studying the effect of the regularization parameter�. Finally, Fig. 7(a) shows the under
regularized final active surface while (b) shows the final surface with� = 10�4.

V. CONCLUSIONS

In this paper, we have discussed the formulation of 3D surface reconstruction using spectral active contours
with edge penalties in spherical geometry. The spectral method uses double Fourier series as orthogonal
basis to solve a sequence of elliptic PDE’s over the unit sphere. Compared to the complexity ofO(N3)
for iterative time domain (FDM) balloon methods, the complexity ofO(N2 logN) for spectral methods
is significantly lower. Our experiments demonstrated fast convergence of edge penalized spectral active
contours for simulated edge maps and those derived from actual 3D thoracic CT scans. We extended the 3D
spectral active contour methods to volumetric penalty functions allowing the contour to account for grey-scale
variations and control leakage at blurred boundaries. The choice of active contour regularization parameters
requires further study. A limitation of the spectral method is that it requires a regular sampling grid and
thus cannot incorporate local mesh refinement in the region of large curvatures. Another limitation is the
requirement of star-shaped objects. We believe a hybrid spectral/finite-element method that provides the
advantages of each should be explored to alleviate these difficulties.
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Fig. 1. A grey level imageI , the set of edge pointsg detected inI , a propagating contourf , andd(g;x) or d(g; f), the distance
between the propagating contour and its nearest edge point.
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Fig. 2. Standard deviation of reconstruction error vs.� = 1=� for different shapes
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Fig. 3. Standard deviation of reconstruction error vs.� = 1=� for different segmentation noise levels
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Fig. 4. Final reconstruction of an ellipsoid for different values of� = 1=�.
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Fig. 5. CT slices and the corresponding edge maps
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Fig. 6. Contours solved with different� converge at different positions.
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(a) Local edge detector
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Fig. 7. Comparison of shape extraction results. (a) Local edge detector; (b) Active contour.
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Fig. 8. Edge-blurred Ellipsoid
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Fig. 9. Edgemap of the blurred 3D image containing an ellipsoid

(a) No Volumetric Penalization (b) With Volumetric Penalization

Fig. 10. Segmentation results comparison between the active contours with and without volumetric penalization for edge blurred
image


