Data Mining For Genomics

Alfred O. Hero III

The University of Michigan, Ann Arbor, MI

ISTeC Seminar, CSU Feb. 22, 2003

- 1. Biotechnology Overview
- 2. Gene Microarray Technology
- 3. Mining the genomic database
- 4. The post-genomic era

I. Biotechnology Overview

- Genome: All the DNA contained in an organism. The operating system/program for gene structure/function of an organism.
- Genomics: investigation of structure and function of very large numbers of genes undertaken in a simultaneous fashion.
- Bioinformatics: Computational extraction of information from biological data.
- Data Mining: Algorithms for extracting information from huge datasets using user-specified criteria.

Hierarchy of biological questions

- Gene sequencing: what is the sequence of base pairs in a DNA segment, gene, or genome?
- Gene Mapping: what are positions (loci) of genes on a chromosome?
- Gene expression profiling: what is pattern gene activation/inactivation over time, tissue, therapy, etc?
- Genetic circuits: how do genes regulate (stimulate/inhibit) each other's expression levels over time?
- Genetic pathways: what sequence of gene interactions lead to a specific metabolic/structural (dys)function?

Clone ID	GenBank	GeneName	Symbol	UniGene	LocusLink	Chr.	Molecular Function
MRA-0298	BC013125	Similar to Rhodopsin	LOC212541	Mm.2965	212541	6	
MRA-0299	unknown						
MRA-0300	NM_008938	Peripherin 2	Prph2	Mm.5032	19133	17	
MRA-0301	NM_008831	Prohibitin	Phb	Mm.2355	18673	11	
MRA-0302	bad seq						
MRA-0303	bad seq						
MRA-0304	unknown						
MRA-0305	M19381	Calmodulin l	Calml	Mm.34246	12313	7	calcium ion binding::
MRA-0306	M28727	Tubulin, alpha 2	Tuba2	Mm.197515	22143	2	GTP binding::
MRA-0307	BF469955	RIKEN cDNA 1110018F16 gene	1110018F16Rik	Mm.40490	68594	3	
MRA-0308	J00376	Crystallin, alpha A	Cryaa	Mm.1228	12954	17	
MRA-0309	BB284055	Expressed sequence AIS97479	AIS97479	Mm.28817	98404	1	
MRA- <u>0</u> 310	NM_007378_	ATP-binding cassette, sub- family A (ABC1), member		Mm 3918	11304	3	ATP binding::phospholipid transporter::ATP- binding cassette (ABC) transporter::

Link to sequence

Link to NCBI database

Source: Yu, Swaroop, etal (2002)

	Biological	Cellular					
Clone ID	Process	Components	Tissue Expressed				
MRA-0298			eye;adult-retina;eyeball;retina;spinal ganglion;embryonic body between diaphragm re				
MRA-0299							
		integral membrane					
MRA-0300	vision::	protein::	eye;adult-retina;nervous system;retina;eyeball				
MRA-0301			embryo, whole embryo;mammary;kidney;colon;nervous system;skin, melanoma;ton;				
MRA-0302			enoryo, whole enoryo manunary kumey colon kervous system ykin, melanoma, on				
MRA-0303							
MRA-0304							
I-II IA-0307							
MRA-0305	cell cycle::		embryo, whole embryo;hippocampus;testis;gonad;forelimb;branchial arches;mamma				
	microtubule-based						
	process::microtubule-						
MRA-0306	based movement::	microtubule::	mammary;embryo, whole embryo;brain;spinal cord;spinal ganglion;head;neural retina				
MRA-0307			nervous system;pleen;cortex;muscle;t cell;head;hippocampus;pinal cord;basal gangl				
	sensory organ						
MRA-0308	development::	cytoplasm::	eyeball;head;embryo, whole embryo;neural retina;eye;adult;spleen				
MRA-0309			heart;liver;head;amygdala;mammary gland;pancreas;mammary;urinary bladder;embry				
	vision::transport::p						
	hospholipid transfer	integral plasma					
MRA-0310	to membrane::	membrane protein::	eye;heart;brain;head;adult-retina;pineal-glands;embryonic body between diaphragm				

Source: Yu, Swaroop, etal (2002)

Genome Sequencing Status

- Whole genome has been sequenced for over 1000 viruses and over 100 microbes
- Plant and animal genomes sequenced
 - Oat,soybean,barley,rice,wheat,corn
 - Mouse, zebrafish, human
- Plant and animal genomes in progress
 - Cotton,tomato,potato...
 - Rabbit,dog,chicken...

Sequencing Milestones

Organism	#of genes	% genes with inferred function	sequencing complete
E. Coli	4,288	60	1997
Yeast	6,600	40	1996
C. Elegans	19,000	40	1998
Drosophila	12,000-14,000	25	1999
Arabidopsis	25,000	40	2000
Mouse	26,000-40,000	10-20	2002
Human	26,383-39,114	10-20	2001

Source: http://www.biotech.ucdavis.edu/powerpoint/powerpoint.htm

THE STRUCTURE OF DNA

Central Dogma of Molecular Biology

http://anx12.bio.uci.edu/~hudel/bs99a/lecture20

Central Dogma: From Gene to Protein

Source: NHGRI http://www.genome.gov/

Towards a unified theory....

Source: http://www.biotech.ucdavis.edu/powerpoint/powerpoint.htm

Nucleic Acid Hybridization

II. Gene Microarray Technologies

- High throughput method to probe DNA in a sample
- Two principal microarray technologies:
 - 1) Affymetrix GeneChip
 - 2) cDNA spotted arrays
- Main idea behind cDNA technology:
 - 1) Specific complementary DNA sequences arrayed on slide
 - 2) Dye-labeled RNA from sample is distributed over slide
 - 3) RNA binds to probes (hybridization)
 - 4) Presence of bound RNA-DNA pairs is read out by detecting spot fluorescence via laser excitation (scanning)
- Result: 10,000-50,000 genes can be probed at once

Specialized cDNA Array: Eye-Gene

Source: J. Yu, UM BioMedEng Thesis Proposal (2002)

I-Gene Array: Probe Generation

Farjo, R & Yu, J. Vision Research 42 (2002)

I-Gene Array: Printing and Processing

Farjo, R & Yu, J. Vision Research 42 (2002)

I-Gene Array: Image Formation

- Treated sample labeled red (Cy5)
- Control data labeled green (Cy3)

Single-Chip Raw Data Analysis

Source: J. Yu, UM BioMedEng Thesis Proposal (2002)

Problem: Experimental Variability

- Population too wide genetic diversity
- Cell lines poor sample preparation
- Slide Manufacture slide surface quality, dust deposition
- Hybridization sample concentration, wash conditions
- Cross hybridization similar but different genes bind to same probe
- Image Formation scanner saturation, lens aberrations, gain settings
- Imaging and Extraction misaligned spot grid, segmentation

Microarray data is intrinsically Statistical!

III. Mining Statistical Genomic Data. Questions:

- How to estimate true Cy5 and Cy3 from raw data?
- How to compensate for experimental variability?
- How to extract expression profile ratios from a set of up to 50,000 probe responses?
- How to specify gene profile selection criteria for mining in this data?
- How to discover complex genetic pathways to disease, aging, etc?

Mining Statistical Genomic Data. Answers:

- Spot Extraction: Cy5/Cy3 or Cy5-Cy3?
 - Image processing, image segmentation, non-linear anova models
- Comparing between microarray experiments
 - Statistical invariance, equalizing transformations, normalization
- Gene filtering and screening
 - Simultaneous statistical inference, T-tests, FDR
- Discovery of genetic pathways
 - Clustering, dependency graphs, HMM's

Spot Extraction Issues

- Technical noise and variability
- Laser gain and calibration
- Cy3/cy5 channel bleedthrough
- Image formation gain
- Spot-gridding algorithm
- Spot segmentation algorithm

Technical Noise and Variability

Good Signal

Weak Signal

Irregular Spots

Streaks

Comet Tails

Source: http://stress-genomics.org/

Gain Effects

Weak Normal Saturated

Optimal gain can be studied by information theory

Rate Distortion Lower Bound

Spot Segmentation Failure Modes

Grid misalignment

Laser Misalignment

Source: C. Ball, Stanford Microarray Database

Steps in Conventional Segmentation

- Addressing Locate "center of description" for each spot
- Spot Segmentation Classification of pixels either as signal or background.
- Spot Quantification Estimation of hybridization level/ratio of spot

Mathematical morphology unifies these steps

Segmentation via Morphological Operators

Original Image

Watershed Transformed

Alternate-Sequential Filtered

Final Segmented Image

Siddiqui, Hero and Siddiqui, Asilomar-02

The University of Michigan Dept. of EECS

Spot EigenAnalysis

- Gray level covariance matrix over each spot boundary is calculated
- Eigen analysis of each covariance matrix is performed
- Trends in direction of eigenvectors indicate systematic bias in spot printing

Siddiqui, Hero and Siddiqui, Asilomar-02

Circularity Coefficient: mean(r^2)/(mean(r))^2

Radius vs. Sphericity Coeff.

- Plot for Radius vs.
 Sphericity Coefficients (measure of circularity) of spots
- Spots with lower sphericity coefficients appear in lower half of plane
- Closer the sphericity coeff.
 is to 1, the better it is
- Deviation from circularity may give cause to discard data

Siddiqui, Hero and Siddiqui, Asilomar-02

Another Dimension: Expression Profiles

Problem: Intrinsic Profile Variability

Across-gene variability

Within-gene variability

Solution: Experimental Replication

Issues:

- Control by experimental replication is expensive
- Surplus real estate allows replication in layout
- Batch and spatial correlations may be a problem

Comparing Across Microarray Experiments

Experiment A

Experiment B

Question: How to combine or compare experiments A and B?

Un-Normalized Data Sets

Within-experiment intensity variations mask A-B differences:

Experiment A (Wildtype)

Experiment B (Knockout)

Hero&Fleury, ISSP-03

Two Approaches

- If quantitative gene profile comparisons are required:
 - must find normalization function to align all data sets within an experiment to a common reference.
- If only ranking of gene profile differences is required:
 - No need to normalize: can apply rank order transformation to measured hybridization intensities

A vs B Microarray Normalization Method

Un-Normalized Data Set (Wildtype)

Normalized Data Set (Wildtype)

Profile Rank Order Statistics

- Rank order algorithm: at each time point replace each gene intensity with its relative rank among all genes
 - The relative ranking is preserved by (invariant to) arbitrary monotonic intensity transformations.

Mining Gene Expression Data

- Issues
 - Feature space
 - Feature selection criteria
 - Statistical robustification
 - Cross-validation
 - Experimental Validation

Y/O Human Retina Study

16 individuals in2 groups of 8 subjects

$$\xi_1(g) = \overline{O}(g) - \overline{Y}(g)$$

$$\xi_2(g) = (\sigma_O^2(g) + \sigma_Y^2(g))/2$$

Fred Wright's Human Fibroblast Data

18 individuals in3 groups of 6 subjects

$$\xi_1(g) = (\mu_{100}(g) - \mu_{50})(g))(\mu_{50}(g) - \mu_0(g))$$

 $\xi_2(g) = (\sigma_{100}^2(g) + \sigma_{50}^2(g) + \sigma_0^2(g))/3$

Mouse Retinal Aging Data

24 mice in6 groups of 4 subjects

$$\xi_1(g) = \Delta_{M21,M2}(g) = (\mu_{M21}(g) - \mu_{M2})(g))^2$$

 $\xi_2(g) = \max_{t=3} \{ \text{var}(\Delta_{t+1,t})(g) \}$

NRL Knockout vs Wildtype Retina Study

12 knockout/wildtype mice in 3 groups of 4 subjects

$$\xi_1(g) = \Delta_{K,W}^2(g) = \|\mu_K(g) - \mu_W)(g)\|^2$$

 $\xi_2(g) = \max\{\text{var}_K(g), \text{var}_W(g)\}$

Data Mining with a Single Criterion

Paired t-test with False Discovery Rate:

$$T(g) = \frac{\xi_1(g)}{\xi_2(g)} < T_{2(m-1)}^{-1} (1 - \alpha/2)$$

For Y/O Human study:

$$T(g) = \frac{|\overline{O}(g) - \overline{Y}(g)|}{\sqrt{(\sigma_O^2(g) + \sigma_Y^2(g))/2}}$$

Multicriterion scattergram: T-test

Fleury&etal ICASSP-02

Multicriterion Selection Criteria

 Seek to find Pareto-optimal genes which strike a compromise between two criteria

Multicriterion scattergram: Pareto Fronts

Pareto fronts

- first
- \square second
- third

Fleury&etal ICASSP-02

Cross-Validation Approach: Resampling

Bayesian approach: Posterior Analysis

$$P(i|Y)=P(gene i on PF | data Y)$$

Pareto Front Likelihood table

PPF linear contrast	P(i Y)	RPF linear contrast	P(i Y)	RPF non-parametric	P(i Y)
AFFX-ThrX-5-at	0.999	AFFX-DapX-5-at	1	U14394-at	0.944
HG3342-HT3519-s-at	0.998	AFFX-ThrX-5-at	1 1	U23435-s-at	0.694
AFFX-DapX-5-at	0.998	AFFX-ThrX-M-at	1	AFFX-PheX-M-at	0.685
HG831-HT831-at	0.996	HG3342-HT3519-s-at	1	AFFX-LysX-3-at	0.662
AFFX-ThrX-M-at	0.986	HG831-HT831-at	1	AFFX-LysX-M-at	0.648
X69111-at	0.984	U14394-at	1	AFFX-HSAC07/X00351-5-at	0.352
U14394-at	0.974	V00594-at	1	AFFX-ThrX-5-at	0.301
AFFX-LysX-3-at	0.962	X69111-at	1	AB000115-at	0.287
V00594-at	0.955	U45285-at	0.944	AFFX-DapX-5-at	0.245
U45285-at	0.932	AFFX-LysX-3-at	0.917	U53003-at	0.176
AB000115-at		AFFX-HSAC07/X00351-5-at	0.806	M92934-at	0.111
AFFX-HSAC07/X00351-5-at	0.866	AB000115-at	0.417	D29992-at	0.083
U73379-at	0.837	U73379-at	0.13	HG831-HT831-at	0.069
AFFX-DapX-M-at	0.678	V00594-s-at	0.074	S79522-at	0.042
Y09912-rna1-at	0.67	U75362-at	0.037	V00594-s-at	0.042
U75362-at	0.56	AFFX-PheX-5-at	0.028	D43636-at	0.032
AFFX-DapX-3-at	0.555	U03399-at	0.009	U22377-at	0.032
V00594-s-at	0.554	A . 1 C AC. 40 C PRO 1 C PR 1 C C	of Transaction	U75362-at	0.028
HG1980-HT2023-at	0.483			S70585-rna1-at	0.014
HG3044-HT3742-s-at	0.441			L02320-at	0.009
D43636-at	0.389			L05515-at	0.009
L27624-s-at	0.387			V00594-at	0.009
U03399-at	0.378			X69111-at	0.009
S69370-s-at	0.321			AFFX-PheX-5-at	0.005
AFFX-PheX-5-at	0.315			HG174-HT174-at	0.005

Hero&Fleury:VLSI03

Robustification and Validation Issues

- Cross-validation recomputes Pareto fronts over all virtual profiles (Fleury&etal:2002).
- Bayesian Pareto front also robustifies prior uncertainty in data (Hero&Fleury:2002).
- Computational issues:
 - Cross-validated fronts: completely data-driven but computation is O(m^t)
 - Bayesian Pareto fronts: requires joint density of criteria and marginalization. Computation is linear in # replicates (m) and # time points (t).

The Post-Genomic Era

- Whole genomes of species will be mapped
- Genetic pathways to structure, metabolism, disease, will remain as open questions
- Pathway analysis: what are the important gene interactions?
 - Requires performing many more experiments than zero-interaction analysis
 - Computational load is exponentially increasing in number of genes in pathway
 - New algorithms and models are needed

Draft Pathways for Photoreceptor Function

Source: J. Yu, UM BioMedEng Thesis Proposal (2002)

Each Link: Gene Co-regulation Study

Conclusions

- Signal processing, math, computer science, statistics: ever-increasing role in genomics
- New frontiers:
 - Protein arrays
 - Mass Spect
 - Molecular Imaging
- Bottleneck will remain: computational and statistical inadequacies!

Dawning of Post-Genomic Era

GENETIC DAWN

SERGUEI FRANCE

Post-Post-Genomic Era?

CORRIGAN TORONTO STAR TORONTO CANADA

Or....

9 1992 TOLES. Reprinted with permission of Universal Press Syndicate. All rights reserved. (Color added)

Oligonucleotide GeneChip Microarray

