
Online methods for network endpoint localization

Derek Justice and Alfred Hero,
EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

email: ��������	�
���

Communications and Signal Processing Laboratory
Technical Report: cspl-390

Date: Dec. 30 2008

This TR was submitted to IT Trans on Information Theory, April 2007.

1

1

Online Methods for Network Endpoint

Localization
Derek Justice and Alfred Hero

Abstract

Online techniques are presented for estimating the source and destination of a suspect transmission

through a network based on the activation pattern of sensors placed on network components. A hierarchi-

cal Bayesian model is used to relate routing, tracking, and topological parameters. A controlled Markovian

routing model is used in conjunction with a recursive EM algorithm to derive adaptive routing and tracking

parameter estimates. Previously developed semidefinite programming methods are used to account for any

prior topological information through Monte Carlo estimates of the topology parameters. Convergence

of the routing and tracking parameter estimates is proven and it is shown that their asymptotic estimates

are fixed points of an exact EM algorithm. Approximate methods based on permutation clustering are

presented to reduce the complexity of sums that arise in the estimator formulas. A multiarmed bandit

approach to the design problem of online probe scheduling is also presented. Finally, the effectiveness of

the new methods is illustrated through a variety of tracking simulations inspired by real world scenarios

and involving real Internet data. Speedy performance and good accuracy are observed.

Index Terms

Network measurement, recursive EM algorithm, combinatorial sum approximation, statistical infer-

ence, nonstochastic multiarmed bandit

Derek Justice (corresponding author): 3M Company, 3M Center, Bldg 518-01-01 St. Paul, MN 55144-1000, 651-736-1441
(Office), 651-736-3122 (Fax) , djustice@mmm.com (email)

Alfred Hero: 4229 EECS, University of Michigan, 1301 Beal Ave, Ann Arbor, MI 48109-2122, 734-763-0564 (Office),
734-763-8041 (Fax), hero@umich.edu (email)

2

I. INTRODUCTION

There are many situations in which the location of a sender or source of a message transmitted in a

communication network is unknown. For example, IP spoofing involves the use of a forged source IP

address and is often the first step in many denial of service attacks [1], [2]. Multiple suspect transmissions

consisting of malicious data packets with forged source IP’s are targeted at some destination computer.

The only trustworthy information is the ordered activation pattern of routers traversed by the packets

along their paths. As such, packet rejection mechanisms [3] and attacker source localization algorithms

[4] utilize these patterns along with specific properties of the computer network. An analogous problem

involving telephone networks is described in [5]. Here, sensors are placed on telephone lines and are able

to indicate when a particular call passes a monitored line. The precise temporal order in which the call

passed the sensors is not available because synchronization is difficult. The work in [5] discusses using

the activation pattern of sensors associated with a series of probing calls to determine the topology of the

network. However, one might also want to use the pattern of activated sensors associated with a suspect

call to determine the endpoint nodes (source and destination) when certain parties are communicating.

This paper considers the general problem of online endpoint localization, which involves the use of

efficient, recursive estimators for determining the source and destination nodes of a suspect transmission

based upon the partially ordered pattern of links or nodes traversed by the transmission along its path

through the network. We utilize an abstract mathematical representation of a graph throughout, thereby

making our methods applicable to a wide variety of networks. Our results lead to significant reduction in

computational complexity and permit online tracking of possibly changing endpoint locations of a suspect

message over time. Estimation is based on a hierarchical Bayesian model relating routing, tracking, and

topological parameters. Estimates are derived and analyzed using a recursive expectation-maximization

(EM) algorithm and semidefinite programming (SDP) methods. Under a complete lack of ordering

information, the recursive and exact EM algorithms require a number of operations at each iteration

that grow exponentially with the number of sensors activated by a given path. To cope with this problem,

we present approximate methods based on permutation clustering that reduce the complexity to only

quadratic growth in the number of activated sensors. Some ideas are also given for the design problem;

we apply a recursive algorithm to control a multiarmed bandit model for online probe scheduling. Finally,

we illustrate the effectiveness of the new methods through experiments involving Internet data.

The measurement apparatus for the system is identical to that described in [6]. It consists of a number

3

Fig. 1. Diagram of the measurement apparatus on a sample network. Probing sites are sources Σ = {σ1, σ2} and
destinations ∆ = {δ1, δ2}. Sensors are Γ = {γ1, γ2, γ3, γ4, γ5}. A box on a link or node represents a sensor that
indicates when a transmission path intercepts that link/node. We see γ1 and γ2 monitor nodes while γ3, γ4, and γ5

monitor links.

of asynchronous sensors, denoted Γ, placed on some subset of elements (links or nodes) in a network. A

sensor is activated, and its activation recorded, whenever the path of a data transmission is intercepted on

the element where the sensor is situated. We suppose transmissions originate at some source nodes in a set

Σ and terminate at some destination nodes in a set ∆, activating sensors in Γ along the way. The apparatus

is illustrated on a sample network in Fig. 1. Individual transmissions produce measurements recorded at

discrete time instances, and the subscript k is used throughout the paper to index time. If multiple sensors

are activated by a single transmission, they may not be capable of providing the precise order in which

they were activated. In general, a probability distribution Pk(ρ) on the possible orders of activation is

observed for each measurement; here the argument ρ ∈ {1, 2, . . . , } is simply a natural number used to

indicate a specific ordering of the sensors activated at time k. For example, a transmission with endpoints

(σ1, δ1) in Fig. 1 might activate sensors y1 = {γ2, γ3}–suppose this is the first measurement so k = 1.

The ordering (γ2, γ3), corresponding to ρ = 1, might have probability P1(1) = 3
4 , while the ordering

(γ3, γ2), where ρ = 2, has probability P1(2) = 1
4 . We are able to probe the network by scheduling a

message to be passed from some source σ ∈ Σ to some destination δ ∈ ∆ and observing the activated

sensor set y and ordering distribution P (ρ). Based on the results of our probing observations, we wish

to determine the unknown endpoints (source and destination in Σ × ∆) of suspect observations, each

consisting of an activated sensor set and ordering distribution.

A Monte Carlo method for endpoint estimation was developed in [6]. This approach averages over

feasible sample topologies given a batch of measurements in order to produce endpoint posteriors. It is

4

not clear how one might recursively update posteriors produced in this fashion. We address the updating

problem here. Fundamentally, the online model utilizes a generalization of the homogeneous Markovian

routing assumption in [7]. We suppose that the next hop in a message’s path depends only on its current

position and its final destination. This model induces a set of routing parameters θd
ij that represent the

probability of going from element i to element j given that the final destination is d. Since the ordering of

activated sensors is uncertain, up to a probability distribution P (ρ), the probability of any measured path

under the Markovian assumption takes the form of a multinomial mixture distribution parameterized by θ.

Endpoint posterior distributions then immediately follow from this model given plug-in estimates of the

routing parameters θ̂d
ij and suspect endpoint priors P (s, d). In order to avoid a growing memory problem,

we use a recursive form of the EM algorithm [8] to update approximate MAP estimates of the routing

parameters when new measurements are made. This is the first of three key approximations necessary

to make our method practical for online implementation. The recursive EM method requires that we

retain only an information state that summarizes all past measurements, rather than the measurements

themselves. We are able to prove, however, that the asymptotic estimates produced by the recursive EM

are fixed points of an exact EM algorithm that uses all measurements directly. We utilize an objective

function surrogate related to the log-likelihood that permits recursive computation. Other recent works,

including [9], [10], use different surrogates to accelerate the EM algorithm and interpret it in the context

of a larger class of optimization methods.

Because of the multinomial form of the path likelihoods, it is analytically convenient to make use of

Dirichlet priors on the routing parameters [11]. The Dirichlet priors are defined by the hyperparameters

βij for all sources/destinations/sensors i, j. We can then track the endpoints of suspect transmissions

by using the suspect observations to compute estimates of the hyperparameters in an empirical Bayes

framework [12]. This scheme not only allows the use of suspect measurements to augment the probes

in forming a more complete picture of routing in the network, but also localizes which elements of the

network are being utilized by the suspects, and thereby tracks them. EM recursions, similar to those used

for estimation of the routing parameters θd
ij , update approximate MAP estimates. Any prior information

taking the form of linear equalities constraining the unknown network topology’s adjacency matrix can be

included through a Dirichlet hyperprior on the tracking parameters βij . Such a characterization is useful

because common priors, including vertex degree information and necessary conditions for connectivity

of certain network components, can be written as linear constraints on the logical topology’s adjacency

5

matrix. The hyperprior is parameterized by γij , where these are estimated by averaging over approximately

feasible topologies produced using a semidefinite programming (SDP) relaxation generated from the

linear prior equalities. The computation of γij is done only during an initialization step, so the burden

of solving an SDP online is not an issue. This second key approximation allows us to include any

topological information with a polynomial time algorithm. Analysis and performance guarantees for the

SDP algorithm are presented in [6].

Our models lead to estimator update equations that involve sums over all activated sensor set orderings

ρ. The number of such orderings grows exponentially with the number of activated sensors. We may have

sufficient synchronization to rule out many of the possible permutations (i.e. Pk(ρ) = 0 for most values

of ρ). Without such information, however, computing the necessary sums quickly becomes intractable

when the number of activated sensors exceeds six or seven. This problem motivates our final crucial

approximation, which is to form permutation clusters [13] and use these to compute the sums. The

clusters are defined using a sort of augmented generating tree whose construction is driven by the particular

estimate values appearing in the sum to be approximated. The tree is built to some depth and then truncated

when either the approximation error is tolerable or the number of clusters is too large. In the case that the

tree is not truncated, it represents the exact sum by enumerating every possible permutation. The idea of

using generating trees for enumerating permutations was first proposed in [13]. It has more recently been

applied to the enumeration of restricted permutations [14], and extended to allow for the enumeration of

a wide variety of combinatorial objects [15]. Our technique of clustering the permutations is also similar

to the separable operator approximations used in [16]. By grouping permutations into clusters, we are

effectively decoupling many of the terms that appear in the full sum. This allows us to approximate the

full sum with fewer terms that separate according to the clusters.

In addition to estimation and tracking, we can implement probe scheduling online using an algorithm

developed for the nonstochastic multiarmed bandit [17]. The idea is to treat each source/destination pair

as a different arm on a multiarmed bandit. The multiarmed bandit is a classic problem model used to

capture the trade off between exploration and exploitation [18]. Imagine a slot machine with several arms,

each giving some unknown reward. The objective is to decide a strategy for pulling the arms so as to

maximize your reward over time. The slot machine has a cost per play, so exploration in the form of

trying different arms is costly; however if a single arm is played always, one might miss out on exploiting

an arm with higher payoff. In our scenario, the reward associated with scheduling a probe between a

6

specific pair is determined by the reduction in the entropy of suspect endpoint posterior distributions

resulting from the probe. This sort of information gain criterion has found successful application to

sensor management [19], [20]. Under this framework, we can directly apply the Exp3 algorithm of [17].

Exp3 draws the probing pair to be scheduled from a mixture distribution containing two components:

a uniform component and a shaped component determined by normalizing some weights. The weights,

in turn, are recursively updated in response to observed rewards. The two components of the mixture

distribution reflect the explore/exploit trade off; the uniform component promotes even exploration, while

the shaped component exploits the high payoff of certain arms. Several performance guarantees are

proven for the algorithm in [17]. Along with the performance guarantees, the computational simplicity

and recursive nature of the algorithm makes it very suitable for online scheduling.

Endpoint localization is related to the general class of network tomography problems considered in

the literature [21], [22], [23], [24]. These problems typically are interested in physical characteristics of

a communication network, including link delay and loss. As in [6], we utilize an abstract network model

that does not appeal to any physical specifications. These techniques are therefore applicable to endpoint

localization in a wide variety of networks, such as those describing partially observed technological,

social, or biological structures [25]. Also, the methods may be adapted to produce an online topology

inference scheme to address the problem considered in [7]. The method for permutation clustering tackles

the general problem of reduced complexity approximations, and may well find applications beyond this

present work.

The paper is organized as follows. Section II presents the hierarchical Bayesian model used to explain

observed measurements. Section III derives recursive, adaptive estimators for parameters appearing in the

hierarchical model, while Section IV analyzes the convergence properties of these estimators. In Section

V, we describe the permutation clustering method for approximating certain combinatorial sums that

appear in the estimate update equations. Section VI discusses the application of an algorithm for control

of the multiarmed bandit to the problem of online probe scheduling. A variety of tracking simulations

that apply the new methods to real Internet data collected by Rabbat et. al. [7] are presented in Section

VII. These simulations emulate the IP spoofing scenario discussed earlier. We conclude our discussion

in Section VIII with a summary and propositions for future work.

7

Fig. 2. Example logical topology for the monitored network in Figure 1. The vertex set of the logical network
consists of sensors Γ = {γi}5i=1 and probing sites Σ = {σ1, σ2}, ∆ = {δ1, δ2}. The edges summarize logical
adjacencies among sensors and probing sites with any intervening unmonitored elements short-circuited.

II. HIERARCHICAL BAYESIAN MODEL

The basis for our online estimation scheme is a hierarchical Bayesian model. A diagram illustrating the

relationships among variables in the model is shown in Figure 3A. At the highest level, we have parameters

γij associated with characteristics (such as vertex degree and connectivity) of the logical topology of the

network. The logical topology considers adjacency relationships among only those elements (vertices and

edges) that are either monitored with a sensor or used as a probing site. For example, we cannot hope

to pinpoint the position of a link in the original network that is not monitored by a sensor. We assume

unmonitored elements are essentially ’short-circuited’ in the logical network. The idea here is to assure

two elements are logically adjacent even if they are physically separated by an element (or subgraph

of elements) that is not monitored. An example logical topology is given in Figure 2 for the monitored

network in Figure 1.

The topology parameters serve as priors for the tracking parameters βij . The tracking parameters

indicate the extent to which the suspects are utilizing specific parts of the network; they are therefore

updated in response to new observed suspects. The routing parameters θd
ij appear next in the hierarchy.

These are updated by the probing measurements, and serve as parameters in a controlled Markovian

routing model for observed message paths. One might compare this model to the measurement model of

[6], which is depicted in Figure 3B. This model explains observed message paths using only the logical

topology Aij , which is constrained by linear equalities in the same way that our γij are constrained.

8

A B

Fig. 3. Diagram of the hierarchical Bayesian models. The model for our present online system is given in A, while
the model of [6] for offline estimation is in B. Vertical arrows represent prior dependencies, while right arrows
indicate data used in updating parameter estimates, and left arrows indicate the associated probability models. The
model introduces routing and tracking parameters into the hierarchy in order to adaptively account for changes in
network routing or suspect location. The method in [6] processes a batch of data offline, so there is no need for
adaptation.

The method in [6] processes a batch of data offline, so that there is no need for adaptation. Our model

introduces routing and tracking parameters into the hierarchy in order to adaptively account for changes

in network routing or suspect location. We will proceed to describe in detail each of the components in

the model of Figure 3A from the bottom up.

A. Controlled Markov Routing Model

We use a generalization of the Markovian routing model supposed in [7]. The basic assumption is that

the next hop in a message’s path through the network depends only on its current position and its final

destination. Note that this is a fair assumption for many modern routing algorithms [26]. In contrast, [7]

assumes the next hop in a path depends only on the current position of a message, irrespective of the

final destination. We let θd
ij denote the probability that a message currently at element (source/sensor) i

will go next to element (sensor/destination) j given that its final destination is d. Under this assumption,

we can interpret each θd (for all i, j) as the transition matrix of some Markov chain. Indeed, one may

view this as a controlled Markov model where d serves as the control [27]. The model in [7] utilizes

a single transition matrix since it does not treat d as a control; note that although our model might be

more realistic, it does require more parameters.

The Markov chain assumption implies the following path likelihood model for an activated sensor set

9

y given the ordering ρ and endpoints s, d:

P (y|ρ, s, d, θ) = θd
sy1

ρ

∏|y|−1
n=1 θd

yn
ρ yn+1

ρ
θd
y
|y|
ρ d

=
∏

(i,j)∈χρ
θd
ij ,

(1)

where yρ ≡ (y1
ρ, y

2
ρ, . . . , y

|y|
ρ) indicates the particular ordering ρ of the activated sensor set y and

χρ ≡ {(s, y1
ρ), (y

1
ρ, y

2
ρ), (y

2
ρ, y

3
ρ), . . . (y

|y|−1
ρ , y

|y|
ρ), (y|y|ρ , d)}. From this model, we easily get the endpoint

posterior distribution of a suspect measurement y as

P (s, d|y, θ) =
1
κ

∑
ρ

P (y|ρ, s, d, θ)P (ρ)P (s, d), (2)

where P (ρ) is the ordering distribution associated with the measurement, P (s, d) is the endpoint prior,

and κ is a normalization constant independent of ρ.

B. Dirichlet Priors

Because Eq. (1) is in the form of a multinomial distribution, and its parameters θd
i lie on the probability

simplex for all d, i, the Dirichlet prior, which is conjugate to the multinomial distribution, provides an

analytically tractable scheme for incorporating additional information about θ [11]. The prior is given by

P (θ|β) =
1
κ′

|∆|∏
d=1

|Γ|+|Σ|∏
i=1

|Γ|+1∏
j=1

(θd
ij)

β0βij , (3)

where conditional independence is assumed across transition matrices indexed by d and rows indexed by

i. Although it appears that we have also assumed independence over columns j, there is in fact coupling

over columns since all rows θd
i must satisfy

∑
j θd

ij = 1. The tracking parameters βij in the prior are

nonnegative and satisfy
∑

j βij = 1 for all i. Also in Eq. (3), we have a normalization constant κ′ and

a positive precision parameter β0 that allows one to scale the strength of the prior.

We utilize the law of total probability as follows to derive a likelihood model for an ordered path given

the tracking parameters β.

P (y|ρ, s, d, β) = E [P (y|ρ, s, d, θ) | β] , (4)

where the expectation is taken over θ with respect to the prior P (θ|β). In order to evaluate this expectation

in closed form, we require that all paths be loopless i.e. ym
ρ 6= yn

ρ for all m 6= n. This ensures that distinct

terms {θd
ij} appearing in Eq. (1) are conditionally independent (given β) since they all come from different

10

rows of the transition matrix θd (recall in defining the prior, we assumed conditional independence over

rows). Applying conditional independence and using Eq. (1) allows the expectation to be written as

P (y|ρ, s, d, β) =
∏

(i,j)∈χρ
E
[
θd
ij |β
]

=
∏

(i,j)∈χρ
(1 + β0βij)/(|Γ|+ |∆|+ β0),

(5)

where the second line follows from inserting the mean of the Dirichlet distribution in Eq. (3). This is

the only result that requires a loopless path. One might still apply these techniques to paths with cycles,

however it would then be necessary to compute higher order moments of the Dirichlet distribution and

revise subsequent estimators.

As mentioned previously, each row of the tracking parameter matrix also lies in the probability simplex.

Again given the multinomial-like product factorization of the likelihood in Eq. (5), it is convenient to

assume a Dirichlet prior on these given by

P (β|γ) =
1
κ′′

|Γ|+|Σ|∏
i=1

|Γ|+|∆|∏
j=1

(βij)γ0γij . (6)

Conditional independence (given γ) over rows is assumed as before. The topology parameters γij define

this prior, along with a positive scale factor γ0. We may set the scale factor based on our confidence in

the topological information.

Although the exact logical topology of the monitored network is unknown to us, we have available

some prior information of the form Q(A) = v. Here, A ∈ {0, 1}(|Γ|+|Σ|+|∆|)×(|Γ|+|Σ|+|∆|) is the adjacency

matrix of the logical topology, Q is a linear operator, and v is a vector. Through appropriate choices of

Q and v, it is possible to define various network priors including cliques, vertex degrees, or even some

known portions of the topology. See [6] for some concrete examples of these. We define the topology

parameter γij as the probability that a logical connection exists between element i and element j given

the prior information; i.e.

γij = E[Aij | Q(A) = v]. (7)

In this way, one might also use the topology parameters, along with associated precision parameters β0

and γ0, to account for knowledge of stable network routing components.

In contrast to independence assumptions for the tracking and routing parameters, it is clear that the

topology parameters might share complicated dependencies due to coupling of adjacency elements Aij by

the prior equalities. This observation not only strengthens our conditional independence assumptions made

11

earlier, but also illustrates an advantage of the hierarchical Bayesian model. It is usually topological aspects

of a network that induce dependencies among routes. We might assume independence of parameters

related to routing, provided we condition on topology. Since the topology parameters are placed at the

highest level of the Bayesian hierarchy, we are able to exploit conditional independence to simplify

computations at lower levels.

III. PARAMETER ESTIMATION

We now proceed to derive estimators for the parameters introduced in the model of the previous

section. It is useful, however, to first give a high level view of the flow of computations necessary for

the online system. The system is first initialized by formulating and solving a semidefinite program

using prior information about the network that is linear in the logical topology’s adjacency matrix (such

as vertex degrees). We average over samples produced using the rounding scheme of [6] in order to

estimate the topology parameters. With these, we move into online operation of the system. For some

initial training period, a probe of the network is made at each tick of the clock. A probe consists of

sending a message between some known source and destination and observing the activated sensor set

y and ordering distribution P (ρ). We update routing parameters in response to the results of each new

probe. After the training phase ends, we begin monitoring for suspect transmissions–i.e. transmissions

whose source and destination are unknown. Each suspect measurement includes an activated sensor set

y, ordering distribution P (ρ), and prior over possible endpoints P (s, d). When a suspect is observed, the

tracking parameters are updated, which forces an update in the routing parameters. The best available

estimates of the routing parameters may be used at any given time to build endpoint posteriors of observed

suspects. An operational diagram of the system is given in Figure 4.

In the following, we will first define the precise estimation problems that we wish to solve. We

then proceed to derive the estimators associated with each stage of the system: initialization (topology

parameters), training (routing parameters), and monitoring (tracking parameters).

A. Estimation Objectives and Problem Statement

Assuming the probability of each edge Aij is unknown, our goal in the initialization phase is to produce

a suitable Monte Carlo approximation of the expectation in Eq. (7) in order to estimate the topology

parameters. Once this is done, we move to online operation.

12

Fig. 4. Operational diagram of the online system. Heavy horizontal arrows indicate transitions between stages
of operation (initialization, training, and monitoring), while light vertical arrows indicate the flow of computation
within each stage. The system is initialized by formulating and solving a semidefinite program (SDP) associated
with the prior equality constraints Q(A) = v on the logical adjacency matrix A. Once online operation commences,
we have a training phase in which probes are scheduled and routing parameter estimates are recursively updated
in response to probe observations. Next we monitor the network for suspect transmissions, and update tracking
and routing parameter estimates whenever a suspect is observed. Refer to Figure 3 for parameter definitions and
relations.

We desire estimators of the routing and tracking parameters to be recursive (so as to avoid growing

memory problems) and scalable (so that online computation does not become intractable as the size of

the problem increases). We also want estimators that adapt to changes in routing protocols and suspect

locations. With that in mind, we choose the following penalized likelihood objective for estimation of

the routing parameters.

φk(θ) =
∑

t

ak−tlt(θ) + log P (θ|β̂(k)), (8)

where a ∈ [0, 1) is a forgetting factor, and β̂(k) is a plug-in estimate of the prior parameters β at time k.

Note that here and throughout the paper, k indexes the current clock tick. The log-likelihood is explicitly

given by

lt(θ) = log

(∑
ρ

P (yt|ρ, st, dt, θ)Pt(ρ)

)
, (9)

where P (yt|ρ, st, dt, θ) follows from the model in Eq. (1).

Note that the objective in Eq. (8) would be precisely the maximum a posteriori (MAP) objective under

an i.i.d. measurement model if the forgetting factor was unity. The introduction of the factor a < 1 is a

common heuristic used in the design of adaptive algorithms to reduce the effect of old measurements on

current parameter estimates [12]. One might set a using knowledge of dynamic routing in the network;

e.g. the more quickly standard routes are expected to change in the network, the closer to zero a should

be set. Alternatively, there exists a Dirichlet type generative model for measurements taken over time

13

for which the objective in Eq. (8) yields precisely the MAP estimate. It is straightforward to write down

such a model, so we omit it here.

The Dirichlet prior on θ serves to condition the routing parameters θd
ij by the tracking parameters βij .

A reasonable way to estimate β is to make use of the observed suspect transmissions. If the suspect

frequently utilizes the link from i to j, we would like βij to be closer to one. In this way, we fill in gaps

in the probing measurements by making direct use of the suspects to form a more complete picture of

routing in the network. Note also, that by taking account of the links being used by the suspects, we are

essentially tracking their positions in the network as characterized by sensor activations. The estimates

of β can be combined with the endpoint posterior distribution to provide additional information about

the suspects’ locations.

The estimation of the tracking parameters β is formalized through the use of empirical Bayes techniques

[12]. We choose a similar sort of adaptive MAP objective for estimation of the tracking parameters.

φk(β) =
∑

t

bk−tlt(β) + log P (β|γ̂). (10)

Again, a forgetting factor b ∈ [0, 1) is used to discount old suspect measurements, and γ̂ is the static

plug-in estimate of the prior parameters γ. The log-likelihood is given by

lt(β) = log

∑
s,d

∑
ρ

P (yt|ρ, s, d, β)Pt(ρ)Pt(s, d)

 , (11)

where P (yt|ρ, s, d, β) is the likelihood of some suspect measurement yt given in Eq. (5). In order to

allow for adaptation, one might tune b by knowledge of a suspect’s motion through some network.

Ideally, our routing and tracking parameter estimates at time k, θ̂(k) and β̂(k), would maximize the

objective functions in Eqs. (8) and (10) respectively. The goal in online estimation is therefore to develop

scalable, recursive algorithms to optimize these functions. We shall see that the key qualifiers ’scalable’

and ’recursive’ will necessitate certain approximations to be made. Our estimates will therefore only

approximately optimize the selected objective functions. By plugging in routing parameter estimates, we

can also compute the endpoint posterior distributions of suspect measurements as given in Eq. (2).

B. Initialization with Topology Information

If the edge probabilities P (Aij = 1) in the logical topology are unknown, except for some prior

constraints on the logical adjacency matrix Q(A) = v, we must approximate the expectation of Eq.

14

(7). Let {Am}M
m=1 be the sample adjacencies produced from a semidefinite program (SDP) formulated

to approximately solve the prior equalities Q(A) = v as described in [6]. The samples will satisfy

‖Q(Am)− v‖ < ε(Q, v) for a known tolerance guarantee ε(Q, v) and all m. We produce a Monte Carlo

estimate of the expectation in Eq. (7) as follows

γ̂ij =
1
M

∑
m

Am
ij . (12)

Note that solving an SDP is typically a very demanding computational task (O(N7) for a matrix of size

N ×N [28]). Fortunately, we need only solve the SDP once, during an offline initialization phase.

C. Online Routing Parameter Estimation

The form of the likelihood in Eq. (9) suggests the EM algorithm as a natural candidate for imple-

menting the estimator [29]. Exact maximization of Eq. (8) via EM would require storing all past probing

measurements. In order to avoid this growing memory problem, we utilize a recursive form of the EM

algorithm described in [8] to update the maximum value of an approximation to Eq. (8). Recursive EM

approximates the likelihood term
∑

t ak−tlt(θ) by Lk(θ), which is obtained recursively as follows:

Lk(θ) = E
[
log P (yk|ρ, sk, dk, θ) | yk, sk, dk, Pk(ρ), θ̂(k − 1)

]
+ aLk−1(θ), (13)

where L0(θ) = 0 and P (yk|ρ, sk, dk, θ) is taken as 1 if a probe is not scheduled at time k (in order

to remain consistent with the likelihood term in Eq. (8)). Evaluating the expectation in Eq. (13) over

orderings ρ and regrouping terms yields

Lk(θ) =
∑
d,i,j

cd
ij(θ̂(k − 1); k) log θd

ij + aLk−1(θ), (14)

with cd
ij(θ; k) given by the following for d = dk:

cd
ij(θ; k) =

∑
ρ | (i,j)∈χk,ρ

P (yk|ρ, sk, dk, θ)Pk(ρ)∑
ρ P (yk|ρ, sk, dk, θ)Pk(ρ)

. (15)

We have cd
ij(θ; k) = 0 if d 6= dk; also cd

ij(θ; k) = 0 for all d if a probe is not scheduled at time k. If we

define the recursion for c̄(k) as

c̄d
ij(k) = cd

ij(θ̂(k − 1); k) + ac̄d
ij(k − 1), (16)

15

with c̄d
ij(0) = 0 for all d, i, j, then we can express the function Lk(θ) simply as

Lk(θ) =
∑
d,i,j

c̄d
ij(k) log θd

ij . (17)

The routing parameter estimates at time k are then given by

θ̂(k) = arg max
θ|

P
j θd

ij=1∀d,i

φ̃k(θ)

= arg max
θ|

P
j θd

ij=1∀d,i

∑
d,i,j

(
c̄d
ij(k) + β0β̂ij(k)

)
log θd

ij .
(18)

A simple application of the KKT conditions to this concave maximization gives the following routing

parameter estimates:

θ̂d
ij(k) =

c̄d
ij(k) + β0β̂ij(k)∑
l c̄

d
il(k) + β0β̂il(k)

. (19)

Eqs. (16) and (19) define the recursive routing parameter estimator. Note that these parameter estimates,

although derived from a stochastic routing model, will indeed converge to a deterministic route if for a

given element i we always observe a transition to element j∗ when the destination is d. The forgetting

factors a, b < 1 ensure that the estimates θ̂d
ij will be driven to some minimal value (depending on γij ,

γ0, and β0) for all j 6= j∗ with almost all of the mass of θ̂d
i concentrated on θ̂d

ij∗

D. Online Tracking Parameter Estimation

Comparing Eqs. (10) and (8) indicate tracking parameter estimation problem is almost identical to

routing parameter estimation. The only fundamental difference in computation, is that a sum over

source/destination pairs also appears inside the logarithm of Eq. (11). This is a consequence of our lack

of knowledge of suspect endpoints. We again apply the recursive EM approximation for the likelihood

term in the objective:

Lk(β) = E
[
log P (yk|ρ, s, d, β) | yk, Pk(s, d), Pk(ρ), β̂(k − 1)

]
+ bLk−1(β), (20)

where L0(β) = 0 and P (yk|ρ, s, d, β) is taken as 1 if a suspect is not observed at time k. After evaluating

the expectation over ordering ρ and endpoints s, d, we can write Lk(β) as

Lk(β) =
∑
i,j

ḡij(k) log(1 + β0βij), (21)

16

with ḡ(k) defined recursively as

ḡij(k) = gij(β̂(k − 1); k) + bḡij(k − 1), (22)

where ḡij(0) = 0 for all i, j. The factor depending on the new measurement gij(β; k) is given by

gij(β; k) =

∑
ρ,s,d | (i,j)∈xk,ρ

P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)∑
ρ,s,d P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)

, (23)

with gij(β; k) taken as zero if a suspect is not observed at time k.

We replace the likelihood term
∑

t bk−tlt(β) in Eq. (10) with Lk(β) from Eq. (21) to arrive at the

following expression for β̂(k)

β̂(k) = arg max
β|

P
j βij=1∀i

φ̃k(β)

= arg max
β|

P
j βij=1∀i

∑
i,j ḡij(k) log(1 + β0βij) + γ0γ̂ij log βij .

(24)

If one attempts to apply the KKT conditions as before, a system of quadratic equations results. We

encounter this problem because of the sum inside the first logarithm. The familiar structure suggests

a generalized EM framework wherein another EM iteration is used to increase the likelihood as an

alternative to solving the quadratic system. We add ḡij log 2
β0+2 to the objective and combine with the

first term to give

β̂(k) = arg max
β|

P
j βij=1∀i

∑
i,j

ḡij(k) log
(

2
β0 + 2

+
β0

β0 + 2
2βij

)
+ γ0γ̂ij log βij . (25)

We now recognize the first term as the logarithm of a uniform and linear mixture distribution. Applying

EM to Eq. (25) in the standard way gives the operator fk, defined component-wise as

fk
ij(β) =

ḡij(k) β0βij

1+β0βij
+ γ0γ̂ij∑

l ḡil(k) β0βil

1+β0βil
+ γ0γ̂il

. (26)

The new estimate β̂(k) is the fixed point of the operator fk. Provided γ̂ij > 0 for all i, j, the optimization

in Eq. (25) is strictly concave. Since the Q-function from which Eq. (26) is derived is also continuous

in both arguments, it follows that EM will converge to the unique global maximum [30]. Thus the fixed

point of fk is unique. In practice, we can obtain β̂(k) by initializing (with perhaps β̂(k − 1)) and then

17

Action Online Computation

Probe Scheduled 1. c̄d
ij(k) =

P
ρ | (i,j)∈xk,ρ

P (yk|ρ,sk,dk,θ̂(k−1))Pk(ρ)P
ρ P (yk|ρ,sk,dk,θ̂(k−1))Pk(ρ)

+ ac̄d
ij(k − 1)

2. θ̂d
ij(k) = c̄d

ij(k)+β0β̂ij(k)P
j′ c̄d

ij′ (k)+β0β̂ij′ (k)

Suspect Observed 1. ḡij(k) =
P

ρ,s,d | (i,j)∈xk,ρ
P (yk|ρ,s,d,β̂(k−1))Pk(ρ)Pk(s,d)P

ρ,s,d P (yk|ρ,s,d,β̂(k−1))Pk(ρ)Pk(s,d)

+bḡij(k − 1)

2. fk
ij(β) =

ḡij(k)
β0βij

1+β0βij
+γ0γ̂ijP

j′ ḡij′ (k)
β0β

ij′
1+β0β

ij′
+γ0γ̂ij′

3. β̂(k) = fk ◦ fk ◦ . . . fk(β̂(k − 1)) = (fk)N (β̂(k − 1))

4. θ̂d
ij(k) = c̄d

ij(k)+β0β̂ij(k)P
j′ c̄d

ij′ (k)+β0β̂ij′ (k)

TABLE I
SUMMARY OF ONLINE COMPUTATIONS.

successively applying the operator fk until ||(fk)N (β)− (fk)N−1(β)|| < ε for some tolerance ε. So that

β̂(k) = fk ◦ fk ◦ . . . fk(β̂(k − 1)) = (fk)N (β̂(k − 1)), (27)

where N is chosen large enough to satisfy a desired tolerance ε. In practice, we have observed that

this internal EM iteration converges very quickly; our simulations indicated an N value of 2 or 3 was

typically sufficient to obtain convergence with a tolerance of ε = 10−8. The recursions in Eqs. (22) and

(27) define the tracking parameter estimator. Table I provides a summary of all online computations.

Note that the recursions for c̄(k) and ḡ(k) define first order discrete time systems with poles given by a

and b respectively, with a, b ∈ [0, 1). As mentioned before, a and b should therefore be chosen based on

the rate at which old observations are expected to become obsolete. Old observations are appropriately

downweighted in this way.

IV. CONVERGENCE ANALYSIS

An asymptotic analysis of the unconstrained recursive EM algorithm is presented in [8] by using a

quadratic expansion of the likelihood to relate the algorithm to a stochastic approximation method. When

constraints are present, the mathematical form of the expansion’s optimum no longer reveals an obvious

mapping to the stochastic approximation. We will argue convergence of our algorithms directly, instead of

attempting to derive such a mapping. We also show that the recursive approximation produces asymptotic

estimates that are fixed points of the EM algorithm applied to the exact objective for MAP estimation.

18

Before beginning, note that the quantities we consider are in fact random variables, so that all equalities

or inequalities hold with probability one. Consider first the sequences ḡ(k) and c̄(k) as defined in Eqs.

(22) and (16) respectively.

Lemma 1 The sequence ḡ(k) converges to some limit ḡ(∞) as k → ∞. Similarly, c̄(k) → c̄(∞) as

k →∞.

Proof: The recursive expression in Eq. (22) can be written in closed form as follows

ḡij(k) =
k∑

t=1

bk−tgij(β̂(t− 1); t). (28)

Now from the definition in Eq. (23), we see that 0 ≤ gij(β; k) ≤ 1 for all k because all involved

probabilities are nonnegative and every term in the numerator sum also appears in the denominator sum.

It follows that ḡij(k) is a monotone nondecreasing sequence. Furthermore, we have

ḡij(k) ≤
∑k

t=1 bk−t

= 1−bk

1−b

≤ 1
1−b ,

(29)

since b < 1. Thus ḡij(k) is also bounded from above for all k. It follows that the sequence must converge

to some value ḡij(∞) as k → ∞. We have thus established convergence of each i, j component; we

therefore have ḡ(k) → ḡ(∞). An identical argument establishes c̄(k) → c̄(∞) as k →∞.

The parameter estimates as defined in Eqs. (18) and (24) are the optimal values of strictly concave

functions. Given that c̄ and ḡ define these functions and converge, we argue convergence of the estimates

through uniform convergence of the functions they optimize. The following lemma is key to this argument.

Lemma 2 Let {fk} and f∞ be strongly concave functions over a compact, convex set C such that

fk converges to f∞ uniformly over C as k → ∞. If xk denotes the maximum of fk over C for all

k ∈ {1, 2, . . .∞}, then xk exists and is unique for all k, and furthermore xk → x∞ as k →∞.

Proof: Since each function fk is strongly concave, we have immediately that its optimizer over

a compact, convex set exists and is unique. Now suppose xk does not converge to x∞, so there exists

ε∗ > 0 such that ||xk − x∞|| ≥ ε∗ for all k < ∞. A Taylor expansion of fk about the maximum gives

fk(x∞) = fk(xk) +∇fk(xk)T (x∞ − xk) +
1
2
(x∞ − xk)T∇2fk(z)(x∞ − xk), (30)

19

where z = αxk+(1−α)x∞ ∈ C for some α ∈ [0, 1]. Optimality of xk ensures −∇fk(xk)T (x∞−xk) ≥ 0,

and strong concavity of fk implies there is some m > 0 such that −∇2fk(z) � mI for all k [31]. We

therefore rearrange Eq. (30) and apply these inequalities to arrive at

fk(xk)− fk(x∞) ≥ m

2
ε2∗, (31)

for all k < ∞.

Now uniform convergence of fk to f∞ ensures that for all ε > 0, there is some n(ε) such that

|fk(x) − f∞(x)| < ε for all k ≥ n(ε) and any x ∈ C. Consider any index k∗ satisfying k∗ ≥ n
(

m
8 ε2∗
)
;

uniform convergence gives

fk∗(xk∗) < f∞(xk∗) + m
8 ε2∗

fk∗(x∞) > f∞(x∞)− m
8 ε2∗.

(32)

But the inequality in (31) must hold for all k, so we may substitute the inequalities from (32) into (31)

to obtain

f∞(xk∗)− f∞(x∞) ≥ m

4
ε2∗. (33)

This contradicts the assumption that x∞ is the unique maximizer of f∞ over C.

In order to apply Lemma 2, we must decide on a compact, convex set C over which uniform

convergence holds. Because of the log(θd
ij) term in Eq. (18), it is convenient to bound the routing

parameter estimates away from zero. Note that this can be achieved by including a sample adjacency

matrix consisting of all ones into the sum of Eq. (12); the extra sample would ensure positivity while

having a negligible effect on the topology parameter estimates, provided M is sufficiently large. Indeed,

we have γ̂ij ∈ [1/M, 1] for all i, j. This filters down to β̂(k) and θ̂(k) through Eqs. (19) and (26). One

can easily verify that β̂(k) ∈ Cβ and θ̂(k) ∈ Cθ for all k, where Cβ and Cθ are compact, convex sets

defined by

Cβ ≡
{

β ∈
[

γ0(1−b)
M(|Γ|+|∆|)(1+γ0(1−b)) , 1

](|Γ|+|Σ|)×(|Γ|+|∆|)
|
∑

j βij = 1∀i
}

Cθ ≡
{

θ ∈
[

γ0β0(1−b)(1−a)
M(|Γ|+|∆|)(|Γ|+1)(1+γ0(1−b))(1+β0(1−a)) , 1

](|Γ|+|Σ|)×(|Γ|+1)×|∆|
|
∑

j θd
ij = 1∀d, i

}
.

(34)

Enforcing positivity in this fashion allows us to ignore the inequality constraints in deriving the expressions

in Eqs. (19) and (26), since they automatically satisfy the bounds by design.

This leads to the primary convergence theorem below.

20

Theorem 1 The tracking and routing parameter estimates converge as k → ∞; that is β̂(k) → β̂(∞)

and θ̂(k) → θ̂(∞).

Proof: We first show uniform convergence of φ̃k(β) as defined in Eq. (24) to

φ̃∞(β) ≡
∑
ij

ḡij(∞) log(1 + β0βij) + γ0γ̂ij log βij . (35)

Lemma 1 implies that for all ε > 0, there is some ng(ε) such that ||ḡ(k)− ḡ(∞)|| < ε for all k ≥ ng(ε).

In order to show uniform convergence, we take n∗1 ≡ ng

(
ε

(|Γ|+|Σ|)(|Γ|+|∆|) log(1+β0)

)
for any given ε > 0.

For any k ≥ n∗1 we have∣∣∣φ̃k(β)− φ̃∞(β)
∣∣∣ =

∣∣∣∑i,j log(1 + β0βij)(ḡij(k)− ḡij(∞))
∣∣∣

≤
∑

i,j | log(1 + β0βij)||ḡij(k)− ḡij(∞)|

< ε
(|Γ|+|Σ|)(|Γ|+|∆|) log(1+β0)

∑
i,j | log(1 + β0βij)|

≤ ε,

(36)

where β ∈ Cβ . Thus we have uniform convergence of φ̃k(β) to φ̃∞(β) over Cβ . Since γ̂ij ≥ 1/M for

all i, j, the functions φ̃k(β) and φ̃∞(β) are strongly concave over Cβ; so Lemma 2 immediately gives

convergence of β̂(k) to β̂(∞) (the maximum value of φ̃∞(β)).

In a similar fashion, we show uniform convergence of φ̃k(θ) as defined in Eq. (18) to

φ̃∞(θ) ≡
∑
d,i,j

(
c̄d
ij(∞) + β0β̂ij(∞)

)
log θd

ij . (37)

Lemma 1 ensures that for all ε > 0, there is some nc(ε) such that ||c̄(k)− c̄(∞)|| < ε for all k ≥ nc(ε).

And let nβ(ε) ensure ||β̂(k) − β̂(∞)|| < ε for all k ≥ nβ(ε). To show uniform convergence, take

n∗2 ≡ max
{

nc

(
ε

2κ| log θmin|

)
, nβ

(
ε

2β0κ| log θmin|

)}
where κ ≡ |∆|(|Γ| + |Σ|)(|Γ| + 1) and θmin is the

lower bound in Cθ of Eq. (34). We then have for any k ≥ n∗2∣∣∣φ̃k(θ)− φ̃∞(θ)
∣∣∣ ≤

∑
d,i,j | log θd

ij |
(
|c̄d

ij(k)− c̄d
ij(∞)|+ β0|β̂ij(k)− β̂ij(∞)|

)
< ε.

(38)

Again the functions are strongly concave over Cθ since β̂ij(k) > 0; we therefore apply Lemma 2 to give

convergence of θ̂(k) to the maximum value of φ̃∞(θ), denoted θ̂(∞).

We can use the convergence results just established to analyze the relationship between the recursive

approximation and the exact EM algorithm for large k. Before proceeding, we establish a useful lemma

21

about the limit points of the sequences ḡ(k) and c̄(k).

Lemma 3 The limit points ḡ(∞) and c̄(∞) alluded to in Lemma 1 are given explicitly by

ḡij(∞) = lim
k→∞

∑k
t=1 bk−tgij(β̂(∞); t)

c̄d
ij(∞) = lim

k→∞

∑k
t=1 ak−tcd

ij(θ̂(∞); t),
(39)

for all d, i, j.

Proof: It is useful to first establish Lipschitz continuity of the functions gij(β; k) and cd
ij(θ; k) over

Cβ and Cθ respectively. The derivative of gij(β; k) as in Eq. (23) satisfies∥∥∥∂gij

∂β (β; k)
∥∥∥ ≤ 2 ((|Γ|+ |Σ|)(|Γ|+ |∆|))1/2

(∑
ρ,s,d P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)

)−2

≤ 2 ((|Γ|+ |Σ|)(|Γ|+ |∆|))1/2 (|Γ|+ |∆|+ β0)2(|Γ|+1)

= Lg,

(40)

where the second line follows from Eq. (5), with β ∈ Cβ . We therefore have that Lg is a Lipschitz

constant over Cβ independent of k and i, j [32]. In a similar fashion, one can establish a Lipschitz

constant for cd
ij(θ; k) over Cθ as Lc = 2κ1/2θ

−2(|Γ|+1)
min where θmin and κ are as defined in the proof of

Theorem 1.

We proceed now with the main result. By Theorem 1 β̂(k) converges, and Lipschitz continuity of

gij(β; t) implies that for all ε > 0 there is some n(ε) such that |gij(β̂(k − 1); t) − gij(β̂(∞); t)| < Lgε

for all k ≥ n(ε). For any given ε > 0, take n∗ ≡ n
(

(1−b)ε
2Lg

)
+ max

{
1, log((1−b)ε/2)

log b − 1
}

. We then have

for all k ≥ n∗

|ḡij(k)−
∑k

t=1 bk−tgij(β̂(∞); t)| ≤
∑k

t=1 bk−t|gij(β̂(t− 1); t)− gij(β̂(∞); t)|

< (1−b)ε
2

∑k
t=n((1−b)ε

2Lg
)
bk−t +

∑n((1−b)ε

2Lg
)−1

t=1 bk−t

< ε
2 + bk−n((1−b)ε/(2Lg))+1

1−b

< ε,

(41)

where the second term in the second line follows because gij(β; t) ∈ [0, 1] for all β, t. The argument for

c̄d
ij(∞) is identical.

Suppose we apply standard EM to optimize the tracking parameter objective φk(β) as in Eq. (10).

Performing the E step averages over orderings and endpoints of each individual measurement and results

22

in the following Q-function:

Qk(β|β̃) =
∑
i,j

(
γ0γ̂ij log βij + log(1 + β0βij)

k∑
t=1

bk−tgij(β̃; t)

)
. (42)

If we wish to optimize the routing parameter objective φk(θ) in Eq. (8) using exact EM, the E step

averages over orderings only and gives a similar Q-function.

Qk(θ|θ̃) =
∑
d,i,j

log θd
ij

(
β0β̂ij(k) +

k∑
t=1

ak−tcd
ij(θ̃; t)

)
. (43)

Note that each measurement defines g(β; t) or c(θ; t) for a single clock tick t. Thus we require all

past measurements in order to compute the Q functions. The EM algorithm then proceeds to iteratively

maximize the Q functions until a fixed point is reached. The recursive approximation maintains only

a summary of the past measurements in ḡ and c̄. The following theorem shows that the asymptotic

estimates produced by the recursive approximation will in fact be fixed points of the exact EM algorithm

as k →∞.

Theorem 2 If βQ(k) and θQ(k) denote the maximizers of Qk(β|β̂(∞)) over Cβ and Qk(θ|θ̂(∞)) over

Cθ respectively, then βQ(k) → β̂(∞) and θQ(k) → θ̂(∞) as k →∞.

Proof: Notice the structure of Qk(β|β̂(∞)) is the same as that of φ̃k(β) as defined in Eq. (24),

with the term ḡij(k) replaced by
∑k

t=1 bk−tgij(β̂(∞); t). Similarly, if we replace c̄d
ij(k) in φ̃k(θ) of Eq.

(18) with
∑k

t=1 ak−tcd
ij(θ̂(∞); t), we arrive at Qk(θ|θ̂(∞)). Thus we can use Lemma 3 to construct an

argument that exactly parallels the proof of Theorem 1.

Although the parameter estimates arrive at fixed points of the exact EM algorithm asymptotically, we

are not guaranteed that these are in fact maxima of the appropriate objective functions. This is because

EM might not converge to a maximum of the likelihood. The work in [33] gives an extensive analysis

of this issue.

V. PERMUTATION CLUSTERING

The posterior computation in Eq. (2) and the update formulas in Eqs. (15), (23) require evaluating

sums of the form ∑
ρ

Pk(ρ)
∏

(i,j)∈χk,ρ

vij , (44)

23

where v is some parameter (e.g. θd or 1+β0β) and ρ = 1, 2, . . . |yk|! indexes different permutations. The

number of terms in this sum therefore grows exponentially with the number |yk| of activated sensors. It

is not feasible to compute these sums online when more than 5 or 6 sensors are activated. However, we

might have some ordering information that could rule out many of these permutations, i.e. Pk(ρ) = 0 for

most of the orderings ρ. If no ordering information is available, computing the sums directly is hopeless

for long paths. In the remainder of this section and the next, we formulate a combinatorial scheme for

approximating the sums under such conditions where the path is long (say, |yk| > 6) and Pk(ρ) = 1/|yk|!

for all ρ. We assume a uniform ordering distribution throughout this discussion for simplicity. However,

these techniques easily extend to the situation where some permutations have larger probabilities and the

rest are equally likely by simply changing the weighting scheme.

A. Permutation Approximation Algorithm

A key point to notice in developing an approximation algorithm is that the index set of Eq. (44) satisfies

χk,ρ ⊂ Sk ≡ y2
k ∪Σ× yk ∪ yk×∆−

⋃|yk|
n=1(y

n
k , yn

k) for all ρ. The number of distinct terms in the product

therefore grows only as |yk|2, even though the total number of terms in the sum grows exponentially

in |yk|. Suppose further that all of the parameters vij for (i, j) ∈ Sk are similar. In this case, we could

obtain a reasonable approximation to the sum in Eq. (44) by the following.

∑
ρ

1
|yk|!

∏
(i,j)∈χk,ρ

vij ≈ v̄
|yk|+1
0 , (45)

where v̄0 is the geometric mean of {vij | (i, j) ∈ Sk}. This approximation essentially clusters all |yk|!

permutations into a single term. Note that we need only that the geometric mean of {vij |(i, j) ∈ χk,ρ}

be similar for all ρ for the approximation in Eq. (45) to hold. Although this is a weaker condition than

requiring vij be similar for all (i, j) ∈ Sk, it is much harder to verify precisely because there is an

exponential number of orderings ρ. We can refine the approximation iteratively by removing elements

from Sk and including all valid permutations over such elements in the sum. For example, we arrive

at a first refinement of the approximation in Eq. (45) by setting C1 ≡ Sk − (i1, j1) and including vi1j1

explicitly in the sum.

∑
ρ

1
|yk|!

∏
(i,j)∈χk,ρ

vij ≈
|yk|!− (|yk| − 1)!

|yk|!
v̄
|yk|+1
1 +

(|yk| − 1)!
|yk|!

vi1j1 v̄
|yk|
2 , (46)

24

where v̄l is the geometric mean of {vij | (i, j) ∈ Cl}, and C2 is defined by all elements (i, j) ∈ Sk such

that the sequence (i, j) could exist in a valid permutation with the sequence (i1, j1) (we denote this by

(i, j) ∼ (i1, j1)). We could continue to produce refinements of the sum approximation in this way until

Sk is empty and all |yk|! permutations appear in the sum. This describes the essential idea of the sum

approximation algorithm.

We utilize an ordered version of the set Sk, denoted S̃k, along with a binary tree to organize the terms

in the sum. At each refinement step, the first element of S̃k is removed and used to update the binary

tree. Each node of the tree is characterized by three quantities: Z, α, and C. The characteristic Z is

the set of all (i, j) ∈ Sk such that vij appears explicitly in the sum term represented by that node, α

is the number of permutations that are clustered into the term, and C is the set of all (i, j) ∈ S̃k such

that (i, j) ∼ Z (that is, the set of all (i, j) such that (i, j) ∪ Z might form a valid permutation). For

example, the characteristics associated with first term in Eq. (46) are Z = φ, α = |yk|!− (|yk| − 1)!, and

C = Sk − (i1, j1). The pseudocode for the permutation clustering approximation is as follows.

Algorithm 1 :

• Given a parameter sequence S̃k, define a tree root with characteristics α = |yk|!, Z = φ, and

C = S̃k. Set L = 1.

• While S̃k is nonempty and L ≤ Lmax:

– Set (i∗, j∗) = S̃k(1) and S̃k = S̃k − S̃k(1).

– For all leaves l such that (i∗, j∗) ∈ Cl and αl > 0:

∗ Add a left child to l with characteristics Z = Zl and C = Cl − (i∗, j∗).

∗ Add a right child to l with characteristics Z = Zl ∪ (i∗, j∗) and C = {(i, j) ∈ S̃k | (i, j) ∼

Zl}.

– Number all new leaves and those existing leaves with α > 0 in order of increasing |Z| with

the integers 1, 2, . . . , L.

– For l = L,L− 1, . . . 1:

∗ Set αl = (|yk| − |Zl|)!−
∑

i|i>l,Zl⊂Zi
αi.

• Construct the sum represented by all leaves with α > 0.

Example binary trees produced by this algorithm for two different parameter sequences are given in

Figure 5. Since at each step we only form new leaves that might be permutations, it is clear that all per-

25

A

B

Fig. 5. Example permutation clustering trees. Here, just two sensors 1 and 2 are activated. The tree A
utilizes the parameter sequence S̃k = ((1, 2), (1, d), (s, 1), (2, 1), (s, 2), (2, d)), while tree B uses the sequence
S̃k = ((1, 2), (s, 1), (2, d), (2, 1), (s, 2), (1, d)). Nodes 1a and 1b are formed after the first element in the sequence
((1, 2) for both A and B) is appended, nodes 2a, 2b, 2c, and 2d are formed after the second element in the sequence
((1, d) for A and (s, 1) for B) is appended, and so on. Each tree produces a complete enumeration of the permutation
set with characteristic quantities given in the tables to the right. For tree A, nodes 5b and 6b give the complete
permutation set, while nodes 3d and 6b are the complete permutation set in tree B. It is clear from this example that
the order of the parameter sequence S̃k will have a large impact on the formation of the tree. A greedy heuristic
for selecting this is described and justified in the next section.

mutations will have been enumerated once S̃k is empty. One might contrast this method with the standard

permutation generating tree due to [13]. The standard method enumerates all permutations of {1, 2, . . . n}

by recursively forming children (k + 1, π1, π2, . . . , πk), (π1, k + 1, π2, . . . , πk), . . . (π1, π2, . . . , πk, k + 1)

to a given parent node (π1, π2, . . . , πk). Note that our method is not strictly a generating tree, since the α

characteristic of a child may depend on nodes other than its parent [14]. Our method is desirable, however,

in that it allows more direct control over the order in which permutations (or partial permutations) are

generated–through the ordering of the set S̃k–without the need for complicated backtracking through the

tree. This is important because we rarely generate the entire tree in the case of long paths. Indeed, once

some maximum number of leaves Lmax are accumulated, we truncate the tree to obtain the following

26

approximation: ∑
ρ

∏
(i,j)∈χk,ρ

vij ≈
L∑

l=1

αlv̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij , (47)

where v̄l is the geometric mean of {vij | (i, j) ∈ Cl}.

In the numerators of Eqs. (15) and (23), it is necessary to compute restricted versions of the above

sum; instead of summing over all ρ we only consider ρ such that some (i, j) ∈ χk,ρ. The approximation

is exactly as in Eq. (47) if it happens that the particular (i, j) has been removed from S̃k and added to

Zl for some leaf l in the tree before truncation. If we truncate before adding (i, j) to the tree, then we

approximate by considering a weighted sum over leaves that might form a valid permutation with (i, j)

(i.e. all leaves l such that (i, j) ∈ Cl). The restricted sum approximation is therefore

∑
ρ|(i,j)∈χk,ρ

∏
(i′,j′)∈χk,ρ

vi′j′ ≈


∑

l|(i,j)∈Zl
αlv̄

|yk|+1−|Zl|
l

∏
(i′,j′)∈Zl

vi′j′ if (i, j) /∈ S̃k

(|yk|−1)!P
l|(i,j)∈Cl

αl

∑
l|(i,j)∈Cl

αlv̄
|yk|+1−|Zl|
l

∏
(i′,j′)∈Zl

vi′j′ if (i, j) ∈ S̃k.

(48)

When considering sums over permutations with different source/destinations, as in Eqs. (2) and (23), we

can simply follow this procedure to approximate the sum over ρ for each pair (s, d).

B. Permutation Approximation Analysis

The sequence S̃k and the truncation limit Lmax will determine approximations to the functions c(θ; k)

and g(β; k) as defined in Eqs. (15) and (23), respectively. Provided matching S̃k and Lmax values are

used for the recursive and a comparable non-recursive EM iteration as in Eqs. (43) and (42), one can

easily verify that all necessary properties of the functions c(θ; k) and g(β; k) hold to ensure validity

of the previous convergence analysis. The permutation clustering approximation greatly decreases the

complexity associated with computing c(θ; k) and g(β; k). Full computation of these functions requires

O(|yk|!) time. The permutation approximation reduces this to a low order polynomial in |yk|. Suppose

we fix Lmax so that it does not grow with |yk|. Note that each time an element from S̃k is added to

the tree, the number of leaves at most doubles so that we can always ensure truncation before Lmax is

exceeded. The only operation that scales is computation of the characteristic C associated with new right

children, and the geometric mean v̄ corresponding to this set. In determining C, we need to check that the

conditions defining a permutation are not violated if any of the pairs (i, j) ∈ C are added to the set Z. This

can be done recursively by simply removing any elements from the parent’s C characteristic that might

result in any repetitions or incomplete paths from s to d after augmenting the parent’s Z characteristic

27

with (i∗, j∗). The cardinality of any C is at most |yk|2 + 2|yk|. It follows that the permutation clustering

approximation reduces the complexity from exponential in |yk| to O(|yk|2).

We now develop some bounds on how well the permutation clustering approximation agrees with the

full sum over all permutations. First note that all permutations ρ clustered into a given leaf l must satisfy

χk,ρ ⊂ Zl∪Cl, and Zl∩Cl = φ by definition of these characteristics. If we define v̄l,min as the geometric

mean of the |yk|+ 1− |Zl| smallest elements of {vij | (i, j) ∈ Cl} and v̄l,max as the geometric mean of

the |yk| + 1 − |Zl| largest elements of this set, then we have the following inequalities for any ρ such

that χk,ρ ⊂ Zl ∪ Cl.

v̄
|yk|+1−|Zl|
l,min

∏
(i,j)∈Zl

vij ≤
∏

(i,j)∈χk,ρ

vij =

 ∏
(i,j)∈χk,ρ∩Cl

vij

 ∏
(i,j)∈Zl

vij

 ≤ v̄
|yk|+1−|Zl|
l,max

∏
(i,j)∈Zl

vij .

(49)

It is also obvious that v̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij lies within the bounds of Eq. (49), since v̄l is the geometric

mean of all elements in {vij | (i, j) ∈ Cl}. Now, the leaves represent a partition of the permutation set,

so we have ∑
ρ

∏
(i,j)∈χk,ρ

vij =
∑

l

∑
ρ|χk,ρ⊂Zl∪Cl

∏
(i,j)∈χk,ρ

vij . (50)

We can then combine Eq. (50) with the inequalities in (49) and realize that αl is the number of

permutations ρ that satisfy χk,ρ ⊂ Zl ∪ Cl to arrive at the following bound on the approximation error

in Eq. (47).∣∣∣∣∣∣
∑

ρ

∏
(i,j)∈χk,ρ

vij −
L∑

l=1

αlv̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij

∣∣∣∣∣∣ ≤
L∑

l=1

αl

(
v̄
|yk|+1−|Zl|
l,max − v̄

|yk|+1−|Zl|
l,min

) ∏
(i,j)∈Zl

vij . (51)

One can arrive at bounds for the approximation error associated with Eq. (48) in a similar fashion. When

(i, j) /∈ S̃k, the form of the bound is almost identical to that in Eq. (51) with the only difference being a

restriction on the sum (only over l such that (i, j) ∈ Zl). The bound is looser when (i, j) ∈ S̃k because

we do not know the correct proportions for including each leaf in the sum. There is some loss associated

with the weighted sum approximation in Eq. (48). It is straightforward to apply these results to determine

bounds on the actual estimators when the permutation clustering approximation is used. Clearly, there is

no approximation error if the geometric mean of the |yk|+1−|Zl| smallest elements of {vij | (i, j) ∈ Cl}

is equal to the geometric mean of the |yk| + 1 − |Zl| largest elements of the set for all l. Since Cl is

always a subset of S̃k, this suggests a reasonable strategy is to choose the ordering S̃k so as to reduce

28

the range of {vij | (i, j) ∈ S̃k} as much as possible each time an element is removed from S̃k. This is

a simple greedy approach to the problem of selecting the parameter sequence, however one might pose

some optimization problem for selecting the sequence that is best in a nonmyopic setting. In most cases,

such an optimization would result in additional online computational strain.

VI. ONLINE PROBE SCHEDULING

Here we propose some methods for online probe scheduling. Previously, we assumed the training phase

occurred before the monitoring phase. In this section, it is necessary to consider a different training

paradigm wherein probes of the network are scheduled during observation downtime, that is, when a

suspect observation is not observed. These consist of scheduled transmissions from some known source

to some known destination and noting the activated sensor set and ordering distribution. Although they

might seem secondary to observing suspects, probes are necessary for us to learn the routing parameters

of the network. It might not be clear which are the best probes to make until we go online and begin

recording measurements. A rapid, online scheduling algorithm is certainly advantageous in this paradigm.

We model the probe scheduling problem as a multiarmed bandit. Each different source/destination

pair, that is each distinct element of Σ×∆, is a separate arm of the bandit. The reward associated with

scheduling some pair (s, d) is given by the information gained as a result of the probe. We use the

change in entropy of the suspect endpoint posteriors as a measure of information gain. The reward rsd

for scheduling (s, d) is therefore given by

rsd =
∑

t

λt∆H(P (s, d|yt, θ̂(k))), (52)

where λt are constants that sum to one and allow a weighted average of the entropy change ∆H in all

observed suspect posteriors. Given the reward function, we can directly apply the Exp3 algorithm of [17]

for control of the multiarmed bandit. Exp3 uses a parameter δ ∈ (0, 1] and is based on the following

recursions:
pi = (1− δ) wi(k−1)P

j wj(k−1) + δ
|Σ×∆|

wi(k) =


wi(k − 1) exp

(
δrsd

psd|Σ×∆|

)
if i = (s, d)

wi(k − 1) else,

(53)

where wi(0) = 1 for all i ∈ Σ × ∆. It is clear that p is a mixture distribution over the endpoint

pairs consisting of a uniform component and a component shaped by the rewards. At each time step,

29

the endpoint pair to be scheduled is chosen from p. There are several versions of the algorithm with

slightly different asymptotic performance guarantees. We refer the reader to [17] for a thorough theoretical

treatment.

VII. EXPERIMENTAL RESULTS

We applied the new online estimation methods to the traceroute data presented in [7]. The data

was obtained from traceroute probes initiated on October 12, 2005 from three sources located at the

University of Wisconsin-Madison, the Instituto Superior Tecnico in Lisbon, Portugal, and Rice University

in Houston, Texas to fifty destination web servers of various companies, universities, and governments

around the world. We treat the routers encountered as sensors, and ignore all ordering information, so

that the ordering distributions Pk(ρ) associated with all measurements ρ are uniform. After processing

the data to collapse identical routers–that is routers that are always activated together across the 150

measurements–we were left with 241 routers and path lengths ranging from 2 to 14 hops, with an average

of 7.5. In light of the long paths and uniform ordering distributions, enumeration of permutations was

infeasible so we had to apply the permutation clustering approximations to compute parameter estimates.

For purposes of initialization, we assumed all edge probabilities γij were set to 0.5. Precision parameter

values of γ0 = 0.0002 and β0 = 1 were used for all experiments.

Our first simulation illustrates the accuracy of the permutation clustering approximation that is used

in subsequent experiments. We next present the core simulation of a moving suspect who is transmitting

with spoofed IP’s. The suspect moves through the network transmitting from different sources, and we are

able to track its position using the tracking parameter estimates along with the endpoint posteriors. This

sort of situation might arise in a variety of law enforcement scenarios, among others. After investigating

this application, we simulate another real-world situation: a sensor failure. We show how adaptation

of the routing parameter estimates is able to detect this. Finally, we investigate the effectiveness of

the multiarmed bandit scheduling algorithm by analyzing the evolution of the distribution from which

scheduled probes are drawn.

A. Permutation Clustering Approximation Error

We devised an experiment to test the accuracy of the permutation clustering method for approximating

combinatorial sums that arise in our estimators. After initializing the system as described above, we trained

using observed paths between all 150 possible source/destination combinations. Training was done with

30

A: True Endpoint Posterior B: Permutation Clustering Appx. Error

Fig. 6. Illustration of the permutation sum approximation accuracy. In A, we have the exact endpoint posterior of a
suspect transmission activating six sensors. Darker color indicates higher value in this two dimensional distribution.
The true endpoints of this suspect were source 3 and destination 45; so we see that the correct destination is clearly
pinpointed while there is a bit of ambiguity in the source estimate. Plot B shows the error (in a logarithmic scale)
when permutation clustering is used to approximate this endpoint posterior. The number of leaves in the clustering
tree were varied from 24 up to 648 in steps of 24. Asterisks connected by a solid line indicate the actual error (as
on the left side of Eq. (51)), while X’s connected by a dotted line indicate the error bound on the right side of Eq.
(51).

minimal forgetting–that is, a forgetting factor a = 0.999999. Then a single suspect transmission passed

between source 3 and destination 45 was observed during the monitoring stage. This suspect activated a

total of six sensors, thus we were able to compute its exact endpoint posterior as in Eq. (2) by summing

over all 720 orderings. The exact posterior is shown in Figure 6A. We then used the permutation clustering

method to approximate the endpoint posterior as in Eq. (47) with number of leaves L ranging from 24

up to 648 in steps of 24. The absolute error as on the left side of Eq. (51) is plotted in Figure 6B, along

with the derived error bound.

We see that the permutation clustering approximation performs quite well, falling into the realm of

round-off error after about 300 leaves are used in the tree. Furthermore, the actual approximation error

is about a hundred times smaller than the worst case bound for fewer leaves (24, 48, 72). This suggests

it is reasonable to proceed with application of this method in the following simulations. In all remaining

simulations, we utilize permutation clustering trees having at most 24 leaves for parameter updates and

posterior computations.

31

B. Suspect Tracking

This experiment simulates the movement of a suspect through the network and illustrates the tracking

abilities of the proposed methods. As before, we begin by initializing the system and training it using all

150 source/destination pairs with minimal forgetting. Then, for the first 100 clock ticks of the monitoring

phase, we observe suspect transmissions emanating from source 1 and terminating at random destinations.

We observe transmissions from source 2 to random destinations for the next 100 clock ticks. For the

final 100 clock ticks of monitoring, the suspect moves to source 3 and transmits to random destinations.

A forgetting factor of b = 0.9 is used throughout in estimation of the tracking parameters β.

Our goal is to determine which source node the suspect is transmitting from at each tick of the clock.

One natural indicator of location is simply the instantaneous source posterior distribution given by

Ps(k) ∝
∑

d

∑
ρ

∏
(i,j)∈χk,ρ

θ̂d
ij(k), (54)

where a uniform endpoint prior P (s, d) is assumed, and proportionality (rather than equality) is used

because we have omitted a normalization constant. In addition to the instantaneous source posterior, one

might look at the values of the tracking parameters associated with sensors that are exclusive to each

source. In particular, we say a sensor is exclusive to source s if it is only activated when s is probed.

We are able to use our probing measurements from the training phase to determine the exclusivity of

the various sensors. Based on this notion, we define the average entering probability Es(k) at time k

associated with source s as follows.

Es(k) ∝ 1
|{j| j is exclusive to s}|

∑
j| j is exclusive to s

∑
i

β̂ij(k). (55)

The ’entering probability’ nomenclature follows from an analogy to Markov chains: since β̂(k) is the

transition matrix of a Markov chain, the quantity defined in Eq. (55) can be interpreted as the probability

of suspect measurements entering sensors exclusive to source s. Thus the larger Es(k) is, the more

messages are entering sensors exclusive to s, and thus it is more likely that the suspect is transmitting

from s. Also, each row of the matrix β̂(k) is a probability distribution itself, with β̂ij(k) representing the

probability a suspect measurement exits element i and arrives in element j. We can utilize the average

exit distribution entropy Hs(k) of sensors exclusive to s as another location indicator. This quantity is

32

Fig. 7. Instantaneous source posterior probability of Eq. (54) as a function of clock tick. The solid line represents
P1(k), the dotted is P2(k), and the dashed is P3(k). Vertical lines are drawn at each transition time (from source
1 to source 2, and from source 2 to source 3). We see that the estimator is able to correctly locate the suspect at
each point in time, as indicated by the larger value of Ps(k) for the correct s.

defined as

Hs(k) ∝ 1
|{i| i is exclusive to s}|

∑
i| i is exclusive to s

∑
j

−β̂ij(k) log β̂ij(k). (56)

We interpret the value of Hs(k) as follows: the smaller Hs(k) is the more information we have about exit

probabilities of sensors exclusive to s, this indicates more suspect messages are departing from sensors

exclusive to s, and it is therefore more likely that the suspect is transmitting from s. Recall that a uniform

initialization is used (all γij = 0.5) so that all exit distributions are nominally uniform in the absence of

suspect measurements.

We repeated this experiment 30 times, each time choosing independent random destinations, in order

to average over the effect of randomly chosen destinations. The indicator quantities of Eqs. (54), (55),

and (56) were recorded and averaged over these 30 trials. The averaged quantities are plotted versus clock

tick in Figures 7 and 8. We see that the instantaneous source posterior probability pinpoints the correct

suspect location during each 100-tick period. The average entering probability and exit entropy indicators

also point to the correct source at the correct time. There is, however, some characteristic decay time in

these quantities determined by the forgetting factor b. These simulations suggest our algorithms would

be quite useful when applied to source tracking problems in the Internet.

33

A: Relative Avg. Entering Probability B: Relative Avg. Exit Entropy

Fig. 8. Plots of average entering probability in A and average exit distribution entropy in B as defined in Eqs.
(55) and (56) respectively. The values are are normalized to the maximum in each plot. The solid line represents
quantities associated with source 1, the dotted represents source 2, and the dashed represents source 3. Vertical lines
are drawn at each transition time (from source 1 to source 2, and from source 2 to source 3). These indicators also
point to the correct source location at the correct time as indicated by a rise in the appropriate entering probability
Es(k), and a drop in the appropriate exit distribution entropy Hs(k). At transition points, there is a decay of the
previous extreme quantity with decay time determined by the forgetting factor b.

C. Sensor Failure

This simulation shows how one might use the routing parameter estimates in an interleaved probing

paradigm such as that described in the online scheduling section (where probes occur during clock ticks

when suspects are not observed). If suspects are constantly arriving, one might not have enough downtime

for excessive probing. In this case, it is useful to monitor the evolution of the routing parameters for

significant deviation from their nominal values. A large change in the network, such as failure of a

sensor, would prompt such a deviation. It is then necessary to halt monitoring long enough to train the

parameters to the new routing dynamics in the network.

We simulate such a sensor failure in this example and show how the failure is reflected in the

routing parameter estimates. We suppose probes of the network from source 1 to random destinations

are scheduled for 200 consecutive clock ticks with a forgetting factor of a = 0.9. Sensor 1 is positioned

such that transmissions from source 1 to any destination always pass it. At time 100, sensor 1 fails–

meaning that messages are still routed through it, but it does not activate in response to their passing.

We computed average entering probability E(k) and exit distribution entropy H(k) for sensor 1. Similar

34

A: Relative Avg. Entering Probability B: Relative Avg. Exit Entropy

Fig. 9. Plots of average entering probability in A and average exit distribution entropy in B as defined in Eq. (57)
for sensor 1. The values are are normalized to the maximum in each plot. A vertical line is drawn at the point
where sensor 1 fails. We see a drop in the entering probability and a rise in the exit entropy beginning at the failure
point; of course there is a decay time determined by the forgetting factor a.

to the definitions in Eqs. (55) and (56), these are defined as

E(k) ∝
∑

d

∑
i θ̂

d
i1(k)

H(k) ∝
∑

d

∑
j −θ̂d

1j(k) log θ̂d
1j(k).

(57)

We averaged over the effect of random probe orders by repeating this experiment 30 times with inde-

pendent random probes from source 1 and averaging the quantities in Eq. (57) over those 30 trials. The

results are plotted in Figure 9.

We observe in Figure 9 a significant change in the nominal values of entering probability and exit

entropy associated with sensor 1 after the failure point. In the alternative training scheme discussed

above, one might set some allowed tolerance around the nominal. Once this is exceeded, we would have

to schedule several probes to learn the new routing dynamics of the network.

D. Online Scheduling

We investigate the utility of the multiarmed bandit control algorithm of [17] applied to online probe

scheduling in this example. Here, a single suspect transmission is observed initially. Then the online

scheduling algorithm as described in Section VI is used to schedule probes for 200 clock ticks. At each

probe, the reward (determined by the resulting change in entropy of the suspect endpoint posterior) is

used in the recursions of Eq. (53) to update the distribution from which the next probe is drawn. Using a

parameter δ = 0.1, we are interested in how quickly the shaped component w(k) of the distribution p is

35

Fig. 10. Reward shaped distribution entropy −
∑

i wi(k) log wi(k) as a function of clock tick were w(k) is defined
in Eq. (53). The entropy is normalized by its initial value. We see that the entropy deviates very little from its
maximum value in 200 clock ticks. This indicates that probes are essentially drawn from a uniform distribution
throughout the simulation (since the other component of p in Eq. (53) is uniform).

able to concentrate on the best probing strategy for this particular suspect. We therefore plot the entropy

of w (given by −
∑

i wi(k) log wi(k)) as a function of clock tick to measure the concentration. This plot

is shown in Figure 10.

We observe from Figure 10 that probes are essentially drawn from a uniform distribution through the

entire simulation. The shaped component w(k) concentrates slightly toward the end, as indicated by a

small drop in entropy. One might suggest simply scaling the reward to speed up the process, however,

the theory of [17] requires a reward between 0 and 1. This simulation seems to indicate that the proposed

bandit scheduling algorithm requires a rather lengthy period of time to be effective. However, additional

investigation of the utility of the algorithm is certainly justified for future work.

VIII. SUMMARY AND FUTURE WORK

We have presented online techniques for adaptively estimating the source and destination of a suspect

transmission through a network based on the activation pattern of sensors placed on network components.

In addition to a thorough theoretical development, we applied the new methods to several tracking

experiments involving real Internet data obtained using traceroute. Speedy and accurate results were

observed.

In the way of future work, one might analyze further the permutation clustering algorithm; in particular,

issues related to selection of the parameter sequence S̃k and tree truncation level. We suggested a heuristic

for choosing S̃k based upon the derived performance bound. Also, we assumed a given number of

36

allowed leaves Lmax before truncating the tree. One might consider linking these two (S̃k and Lmax)

and solving some optimization problem to give a parameter sequence and truncation level that balances

approximation accuracy and computational burden. The methods presented here could be applied with

few changes to perform topology inference online, as an alternative to the offline approach of [7]. The

probe scheduling method might also be extended to topology inference with a graph edit distance used to

reward source/destination pairs that activate network segments similar to some prior structure of interest

[34].

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under ITR contract CCR-0325571. The

first author is also grateful to Dan Ruan for valuable discussions related to this work and to Mike Rabbat

for providing the traceroute data.

REFERENCES

[1] CERT, “TCP SYN flooding and IP spoofing attacks,” CERT advisory CA-96.21, Sept. 1996.

[2] ——, “Smurf IP denial-of-service attacks,” CERT advisory CA-98.01, Jan. 1998.

[3] A. Yaar, A. Perrig, and D. Song, “StackPi: new packet marking and filtering mechanisms for DDoS and IP spoofing

defense,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 10, pp. 1853–1863, Oct. 2006.

[4] H. Burch and B. Cheswick, “Tracing anonymous packets to their approximate source,” Proc. Usenix LISA, pp. 319–327,

Dec. 2000.

[5] J. Treichler, M. Larimore, S. Wood, and M. Rabbat, “Determining the topology of a telephone system using internally

sensed network tomography,” Proc. of 11th Digital Signal Processing Workshop, Aug. 2004.

[6] D. Justice and A. Hero, “Estimation of message source and destination from network intercepts,” IEEE Transactions on

Information Forensics and Security, vol. 1, no. 3, pp. 374–385, Sept. 2006.

[7] M. Rabbat, M. Figueiredo, and R. Nowak, “Network inference from co-occurrences,” Department of Electrical and

Computer Engineering, Univ. of Wisconsin, Madison, WI, Tech. Rep. ECE-06-2, April 2006.

[8] D. Titterington, “Recursive parameter estimation using incomplete data,” J. Royal Statistical Society, Series B, vol. 46,

no. 2, pp. 257–267, 1984.

[9] S. Chretien and A. Hero, “Kullback proximal algorithms for maximum-likelihood estimation,” IEEE Transactions on

Information Theory, vol. 46, no. 5, pp. 1800–1810, Aug 2000.

[10] Y. Matsuyama, “The alpha-em algorithms: surrogate likelihood maximization using alpha-logarithmic information mea-

sures,” IEEE Transactions on Information Theory, vol. 49, no. 3, pp. 692–706, Mar 2003.

[11] H. Steck and T. Jaakkola, “On the Dirichlet prior and Bayesian regularization,” Artificial Intelligence Lab, MIT, Cambridge,

MA, Tech. Rep. 2002-014, Sept. 2002.

[12] B. Ripley, Pattern Recognition and Neural Networks. New York: Cambridge University Press, 1996.

37

[13] F. Chung, R. Graham, V. Hoggatt, and M. Kleiman, “The number of Baxter permutations,” Journal of Combinatorial

Theory, Ser. A, vol. 24, pp. 382–394, 1978.

[14] V. Vatter, “Finitely labeled generating trees and restricted permutations,” Journal of Symbolic Computation, vol. 41, pp.

559–572, 2006.

[15] E. Barcucci, A. D. Lungo, E. Pergola, and R. Pinzani, “ECO: a methodology for the enumeration of combinatorial objects,”

Journal of Difference Equations and Applications, vol. 5, pp. 435–490, 1999.

[16] G. Beylkin and M. Mohlenkamp, “Numerical operator calculus in higher dimensions,” Proc. National Academy of Sciences,

vol. 99, no. 16, pp. 10 246–10 251, Aug. 2002.

[17] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The nonstochastic multiarmed bandit problem,” SIAM Journal on

Computing, vol. 32, no. 1, pp. 48–77, 2002.

[18] H. Robbins, “Some aspects of the sequential design of experiments,” Bull. Amer. Math. Soc., vol. 55, pp. 527–535, 1952.

[19] K. Hintz, “A measure of the information gain attributable to cueing,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 21, no. 2, pp. 237–244, 1991.

[20] C. Kreucher, K. Kastella, and A. Hero, “Sensor management using an active sensing approach,” Signal Processing, vol. 85,

no. 3, pp. 607–624, Mar. 2005.

[21] Y. Vardi, “Network tomography: estimating the source-destination traffic intensities from link data,” J. Amer. Stat. Assoc.,

vol. 91, pp. 365–377, 1996.

[22] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-based inference of network-internal loss characteristics,”

IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2462–2480, July 1999.

[23] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast topology inference from measured end-to-end loss,”

IEEE Transactions on Information Theory, vol. 48, no. 1, pp. 26–45, Jan 2002.

[24] N. Duffield, “Network tomography of binary network performance characteristics,” IEEE Transactions on Information

Theory, vol. 52, no. 12, pp. 5373–5388, Dec 2006.

[25] M. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, pp. 167–256, 2003.

[26] A. Tanenbaum, Computer Networks, 3rd ed. Upper Saddle River, NJ: Prentice Hall PTR, 1996.

[27] P. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification, and Adaptive Control. Englewood Cliffs, NJ:

Prentice Hall, Inc., 1986.

[28] C.-J. Lin and R. Saigal, “A predictor corrector method for semidefinite linear programming,” Department of Industrial and

Operations Engineering, University of Michigan, Ann Arbor, MI, Tech. Rep. TR95-20, Oct. 1995.

[29] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the

Royal Statistical Society, Series B, vol. 39, pp. 1–38, 1977.

[30] M. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image reconstruction,” IEEE Transactions on Image

Processing, vol. 12, no. 8, pp. 906–916, Aug. 2003.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge University Press, 2004.

[32] H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[33] C. Wu, “On the convergence properties of the EM algorithm,” The Annals of Statistics, vol. 11, no. 1, pp. 95–103, Mar.

1983.

38

[34] D. Justice and A. Hero, “A binary linear programming formulation of the graph edit distance,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1200–1214, Aug. 2006.

	wrapper
	cspl-390

