Entropic-graphs for pattern matching

Alfred O. Hero

Dept. EECS, Dept Biomed. Eng., Dept. Statistics University of Michigan - Ann Arbor hero@eecs.umich.edu http://www.eecs.umich.edu/~hero

Collaborators: Huzefa Heemuchwala, Jose Costa, Bing Ma, Olivier Michel

Figure 2: Grey level scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.

Renyi α-Divergence

The Rényi α -divergence of fractional order $\alpha \in [0, 1]$ [Rényi:61,70]

$$D_{\alpha}(f_1 \parallel f_0) = \frac{1}{\alpha - 1} \ln \int f_1 \left(\frac{f_1}{f_0}\right)^{\alpha} dx = \frac{1}{\alpha - 1} \ln \int f_1^{\alpha} f_0^{1 - \alpha} dx$$

• α -Divergence vs α -Entropy

$$H_{\alpha}(f_1) = \frac{1}{1-\alpha} \ln \int f_1^{\alpha} dx = -D_{\alpha}(f_1 \parallel f_0)|_{f_0 = U([0,1]^d)}$$

• α -Divergence vs. Batthacharyya-Hellinger distance

$$D_{BH}^2(f_1 \parallel f_0) = \int \left(\sqrt{f_1} - \sqrt{f_0}\right)^2 dx = 2\left(1 - \exp\left(\frac{1}{2}D_{\frac{1}{2}}(f_1 \parallel f_0)\right)\right)$$

• α -Divergence vs. Kullback-Liebler divergence (Shannon MI)

$$\lim_{\alpha \to 1} D_{\alpha}(f_1 || f_0) = \int f_1 \ln \frac{f_1}{f_0} dx.$$

Rényi α-divergence and Error Exponents

Observe i.i.d. sample $\underline{W} = [W_1, \ldots, W_n]$

 H_0 : $W_j \sim f_0(w)$ H_1 : $W_j \sim f_1(w)$

Bayes probability of error

$$P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0)$$

LDP gives Chernoff bound [Dembo&Zeitouni:98]

$$\liminf_{n \to \infty} \frac{1}{n} \log P_e(n) = -\sup_{\alpha \in [0,1]} \left\{ (1 - \alpha) D_{\alpha}(f_1 || f_0) \right\}.$$

Special case: image registration

$$H_0$$
 : { Z^R , Z^T } independent, vs. H_1 : { Z^R , Z^T } dependent
Error exponent is α -MI.

Figure 3: Left: α -Divergence as function of angle. Right: Resolution of α -Divergence as function of alpha

Higher Level Features

Disadvantages of single-pixel features:

- Only depends on histogram of single pixel pairs
- Insensitive to spatial reording of pixels in each image
- Difficult to select out grey level anomalies (shadows, speckle)
- Spatial discriminants fall outside of single pixel domain
- Alternative: Aggregate spatial features

Spatial Relations Between Local Tags

(a) Image I^R

(b) Image I^T

Figure 5: Spatial Relation Coincidences

US Registration Comparisons

	151	142	162
pixel	0.6/0.9	0.6/0.3	0.6/0.3
tag	0.5/3.6	0.5/3.8	0.4/1.4
spatial-tag	0.99/14.6	0.99/8.4	0.6/8.3

Table 1: Numerator =optimal values of α and Denominator = maximum resolution of mutual α -information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA).

Alternative: Projection-coefficient vector wrt ICA basis

Figure 6: Estimated ICA basis set for ultrasound breast image database

Feature-based Indexing: Challenges

- How to best select discriminating features?
 - Require training database of images to learn feature set
 - Apply cross-validation...
 - ...bagging, boosting, or randomized selection?
- How to compute α -MI for multi-dimensional features?
 - Tag space is of high cardinality: $256^{16} \ge 10^{32}$
 - ICA projection-coefficient space is multi-dimensional continuum
 - Soln 1: partition feature space and count coincidences...
 - Soln 2: apply density estimation and ...
 - ... plug into the α -MI
 - Soln 3: estimate α -MI directly

Methods of Entropy/Divergence Estimation

- $Z = (Z^R, Z^T)$: a statistic (feature pair)
- { Z_i }: *n* i.i.d. realizations from f(Z)

Objective: Estimate

$$H_{\alpha}(f) = \frac{1}{1-\alpha} \ln \int f^{\alpha}(x) dx$$

- 1. Parametric density estimation methods
- 2. Non-parametric density estimation "plug-in" methods
- 3. Non-parametric minimal-graph estimation methods

Minimal Graphs: Minimal Spanning Tree (MST)

Figure 7:

Convergence of MST

Figure 8:

Asymptotics: the BHH Theorem and entropy estimation

Define the MST length functional

$$L_{\gamma}(X_n) = \min_{\mathbf{T}_n} \sum_{e \in \mathbf{T}_n} \|e\|^{\gamma}$$

Theorem 1

(Beardwood&etal:Camb59,Steele:95,Redmond&Yukich:SPA96)

$$\lim_{n\to\infty} L_{\gamma}(X_n)/n^{(d-\gamma)/d} = \beta_{L_{\gamma},d} \int f(x)^{(d-\gamma)/d} dx, \qquad (a.s.)$$

Or, letting $\alpha = (d - \gamma)/d$

$$\lim_{n\to\infty}L_{\gamma}(X_n)/n^{\alpha} = \beta_{L_{\gamma},d} \exp\left((1-\alpha)H_{\alpha}(f)\right), \qquad (a.s.)$$

Asymptotics of estimators of $H_{\alpha}(f)$

Define $B_p^{\sigma,q}$, the Besov space of $\ell_p(\mathbb{R}^d)$ functions with smoothness given by parameters σ and q.

Proposition 1 Let $p > d \ge 2$ and $\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$

$$\sup_{f^{\alpha}\in B_{p}^{1,1}} E^{1/\kappa} \left[\left| \int \widehat{f}^{\alpha}(x) dx - \int f^{\alpha}(x) dx \right|^{\kappa} \right] \geq O\left(n^{-1/(2+d)} \right)$$

while,

$$\sup_{f^{\alpha}\in B_{p}^{1,1}}E^{1/\kappa}\left[\left|\frac{L_{\gamma}(X_{1},\ldots,X_{n})}{n^{\alpha}}-\beta_{L_{\gamma},d}\int f^{\alpha}(x)dx\right|^{\kappa}\right]\leq O\left(n^{-\frac{\alpha\lambda(p)}{1+\alpha\lambda(p)}\frac{1}{d}}\right)$$

where $\lambda(p) = d + 1 - d/p$.

Note: minimal-graph estimator converges faster for all $\alpha \ge 1/2$

Application of MST to Image Registration

1. Extract features from reference and transformed target images:

$$X_m = \{X_i\}_{i=1}^m \text{ and } Y_n = \{Y_i\}_{i=1}^n$$

2. Construct following MST function on X_m and Y_n

$$\Delta L = \ln L_{\gamma}(X_m \cup Y_n)/(n+m)^{\alpha} - \frac{m}{n+m} \ln L_{\gamma}(X_m)/m^{\alpha} - \frac{n}{n+m} \ln L_{\gamma}(Y_n)/n^{\alpha}$$

3. Minimize ΔL_{γ} over transformations producing Y_n .

$$(1 - \alpha)^{-1} \Delta L \rightarrow H_{\alpha} (\varepsilon f_x + (1 - \varepsilon) f_y) - \varepsilon H_{\alpha} (f_x) - (1 - \varepsilon) H_{\alpha} (f_y)$$

where $\varepsilon = \frac{m}{m+n}$

Figure 9: Objective function profiles for histogram (L,M) and MST (L,M,R) estimators of α -Jensen difference vs histogram plug-in estimator ($\alpha = 1/2$): Single-pixel (L), 8D ICA (M), 64D ICA (R).

Quantitative Performance Comparisons

Figure 10: Quantitative registration MSE comparisons.

Extension: divergence estimation

Figure 11:

Extension: outlier resistance via optimal pruning

Figure 12: *k-MST for 2D annulus density.*

k-MST Influence Function for Gaussian Feature Density

Figure 13: MST and k-MST influence curves for Gaussian density on the plane.

k-MST Stopping Rule

Figure 14: Left: *k*-MST curve for 2D annulus density with addition of uniform "outliers" has a knee in the vicinity of n - k = 35. This knee can be detected using residual analysis from a linear regression line fitted to the left-most part of the curve. Right: error residual of linear regression line.

Computational Acceleration of MST

Figure 15: Acceleration of Kruskal's MST algorithm from n² logn to n logn.

Figure 16: Comparison of Kruskal's MST to our nlogn MST algorithm.

Conclusions

- 1. α -divergence for indexing can be justified via decision theory
- 2. Applicable to feature-based image registration
- Non-parametric estimation is possible without density estimation via MST
- 4. MST outperforms plug-in estimation when latter is feasible
- 5. Robustified MST can be defined via optimal pruning of MST: k-MST