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ABSTRACT

In this paper, we present a study of the prozimal point algorithm using very general regularizations for minimizing
possibly nondifferentiable and nonconvex locally Lipschitz functions. We deduce from the prozimal point scheme simple and
implementable bundle methods for the convex and nonconvex cases. The originality of our bundle method is that the bundle
information incorporates the subgradients of both the objective and the regularization function. The resulting method opens
up a broad class of regularizations which are not restricted to quadratic, convex or even differentiable functions.

Keywords: mathematical programming, proximal point, bundle methods, nonsmooth regularization

This work was partially supported by the Department of Defense Research & Engineering (DDR&E) Multidisciplinary
University Research Initiative (MURI) on ”Reduced Signature Target Recognition” managed by the Air Force Office of
Scientific Research (AFOSR) under AFOSR grant AFOSR F49620-96-0028.



Chretien and Hero, “Generalized proximal methods ... ” 2

1 Introduction

In this paper, we address the problem of minimizing a locally Lipschitz possibly nondifferentiable and nonconvex function
f(z) on R, ie.
i . 1

min f(z) (1)
One of the most widely studied methods for solving nondifferentiable optimization problems is the bundle method first
proposed by Lemarechal [14] and Wolfe [31] for convex minimization and further developed by Mifflin [19, 20] and Kiwiel
[10, 11, 13] for the nonconvex case; see also [2], [17], [26] and the references therein. The bundle method can be interpreted as
a cutting plane algorithm stabilized by a quadratic penalty or regularization. In its simplest form, for f convex, the bundle
method generates a sequence of iterates, starting from z' and defined by

. A A
2kt = argmin, cp.{f(z) + §|:rk —z|?}. (2)

where

Flw) = max{ fy;) + {9(v;), = — vi)}
is a piecewise linear approximation called the cutting plane model, y;, j € J* are some points in a neighborhood of the
current iterate z* and g(y) is a subgradient of f at the point y. In the case where f is nonconvex, the following polyhedral
approximation is usually chosen, as in [10, 11, 13],

f(z) =f(w’“)+J_Hé3>,§{—a§+(g(yj),w—w’“>, jeJry, (3)
where

af = a(z*,y’)

a(z,y) = |f(x) — fy) — (9), 2" — ).

One fruitful interpretation of the bundle method is to consider iteration (2) as an implementable approximation of the well
known prozimal point algorithm using a cutting plane model f of the objective function. In the original form [18, 25], the
prozimal point algorithm is defined by the reccurence

. Ak
k+1 _ argm1ny6Rn{f(y) + 7|1' - y|2}

x
where (Ag)ren is a sequence of positive relaxation parameters. The proximal point algorithm and the bundle method
share the same property of solving a sequence of minimization subproblems incorporating a quadratic penalty, also denoted
Moreau-Yosida regularization [16].

In this paper, we address the study of the proximal point algorithm and its bundle implementations using very general
nonquadratic penalty functions. In particular, we establish convergence for a class of locally Lipschitz regularizations without
any convexity nor differentiability assumptions. The utility of such nonquadratic regularization is motivated by the following
examples.

Example 1 (EM-type algorithms for maximum likelihood estimation) We show here that the case of Kullback reg-
ularization results in a proximal point method which is a generalization of the well known Expectation Maximization (EM)
algorithm for maximum likelihood estimation [5]. Consider as in [5] the sample spaces €y and Qs on which one defined
the random variables V; and V> with respective probability densities p;(vi;2) and pa(ve; ), both indexed by an unknown
parameter x € R™ to be estimated. Assume that V5 is obtained from V; through a many-to-one mapping Vi — Vo = h(V})
and define p(vy | vo;2) = % the density of V7 conditioned on V5 = vs. Then, the Kullback information measure between

p(v1 | v2; ) and p(vy | va;y) for two parameter values z and y takes the following form
Towle) = [ tog (B0 iy sy, @
(h=1(u)}  \P(U1 | V235 )
Now, consider the following proximal point algorithm for maximizing the likelihood function f(x) = logps(ve;x).

k+1

2" = argmin, cpa{—logp2(v2;y) + eI (2%, y [ v2)}. (5)
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Using the facts that

P(Ul; Z/)
p(v2;y)

p(vl | Uz;y) =
and
[ pton | emigyaen =1

it can be shown that (5) takes the equivalent form

k+1

T :argmaxyeRn{ — (1 = A)logpa(vas y) ©6)

+ ApEllogpi (vi3y) | Vo = U2§$k]}

where E[logpi(vi;y) | Vo = v2;2%] = [logpi(vi;y)p(v1 | va;2¥)dvr denotes conditional expectation. When Ay = 1,
recursion (6) is identical to the EM algorithm introduced in [5] where V5 is the incomplete data and V; is the complete data.
Furthermore, as implied by Lemma 4.1 below the recursion (6) monotonically increases the log-likelihood log ps(ve;y) as
does the standard EM algorithm of [5]. A special case of (5) is the case of Laplacian data,

x
pa(va; ) = §exp(—m|v2|), z > 0.

When the complete data V; is also chosen as Laplacian, it is easy to show that the Kullback regularization given by (4) is
nonsmooth and nonconvex.

Example 2 (Methods of multipliers) In [24] Rockafellar shows that the proximal point approach can be applied to the
dual of a constrained optimization problem to yield interesting classes of multiplier methods. Subsequent studies [28, 29, 8]
have demonstrated the benefit of using nonquadratic regularization functions. Among the possible choices for regularization
functions proposed in [28] is the ¢—divergence

n xl.
d "N = io(—L).
olsi) = g6 (0)
j=1
where, in [28], ¢ was assumed strictly convex. In particular, consider the convex program
m%Rn f(z)  subject to  g;(z) <0, i€{l,...,m} (7)
EASIN
where f and g1,...,¢gm are convex functions. The proximal point algorithm applied to the dual takes the form (see [8,

section 6])

P’ R}
pk+1 = argmaxpzo{c(p) - >\kd¢ (pkap)}

with ¢(p) being the dual functional defined by inf,ecg» L(x,p) where L(z,p) is the Lagrangian

Li.p) = flx)+ Y0 pigi(z) ifp; >0, Vie{l,...,m}
’ —00 otherwise

Thus, one obtains convergence of (z¥)ren and (p*)ren to the solution of problem (7) (for instance, see [8]). Using different

choices for the function ¢, some well known multiplier methods can be recovered. Our generalization of ¢ to nonconvex

functions opens up many new possibilities.

Further examples of nonsmooth and nonconvex regularizations have also recently been studied in the context of inverse
problems in [21] and [22].

The outline of the paper is the following. In Section 2 the generalized proximal point algorithm is introduced for a wide
class of possible regularizations. In Section 3, the fixed points of the method are studied. In particular an analysis of
nondifferentiable nonconvex regularization is provided which seems to have no precedent in the literature. In Section 4,
global convergence of the method is established. We then demonstrate local convergence when f is strictly convex in an open
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neighborhood of an accumulation point of the minimizing sequence. In sections 5 and 6, we turn to implementable bundle
methods for approximation of the generalized proximal point iterations. The case of convex function is discussed first in
Section 5 for the sake of clarity in the exposition. Then, algorithmic refinements, including a linesearch, are introduced in
section 6 in order to accomodate the nonconvex case.

We recall the following notations and definitions [4]. The inner product on R"™ is denoted by (.,.) and the associated
norm is |.|]. The convex hull of a set S is denoted conv(S). The function f: R™ — R is locally Lipschitz if for any bounded
set B C R” there exists a constant L < oo such that |f(z) — f(y)| < L|z — y| Vz,y € B. The effective domain of f is
Cy={z | f(z) < oo}. The generalized derivative of f at  in the direction of d is

F(z,d) = limsup LEFAF ) = f(@)

h—0 t
tl0

The subdifferential of f at z is the set

Of(z) = conv{ liigl VF(xh) | Vf(z') exists},

Where V f denotes the gradient of f. The subdifferential has the property that it is a closed and convex set. An equivalent
definition of df(x) which will be useful is

of(@)={g €eR" | (g,d) < f'(x,d) Vd € R"}. (8)

The multivalued function = +— 90f(z) is upper semicontinuous and locally bounded. Notice that if a point z is a local
minimum of the function f we have f'(z,d) > 0 for all d. In this case, following the second definition (8) of the subdifferential,
0 € 9f(xz). More generally, we say that x is a stationary point for f if 0 € 9f(z). For convex functions f(x) the subdifferential
is equivalently defined by

Of(x) ={geR" | (g,y—=) < fly)— flx) Yy eR"}. (9)
An extention of the subdifferential, called the e-subdifferential, can be defined for convex function as follows
Of(x) ={geR* | f(y) > f(x)+(g,y—x)—€ VyeR"}. (10)

In the nonconvex case, we will need to introduce another type of approximate subdifferential called the Goldstein e-
subdifferential. For any € R" and any € > 0 the Goldstein e-subdifferential [10] of f at z is the set

O°f(x) = conv{df(y) | ly—=|<e}

The multivalued function (z,€) — 9¢f(x) is locally bounded and upper semicontinuous, i.e., z¥ — x, e¥ — ¢, p* € 9 f(z*)
and p¥ — p imply p € 8. f(z). We will also need the notion of weak upper semismoothness introduced by Mifflin [19]. A
function f : R™ — R is said to be weakly upper semismooth at z € R™ if

a. f is Lipschitz on a ball about = and

b. for each d € R* and for any sequences {t*} C R, and {g*} C R™ such that {t*} | 0 and ¢* € 0f(z + t*d) it follows
that

lim inf(g*, d) > lim sup flo+td) - /@) .
k—o0 t10 t

Finally, for any function F'(z,z') satisfying the local Lipschitz property in z’, we will use the notation 0F(z,z") for the
subdifferential in the second variable at x’.

2 Generalized Proximal Point Algorithms

In what follows, the regularization function is denoted ¥(.,.). We first state some assumptions on the objective function f
and the regularization function W.

Assumptions 1 (Objective function) (i) f is inf-compact, i.e. the a—level sets Lr(a) = {x € R* | f(z) < a} are
bounded for any a € R
(ii) f is locally lipschitz over R™.

Notice that Assumptions 1 (i) and (ii) together imply that f is bounded from below.
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Assumptions 2 (Regularization function) (i) (Positivity) ¥(z,y) > 0 for all z, y € R™.
(i) (Identifiability) ¥(z,y) =0 = =y.

(iii) ¥(x,y) is locally lipschitz over R™ x R™.

(iv) The effective domain Cg(,,) = R* for any z € R".

A usefull property of the regularizing function ¥ is now given

Lemma 1 Assume that ¥(x,y) satisfies Assumptions 2. Then,
0%z, ) = {0},
for all x in R™.

Proof. Fix x in R™. Due to Assumptions 2, ¥(z,y) > ¥(z,x) for all y in R". Therefore, the first order optimality condition
gives

0 € 0¥(z,z),

as desired.
We now define the generalized proximal point algorithm

Definition 1 Assume that f and U(.,.) satisfy assumptions 1 and 2 respectively. Then, the generalized proximal point
algorithm is defined by the following recursion starting at x'

et € argming e {f(y) + M (z",y)}- (11)
The following result proves that recursion (11) definition is well defined.
Proposition 1 The set of minimizers of (11) is nonempty for any z* in R™.

Proof: This result is a straightforward consequence of Assumptions 1 and 2. Indeed, the function f(x) + A ¥(z', ) inherits
the inf-compactness and local Liptschitz properties of f and ¥ and thus possesses at least one bounded minimizer.
Notice that, due to nonconvexity of the functions involved, the minimum in (11) may not be unique. In such cases, z
in (11) can be arbitrarily chosen among the set of minimizers of (11).
For the sake of notational convenience, in the remainder of this paper, the regularized objective function with relaxation
parameter ¢ will be denoted

Fi(z,y) = fy) + 19 (z,y) (12)

and the generalized proximal operator will be defined by

k+1

Py(r) = argmin, cp. Fi(z,y).

3 Optimality for nonsmooth regularization

We first investigate theoretical difficulties concerning optimality conditions for nonsmooth regularization. Indeed the problem
which one encounters in nonsmooth situations is that a stationary point of the regularized objective function is not in general
a stationary point of the unregularized objective function itself. Thus, it is important to establish sufficient conditions which
guarantee that stationary points of the objective function coincide with those of the regularized problem. For that purpose, we
introduce the condition of subdifferential domination. Under this condition, we show that the fixed points of the generalized
proximal point mapping are locally optimal.

3.1 Fixed points and nonsmooth regularization

Consider the regularized function (12) where, with no loss of generality, A is set to 1, i.e.
F(z,y) 2 Fi(z,y) = f(y) + ¥(z,y),
and the associated proximal operator

P(z) = argmin, cp. F(z,y).
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The success of the proximal point approach relies on the condition that fixed points of P also be stationary points of f. In
the case where ¥ is quadratic, say ¥(z,y) = %|a: — y|?, this property is well known and straightforward. In the case of the
general possibly nonconvex regularization considered in this paper, we only have

T* = argmin, cp. F(z%,y),
which is equivalent to

0 € OF (z",x"). (13)
Using the calculus of subdifferentials, we have

OF (z,y) C Of(y) + 0¥ (z,y),
and thus, (13) implies

0€ dF(z",2") C Of(z") + 0¥(z*, z") (14)

Hence, consistence of the generalized proximal point approach reduces to the question of knowing in which circumstances a
point z* satisfying (14) is a stationary point of f.

In the case where ¥(z*,y) is smooth in the second variable, e.g. ¥(z*,y) = |z* — y|?, then 0¥ (z*,z*) reduces to {0},
and we deduce from (14) that 0 € 9f(z*) which proves that z* is a stationary point of the objective function. For ¥(z*,y)
nonsmooth in the second variable, z* is no longer guaranteed to be a stationary point of f. To illustrate, consider the
following one dimensional example,

H) = L(z*—y), ify >z

{w* —y, ify <a*

Uz, y) = =" —yl.
We then have 0f(z*) = [-1, —1] and 9¥(z*,z*) = [—1,1]. On the other hand, OF (z*,2z*) = [~2, 1]. Thus, in this case, we
have 0 € OF (z*,x*) whereas z* is not a stationary point of f (indeed, f has no stationary point).

3.2 Subdifferential domination

The reason that condition (14) fails in the latter example is that the subdifferential of the regularization ¥ is “bigger” than
the subdifferential of the objective f. To overcome this difficulty, we will impose that the objective have “greater” variation
than the regularization. The following definition makes precise the idea of “greater” variation.

Definition 2 Let f; and f> be locally Lipschitzian functions. The function fi subdifferentially dominates fo at the point x
if

[fi(z, d)] > |f(z,d)| VdeR". (15)

An important consequence is that if f; subdifferentially dominates f, at x, then f; subdifferentially dominates ¢ f5 for any
t satisfying 0 < ¢ < 1 at x. The following lemma establishes that the conditions given by (14) specify a stationary point of
the objective function under the subdifferential domination hypothesis.

Lemma 2 Let F(z,y) = f(y)+ ¥ (x,y) and assume the existence of a point x* satisfying the following stationarity condition
0€df(z*) +0¥(z*,z"), (16)
with U satisfying Assumptions 2. If f subdifferentially dominates ¥ (z*,.) at x*, then x* is a stationary point of f.

Proof: For simplicity denote ¥ (z*,y) by ¥,«(y). Since 0 € OV, (z*), due to Lemma 1, we have ¥/, (z*,d) > 0 for all d € R™.
Due to the first equation in (16), we deduce the existence of two vectors g; and g» such that

g1+92=0,
g1 €0f(z"),
g2 € 6\ij*(x*)7
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and thus

(g1, d) + (g2,d) = 0,

for all d € R™. Since, by definition, f'(z,d) > (¢91,d) and ¥« (z*,d) > (g2,d), we have f'(z*,d) + V.. (z*,d) > 0. Thus, we
obtain

fl(x*)d) > —\IJ;*(I‘*,d). (17)

We now proceed by contradiction. Suppose that f'(z*,d) < 0 for some d € R™. In this case, as ¥!.(z*,d) > 0, equation
(17) implies

(2", d)] < [ (27, d)].

Since this last equation contradicts the domination assumption, we deduce that f'(z*,d) > 0 for all d € R". Using the
(second) definition (8) of the subdifferential, we conclude that 0 € 0 f(z*).

With this result in hand, we are now ready to discuss the case of the generalized proximal point operator. Using Lemma
2 we first deduce the optimality of the fixed points of the generalized proximal point mapping P; with relaxation parameter
t > 0 in the following straightforward lemma.

Lemma 3 Assume that f(z) subdifferentially dominates t¥(x,x) at each fized point x* of the generalized proximal mapping
P, with relaxzation parameter t > 0. Then any fized point x* of P; is a stationary point of f(z).

A last question of computational importance remains to be discussed. In real life situations, one may not know whether
a given regularization is subdifferentially dominated by the function to be minimized. This problem is easily overcome by
forcing the relaxation parameter ¢ towards zero in the generalized proximal point operator P;. Indeed, the definition of
subdifferential domination and Lemma 3 prescribe that

|f' (z*,d)| > t|¥,.(z*,d)|, VdeR",

where, as above, z* is a fixed point of P, and ¥'.(z*,d) is the directional derivative of ¥(z*,.) in the direction of d at z*.
Therefore, one easily checks that, given f and ¥, it is sufficient to take a small enough relaxation parameter ¢t to guarantee
(3.2). As a consequence, we may conclude that a safe strategy, when performing the generalized proximal point algorithm
with a nonsmooth regularization, is to take a sequence of relaxation parameters t = \j, indexed by iteration k converging
towards a sufficiently small value!.

4 Convergence analysis

In this section, we give an asymptotic analysis of the generalized prozimal point algorithm which does not require differentia-
bility nor convexity assumptions. A Lyapunov method is the guideline of the proof where the Lyapunov function is simply
the objective f(x). We show that the accumulation points of the sequence defined by (11) are locally optimal. Under a strict
local convexity assumption convergence is established.

4.1 Main results

We start with the following monotonicity result.
Lemma 4 Let f and U satisfy Assumptions 1 and 2. For any iteration k > 1, the sequence (x*)ren satisfies

Fl@ ) = f(z*) < =\ P (", 2" <o. (18)
Proof. Tteration (11) implies that f(z**1) + A\p®(2* k1) < f(2%) + AP (2%, 2%). Recall that ¥(z*,2%) = 0 due to
identifiability assumption 2 (ii) and ¥(z*,z**') > 0 by positivity assumption 2 (i). Thus (18) follows.

We next deduce the following important property which is sometimes referred to as “asymptotic regularity”[1].

Lemma 5 Assume that there exists a real number \ such that A\, > X\ > 0. Then, the sequence of iterates (z*),en satisfies
limy o0 |2% — 2FH1] = 0.

1'We will require nevertheless that (Ag)ren does not vanish to push through our convergence analysis
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Proof: By lemma 4, (f(x*))ren is decreasing and thus the fact that f is bounded from below implies that ( f(z*))ren converges.
Thus, the left hand side of (18) tends towards zero and since Ay, > A > 0, for all k, we have limj_,o, ¥(z*, 2%*1) = 0.

We now prove that limg_,oo |2¥ — 2%+1| = 0 by contradiction. Assume that there exits a subsequence (a:"(k))keN such
that |z7(F) — zo(*F)+1| > 3¢ for some € > 0 and for all large k. The fact that (f(z)°®))ren < f(z') implies that (z7®))en
is bounded due to the inf-compactness assumption 1 (i4). Since (z°*))zeyn is bounded, one can extract a convergent
subsequence, and thus, we may assume without any loss of generality that (a:”(’“))keN is convergent with limit z'. Using
the triangle inequality, we have |27 — 2'| + |2’ — 27(F)+1| > 3e. Since (27" ) en converges to 2/, there exists a integer K
such that k > K implies |2°*) — 2/| < e. Thus for k¥ > K we have |2/ — 27(®)*1| > 2¢. Now extract from (z7()+1), 5k a
convergent, subsequence (27 )+1), < r with limit 2”. Then, using the same arguments as above, we obtain |2’ — 2" > e.
Finally, recall that limj_, ., ¥(z*, 5T1) = 0. We thus have limy_,o, ¥(z7V*) go(v(E)+1) = 0 and, due to the fact that the
sequences are bounded and ¥(.,.) is locally Lipschitz (and therefore continuous in both variables), we have ¥(z',z") = 0.
Thus assumption 2 (ii) implies that |z’ — 2| = 0 and we obtain a contradiction. Hence, limj_, |zF — 2**1| = 0 as claimed.

We are now ready to establish our global convergence theorem.

Theorem 1 Assume that the sequence (\p)gen is bounded and satisfies \*¥ > X\ > 0, Vk € N for a given \. Define
AT = limsup,_, . \e. If f subdifferentially dominates \Y¥(z*,.) at any fized point x* of the operator Py+, then every
accumulation point of the sequence (z¥)ren is a stationary point of f(x).

Proof: Take a convergent subsequence (z7))pen of (2%)pen with limit point z*. Lemma 5 implies that (z7("F)+1), oy
also converges to z*. In accordance with Lemma 3, we need to prove the existence of a real AT > ¢ > 0, such that
Fy(z*,2*) < Fy(z*,z) for all z € R". In the following, we prove that this result holds with + = A*. By definition of (2*)en,
Fy, (27 20 0)+1) < By (27 2 for all # € R*. Therefore, for all z

Fyr (270, 270141 1 (3, = 3H) (27, 5701 +1)
< Py (27®) ) + (0 — AN T(27W) ). (19)

Since limg_y o0 ¥(x7*), z7(F)+1) = 0, for any € > 0, there exits an integer K such that ¥(z7*) z7(F+1) < ¢ for all k > K;.
On the other hand, F\+ is continuous in both variables, due to the locally Lipschitz property. Fix 2 € R”. By continuity in
the first and second arguments of F\+(.,.), respectively, we have for any ¢ > 0 there exists Ko € N such that for all k£ > K>

Fye (2, 2) > Fys (27 2) — ¢, (20)
and

Fye (z*,0%) < Fye (270, 270+ 4 9¢. (21)
Combining equations (20) and (21) with (4.1), we obtain

Far (2%, 2%) < Fye (2%, 2) — (AT = M) (U (27®) | z) — U(z7F) zo()+1)) 4 3¢

Now, since AT = limsup,_,., Ak, there exists an integer K3 such that AT — Ay > —e for all & > Kj3. Then for all
k > max{K;, Ko, K3}, we easily obtain

Fyr (z*,2%) < Fy (z*,2) + e® (2 2) — € + 3e.

Since (7(*)),en is bounded, and due to Assumption 2(iv) and Assumption 2(iii), there exists an upper bound C such that
(27 2) < O for all k> max{K, Ko, K3}. Thus, we have

Fy+(z*,2%) < Fyx+ (2*,2) + €C — €% + 3e.

Since no assumption was made on z, this holds for any x € R™. Thus, letting € tend to zero, we see that z* is a fixed point
of argmin, cp»F\+(z¥, z). Furthermore, recall that f(z) subdifferentially dominates \*¥(z, ) at the point z*. Therefore,
Lemma 3 implies that z* is a stationary point of f(z).

4.2 Convergence to local minima under additional convexity assumptions

Let S* be the set of accumulation points of the sequence (2*)en. We first establish the following lemma

Lemma 6 Let f and ¥ satisfy Assumptions 1 and 2. Then, for a given starting point x', the set * of accumulation points
of the sequence (z*)ren is compact and connected.
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Proof: This result follows directly from the fact that limy_, o [2¥t1 — 2¥| = 0 and from [23, Theorem 28.1].

Corollary 1 Suppose, in addition to the assumptions of Theorem 1, that f(z) is strictly convez in an open neighborhood N
of an accumulation point z* of (z*)ren. Then the sequence (z*)ren converges to a local minimizer of f(x).

Proof: We obtained in Theorem 1 that every accumulation point of (z*)ren is a stationary point of f(z). Since f(z) is
strictly convex over N, the set of stationary points of f(x) belonging to A reduces to singleton. Thus z* is the unique
stationary point in N of f(z), and a fortiori, the unique accumulation point of (z*)zex belonging to . To complete the
proof, it remains to show that there is no accumulation point in the exterior of A'. For that purpose, consider an open ball B
of center * and radius € included in N. Then, z* is the unique accumulation point in B. Moreover, any accumulation point
x', lying in the exterior of N" must satisfy |z* — z'| > ¢, and we obtain a contradiction with the fact that S* is connected.
Thus every accumulation point lies in A, from which we conclude that z* is the only accumulation point of (z*)gex or, in
other words, that (z*),en converges towards z*. Finally, notice that the strict convexity of f(z) over A/ implies that z* is a
local minimizer and the proof is completed.

5 Bundle implementations: the convex case

The study of the generalized proximal point algorithm gives an elegant framework for the exploration of a large class
of regularizations. In the two next sections, we use the bundle framework introduced by Lemaréchal [7] to make this
approach tractable in applications. The present section introduces the main ideas governing incorporation of nonquadratic
regularization functions into the bundle mechanism in the case where the functions are convex. More precisely we will require
that f(x) be convex and ¥(z',x) be convex with respect to = for every z' in R”. The case where the functions f and ¥ are
only required to be locally Lipschitz will be discussed in the next section.

5.1 Background

Bundle methods have been widely recognized as a very efficient technique for minimization of nondifferentiable functions.
They can be interpreted as implementations of stepwise approximations of the proximal point algorithm [16, 12]. However, to
our knowledge, bundle implementations of general nonquadratic regularizations have not been considered in the litterature.
This may be due to be fact that bundle methods are essentially sequential quadratic programs, which seems to exclude the
possibility of more general regularization functions.

The main idea behind application of bundle methods to nonquadratic proximal algorithms is the following. The generalized
proximal iteration is approximated using subgradient information with respect to f and ¥ about the current iterate z*. Let
{y} s» be a set of points in a neighborhood of z*, indexed by j € J*. For any point y € R”, let g(y) (resp. hx(y)) denote
an arbitrary subgradient in 0f(y) (resp. ¥ (x*, y)). Hence, any point y7, j € J* allows to define approximate models

A~ . .

fi@) = f) + (g),x — )
and
U2, 2) = O(a*, y7) + (i (y?), = — ')

of f and W respectively. To stabilize the model \ilj (z*, x) a quadratic term %|:r—:rk | is added and the following approximation

is obtained for the function Fy, (z*,z) in the proximal point algorithm

Fa i@, 2) =f(y7) + (9(y7),z — y7) + e (®(2, 97) + (i (y7), @ — o)

1 o
+ §|a:—a:’”|2).

Note that convex functions are bounded from below by their local first order approximations and that the quadratic stabiliza-
tion term is independent from y?. Hence, the best approximation of Fy, (z¥,z) can be obtained by gathering the information
at each ¢/ in the neighborhood of z* via the following max-function,

P (a*, ) =max{ £(y) + (o) w =) + M (P bs0) + (B (y)), 2 = y7)

1 k|2
+§|£L’—1‘ | }7
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Equivalently, Fy, (#*, ) can be written

. ) N ) s 1
P (o*,2) = max{f(z*) - af + (* (), = ")} + el — 2t
J

where a? is the accumulated linearization error due to the fact that the subgradients are computed at the points 37 instead
of =% i.e.

af = f(@%) = f7) — (9@, 2% — ) = U(a*, 7)) — (i (), 2" — o), (22)
and s(y’) is the accumulated subgradient
s*(y7) = 9(y’) + Ahi(y).
With this model in hand, we are now ready to introduce the bundle mechanism. First, an approximate proximal step is

taken which defines a candidate for the next iterate,

yk+1 = argminxeknﬁxk (mk7 Qf), (23)

or, equivalently,

. ; Ak
y*t! = argmin, cpn J_Hé%{f(wk) —ab 4+ (s(y'), 2 — M)} + 3|$ — "’}

The bundle approach is a strategy in order to decide wether the accumulated subgradient information at every point of the
set {y’}, j € J*¥, is sufficiently accurate so that a reliable proximal step can be achieved, i.e. 2¥*! = y*+1 Tt is well known
that iteration (23) may even not provide a descent step with regard to f if the subgradient information is innaccurate Hence,
a reasonable selection of candidates {y**'} for a proximal step should be based on a test of descent in the objective function
f- In order to implement such a test, a parameter §;, is computed, representing the expected decrease given the model FM,

616 = f(mk) - ﬁs\k (ykJrl)xk):

or equivalently

N A
O = f(a") —max{ f(z") — o+ (s* (), —2")) — Sl =t

k+1

The decrease obtained at y is then compared to a fraction m € (0, 1) of the expected decrease dy, following the rule

o if f(z*) — f(y**1) > mdy, then a descent step is taken, i.e. zFT1 = yb+1

e otherwise zF+1 = gk,

In either case, the subgradient information at y**! is collected and is incorporated to the polyhedral approximation of f
and ¥ at iteration k + 1. In this manner the accuracy of the approximation F(z*,z) to f(z) + A\ ¥(z*, z) improves at each
iteration.

5.2 A generalized proximal bundle method

In this section, we present the details of our bundle implementation.

Algorithm 1 (Generalized Proximal Bundle Method for Convex Functions) Step 0 (Initialization) Choose a fi-
nal accuracy parameter §s > 0 and a parameter m € (0,1). Choose the starting point z* € R*. Setk =1, y' = 2!, J' = {1},
g' =gy, b =m(y"), s' =g¢" +hi and of = 0.

Step 1 (Proximal step) Compute

A T Mo 4
Y"1 = argming cpn max {f@*) —af + (s7, 2 —2F)} + 7’”|m — "} (24)
JjE

Step 2 (Descent test) Set

NP D VI
0 = f(a*) —J_ngg{f(w’”) —ap (st —ah)) = T P
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o if f(a¥) = f(y**Y) > mdy, then set a* T = yhH! (descent step),

k+1 k

e otherwise set "1 =z (null step).

Step 3 (Stopping criterion) If 6 < ds, then stop.

Step 4 (Variable updating) Set J*™! = J* U {k + 1}, choose Api1, set gFtt = g(y*T1), REFL = hpy (yhT1), s =
gE A+ N1 BT set o = o, for j € {1,... kY, aﬁﬁ = f(aPt1) — (sPHL 2kt — k1) Finally, increase k by 1 and go
to Step 1.

We now establish some preliminary results concerning this algorithm. The following lemmas are standard in the analysis
of bundle methods. In particular, the following lemma expresses proximal step (24) in the form of a dual quadratic program:

Lemma 7 [3] Consider the constrained minimization problem

1 . .

@ :argminuew{§| Z u;s?|* + \g Z uja]} (25)

jeJ*r jeJk
subject to (26)

ue Ay ={z€(0,1)"] szzl}.

JEJ®
Then,
. ! _
(1) yk+1 — l'k _ )\_k Z UjSJ, (27)
jeEJ*

where y**1 solves the prozimal step (24) in Step 1 of Algorithm 1, and the polyhedral component ®,(z) = max;¢ {f(z*) —
al + (s7,x —yi)} of By, (z*,z) satisfies

(@) B =16 - | Y ws - 3 wal,

jeJ*k jeJ*

In the sequel, we adopt the notation
pr=3 s, (28)
jegk

We must also introduce another dual variable which plays an important role in the bundle method. For this purpose, notice
that the quadratic program given by (25) is equivalent to

ﬂ :argminueRk%| Z ujsj|2 (29)
jeJ®
subject to (30)
u e Ayg
Z ujo < e, (31)
J€Jk

where A\ in (25) is identified with the Lagrange multiplier associated with the contraint (31). Using lemma 7 (ii), and the
definition of d in step 2 of Algorithm 1

A 1 - .
k k ko k k2 _ - -
f(@") — @(y +1)_7|Z/ +1—$|2—Kk|2ujs]| +Zua§c. (32)
jeJk jeTk
Recalling that @ is solution to the quadratic program (29), we have
€ = Z ﬂjai. (33)
jegk

Therefore (32) is equivalent to (see also [3])
Lo ke
=€, + — . 4
Ok = € 2/\k|p | (34)

With this result in hand, we obtain the following lemma.
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Lemma 8 Let p* be the direction defined by (28). Then,
P € 0, (f(a*) + MU (2F,2Y)).
Proof: The polyhedral function ®(z) may be written
(@) = max{f(y)) + (g2 —o/) + M (2", p)) + (W2 =) ).
Then, due to convexity, we have
fl@) > fly’) + g’z — ')
and
Uk z) > Uk, 2F) + (W7, 2z — o).
Therefore,
f@) + M2k, z) > O (). (35)
On the other hand, optimality in the proximal step (24) (Step 1 of Algorithm 1), gives
0 € 0®r(y*) + N (L — 2b).
Noticing that A (y**! — 2*) = p¥ we thus obtain that
pF = 0%, (4" ).
Hence, using the subgradient inequality, we obtain
Br(w) > @ (y") + (F, 2 -y, (36)
Recalling that, due to Lemma 7 (ii)
B = £ = TP = Y aal,
VIS
and combining this result with (36), (35) becomes
flx) + 2T (z*, 2) > fa®) — )\—lk|p’“|2 - E:k ajod + (pF,x — y* L.
JjeJ

k+1

Since —-|p*|* = (p¥,y**" — 2¥), we obtain

f@) + 2T (2%, 2) > fab) + 2 —2¥) = Y a0,
jeJ®

Furthermore, recalling that

€ = Z ﬂjai,

jeJk

and that ¥ (2%, z%) = 0, we easily obtain

F@) + M (a®,2) > f(*) + M ¥ (a®, o) + F, @ — 2®) — e,
which is equivalent to

p* € d, (f(a:k) + Ak\I—'(wk,mk)).

This last result shows in particular the well known fact that bundle methods may be interpreted as e—subgradient methods
(see [7]). The main feature of bundle methods is therefore the control of the parameter €, via (34) and the descent step/null
step strategy using the expected decrease d;,. We now discuss convergence of this method to a minimizer of f.
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5.3 Convergence

For the convex case, the proof of convergence of the generalized proximal bundle method is similar to the proof of convergence
of the standard form of bundle methods. In the sequel, K denotes the set of indices k where a descent step is taken. We
start with the following lemma.

Lemma 9 Consider the following convergent sequences, t* — &, y* — 7, e, — €, \* = X and p* — d. Assume that
p* € 0o (F(y") + M2 (a*, "))
for all k € N. Then, d € 0:(f(§) + A\¥(Z,7)).
Proof: Fix y in R". The fact that p* € 8, (f(¥*) + A ¥(2z*,y*)) implies that for fixed y
Fly) + M (2, y) > Fy*) + ¥ (2*,0%) + 0"y = y") — e
Therefore,
F) + ¥ (2, ) >F (") + M (a*,9) + M (P (2, 0*) — U(*, 7)) (37)
+ 0"y —y") — e

Now, since ¥* is assumed locally Lipschitz over R* x R", and since (z*)ren and (y*)ren are bounded due to convergence,
there exists a constant C' such that

[W(a*,y*) — U, p)| < Oyflak — o2 + |y* — g* = Cly* — gl.
Therefore, as y* converges to g

lim ¥ (zk, y*) — w(zk, 5) = 0.

k— o0

Using a similar argument one easily deduces that ¥(z*,y) converges to ¥(z,y) and that ¥(z*,g) converges to ¥(z,7).
Furthermore, Assumption 1 (ii) implies (lower semi-) continuity of f and thus, passing to the limit in (37) gives

F) + A9 (z,y) > f(5) + A¥(z,9) + (d,y — J) — €,

which proves the desired result.
We will also need a more technical result the proof of which can be found in [3].

Lemma 10 Let f and VU satisfy assumptions 1 and 2. Let K be the set of indices where a descent step is taken. Let
fe =limpso0 ke f(@*). Then
1y
m
kEK

The following convergence analysis is divided into two parts. In the first part, we consider the case where an infinite
number of descent steps are taken. Then, we will turn to the finite case.

Lemma 11 Assume that f and ¥ satisfy Assumptions 1 and 2. Assume that f subdifferentially dominates ATV at every
point z* such that 0 € Of (z*) + AT OV (z*,2*) for some real number X* > 0. Assume in addition that limsup,_, . A\, < AT
and that liminfy_,oo Ay > A~ > 0 for some real number A~ and for all k in N. Finally, assume that an infinite number of
descent steps is taken. Then, every accumulation point of (z*)ren is a minimizer of f.

Proof: Using (34), we obtain
Lok
o P = 0k ek 2 0,

for all £ € K. Hence, we have

ST <20 > b (38)

keEK keK
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Recall that Assumption 1 implies that f is bounded from below. Thus, Lemma 10 implies that limg_o rex O = 0, and
therefore, (34) implies that limg_ o rex € = 0. The assumptions on the sequence (Ag)ren imply boundedness of A, and
thus, equation (38) gives

D IPHP < o,

keK

which proves that limg_,o0 ke [P¥| = 0. On the other hand, inf-compactness of f and the fact that (f(z*))recx is strictly
decreasing imply that the sequence (z*)rcx is bounded. Now, take a convergent subsequence (z7")).cx and let Z be its
limit. Since (Ag)rex is bounded, a convergent subsequence can be taken, say (A,((k)))kerk, tending towards X. Then,
Lemma 8 and Lemma 9 together imply

0€9(f(z) + A\¥(z,z)), and 0 € Of (z) + NV (z, T).

Finally, since every accumulation point A satisfies A < AT, subdifferential domination and lemma 2 imply that 0 € df(z).
Finally, convexity implies that & is a minimizer of f is convex, which finishes the proof.
We now discuss the case of a finite number of descent steps.

Lemma 12 Let the functions f and ¥ satisfy the assumptions in Lemma 11 Assume that only a finite number of descent
steps is taken and let ko denote the index of the last descent step. Then, z*° is a minimizer of f.

Proof. The proof is easily adapted from [15]. The definition of d; gives

. . . . A
flak) = oF = jﬂgg{f(y]) + A (k) + (7, - )} + Elylchl — k)%,
Take k > ko. Since z* = z*° for all k£ > ko, we obtain
: : : : A
F) + M, y) + (s, g4 — ) 4 SE = R < gt — ot (39)

for all j in J*. On the other hand, nondescent steps imply
f@*) —mé’ < f(y),
for k > j > ko. Thus, as f(z*) = f(z*0) for k > ko, (39) gives

A

5 |yk+1 _ :L,k0|2 < méj _ 61\7’

AT (20, y7) + (s7, 4" —yf) +
for k > j > ko, which implies, due to positivity of both ¥ and the quadratic term, that

(s7,yF+ — ¢y < mé? — oF, (40)
for k > j > ko. The case j = ko gives y/ = yFo = z*o, the last equality coming from the fact that ko is the index of the last
descent step. Using this fact along with (39)

M

<5k07yk+1 - mk0> + 2

|yk+1 _ xk0|2 S _6k S 0.

The left term of this last equation is a quadratic form in the variable y*+!, which cannot take negative values except on a
bounded neighborhood of z*0. Hence, the sequence (y*)ren is bounded. As a consequence, s’ is also bounded, due to the
local boundedness property of the subgradients of f(.) and ¥(z*,.) and the boundedness of A\;. On the other hand, due to
refinement of the polyhedral approximation, and since A\, = Ay, and z* = z*o for k > ko,

FAk (wka le) < F'Ak+1 (mk+17m)7

for all z in R", which proves that (0x)r>k, is decreasing and thus, has a limit. We now prove that this limit is zero. Indeed,
take a convergent subsequence (y”(¥));>,. Hence, for any j satisfying o(j) > ko, we have, using (40),

(s70), g+ 7Dy < o) _ goli+1)=1,
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Since lim;_,, [y7U+Y) — 47| = 0 and due to boundedness of s/, we have

lim rnd®@) — §7lTH=1 > @, (41)

j—oo
Recall that (6%)gcy is convergent. Let & be its limit. By continuity, (41) gives
(m —1)8§ > 0.

Since 0 < m < 1, and § > 0 by positivity of 6 for all £ € N, we have (m — 1)§ = 0 which implies § = 0, as desired. Now
recall that

1
61\7 — k|2

to conclude, using lower and upper boundedness of A, that limy o € = 0 and limy_, [p¥| = 0. As in lemma 11, we
therefore obtain that

0 € O(f(xko) + XW(zho, z0))

for every accumulation point A of (Az)ren. Since every accumulation point A satisfies A < A*, subdifferential domination
gives

0 € af(z*),

which proves optimality of z*° since f is convex.
Combining these two lemmas yields the following convergence theorem for our bundle implementation of the generalized
proximal point algorithm for convex optimization.

Theorem 2 Let the functions f and U satisfy the assumptions in Lemma 11 Then, every accumulation point of (x*)ex
defined by Algorithm 1 is a minimizer of f.

6 Bundle implementations: the nonconvex case

6.1 Preliminary comments

In this section, a bundle approach for implementing generalized proximal steps is developed for the case of nonconvex
functions. The main ideas remain the same as in the convex situation. Nevertheless, several modifications need to be
introduced in order to overcome the difficulties associated with nonconvexity. The algorithmic structure used in the sequel is
similar to the one proposed by Kiwiel [10] and therefore inherits useful convergence properties. This allows us to concentrate
on the particular problems induced by the use of our generalized regularization. We first introduce the main characteristics
of the method.

One important property satisfied in the convex case by the polyhedral approximations to f and ¥ is that they are lower
approximations, i.e. they lie below the original functions f and ¥. Therefore a, in (22) is always positive. This property no
longer holds in the nonconvex case. Nevertheless, a similar property can be obtained when ai is defined by

ap = £ (") = F5)) = (¢, e* =)+ Ml B (et ) + (W, a* — )]

with g/ € f(y’) and b/ € 0¥ (x*,y’) and recalling that ¥(z*, z*) = 0. The approximate model is therefore written in the
same manner as in the convex case, i.e.

. . 1
Fy, (xk)x) = max{f(l.) - Cl;? + (51,1‘ - mk>} + _>‘k|x - mk|27
jET* 2

using the new definition of ai and where as before s/ is defined by s/ € g/ + A\ h/ and {yj}jeJk is a collection of points in a
neighborhood of z*.
With this lower approximation in hand, an approximate proximal step is taken, yielding a precandidate for z**+!

; ; A .
2 = argmin, g max{f(«*) — o + (s, 2 —2*)} + Tlo —2*P
JE
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Let d* denote the direction given by d* = zF*1 — z* or, in other words,

1 .
dk = )\—k Z ﬂjSJ,

jeJk

and let p* denote the convex combination of collected subgradients

pk = Z ﬂjsj.

jeJE

In the following implementation, z¥*! does not directly provide a candidate for a descent step. Rather, a linesearch is
performed along the direction d*. The goal of this linesearch is twofold. Firstly, the linesearch provides a improvement of the
result obtained using only first order approximation of f and ¥, and therefore refines the implementation given in section 5
for the convex case. Secondly, if the linesearch only leads to a null step, the linesearch provides a systematic refinement of the
local subgradient information. Indeed, as discussed in [7] and[19], under some assumptions of weak upper semi-smothness,
a new candidate is obtained which satisfies

(sk*1 d*y >0

when a null step is taken.

The question of optimality is solved in the following manner. The main difference between the convex case and the
nonconvex case is the manner in which an approximate subdifferential is generated. In the convex case, the same threshold
dr, was used to control both descent tests and the size of the e-subdifferential (recall relation (33) and Lemma 8). In the
nonconvex case, the use of the Goldstein e-subdifferential, based on the distance from past subgradients to the current
iterate, leads to a different strategy. A locality measure a® is chosen for bounding from above the “size” of the Golstein
e-subdifferentials. In Lemma 13 below, we show that p* belongs to the sum of Goldstein e-subdifferentials at =¥, whose size
is controled by a®. For this purpose, we introduce a property called quazi-symmetry. Quazi-symmetry is then added to the
assumptions on ¥. Along the iterations, past subgradients are deleted from the bundle information when the distance from
the corresponding neighbor 3/ to the current iterate becomes excessive. More precisely, deletion occurs when

Ip*| > maa®,

where m, is a fixed parameter supplied to the algorithm. In other words, |p¥| should not vanish faster than a fraction of the
locaty measure. Convergence of p* towards zero is obtained using the same type of proof as in [10] which implies convergence
of a* to zero.

6.2 A generalized proximal bundle method for nonconvex functions

In the sequel, at iteration k& we will use the notation s(y) for any element of Of (y) + A\, 0¥ (z*,y) and

a(z,y) = |f(z) = fy) = M¥(z,y) = (s(y), 2 — y)|

Algorithm 2 Step 0 (Initialization) Select the starting point * and a final accuracy tolerance e; > 0. Choose the line
search parameters my, and mg € (0,1), m, € (0,mg), & € (0,1) and a positive reset tolerance m,,. Set the threshold stepsize
t! =1 and the reset indicator rl = 1. Set J' = {1}, y* = z', s! = s(y!), and s1 = 0. Set the counters k = 1,1 = 0 and
k(0) =1.

Step 1 (Proximal step) Solve the following quadratic subproblem

2
— . 1 o k
= argmlnueRmd(Jk){g‘ ZjeJk u]sJ‘ + EjEJ’“ ujor }
subject to

Uj Z 0) EjeJ’“ uj = L.

Set
ph== s (43)
jeJ*
ot = Z ﬂjai
jeJk

ok = |pk|2+ak
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If ri =1, set a* = max{s}§ | je J*}.

Step 2 (Stopping criterion) If max{|d*|,m,a*} < ¢,, terminate. Otherwise go to Step 3.

Step 3 (Resetting test) If |d*| > m,a* then go to Step 5. Otherwise go to Step 4.

Step 4 (Resetting) (i) If r* =0 then set r* =1 and go to step 1.

(ii) If J¥ # {k(1)} then delete from J* one among the elements j with the largest sf > 0 and go to Step 1.

Step 5 (Linesearch) Compute two stepsizes t’z and t%, t’z < t% using procedure 1 below and such that the two corresponding
points oFTL = ok 4tk dk and y*+1 = ok +thd* satisfy either

o f(2%) — f(aF ) — N U (2k, 2FTY) > mptjvk| and
tr, =tr >tF or
a(zk, k) > mg vk,
(descent step)
or
o —a(zF T yk + 1) + (s*T1,dF) > mpo*, th <t* and th =0, (null step)
with
s =gyt + Ak (y* ). (44)
Step 6 (Threshold stepsize updating) If tk = 0, set t**1 = kt*. Otherwise, set t**1 =1, k(I + 1) = k+ 1 and increase

by 1.
Step 7 (Updating) Update A\. Set

n?“ = nf + |ah Tt — 2k, (45)
nbth = ok — g (46)

JH = JE U {k + 1}, calculate a*+! = max{a® + [2*T1 — 2*|,n;T1} and set rk =0.
Step 8 Increase k by 1 and go to Step 1.

We now describe the line search procedure.

Procedure 1 (Linesearch) (i) Settr, =0,t =ty =1 and m = (mg —mqy +mp).

(id) If f(z*) — f(z* + td*) — A\ W (zF, 2t + td*) > mtjok| set t;, = t. Otherwise set ty = t.

(iid) If f(a®) — f(a® + td*) — \p O (2%, 2% + td*) > mpt|v¥| and either t, > t* or a(z®, o + td* > my|v¥|, set th =tk =+,
skt = s(xF +tpd*) and return.

(iv) Ift < t* and

—a(z®, 2% + td*) + (s(z® + td*),d*) > mpo®,

set th, =, th =0, s**1 = s(a* + trd*) and return.
(v) Choose t = L and go to (ii).

6.3 Intermediate results

The convergence analysis for Algorithm 2 will require the additional assumptions below.

Assumptions 3 (i) The functions f(y) and ¥(z,y) are semi-smooth in the variable y for any x in R™.
(ii) There exists a function q(.,.), R:. — Ry satisfying

a. q(.,b) is increasing for all b € Ry and q(a,.) is increasing for all a € Ry,

b. q(.,.) is continuous at the point (0,0),

c. lim(, 5)—(0,0) 9(a,b) = 0,

and such that if g € *¥(z,y), a > 0 then g € —01®12=¥DW(y, z).

We assume that the functions f and ¥ satisfy assumptions 1, 2 and 3. We now prove two essential lemmas. The first one
establishes that p* belongs to certain Goldstein e-subdifferentials at 2*. The second lemma proves an important continuity
result at stationary points.
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Lemma 13 At any iteration k, define \} = supjegr Aj. Fiz a point x* in the level set {x | f(z) < f(z')} and define
b* = |z* — 2*|. Then, under Assumptions 3, for any k € N, the direction p* defined in Step 1 of Algorithm 2 satisfies

Ph € 9% f(ak) — Xfore D (g ob),
where a* is the locality measure defined in steps 1 and 6.
Proof: Using (44), we have for any j € J*,
s € 0f (y) + X090 (!, y7).
Therefore, using the fact that |zF — 7| < a* and the definition of the Goldstein e—subdifferential
s € 8akf(a:k) + Ajaak\IJ(wj,mk),
and
sl € 8”kf(a:k) + )\jaakerk\IJ(a:j,x*).
Now, by assumption 3 (ii) of quazisymmetry,
s € 0” f(a) — A0 T =2 D g (g 27),

Thus, using the fact that |z* — 27| < a*, |2* — 27| < |z* — 2*| + a*, and that q(a,.) is increasing for all fixed a € Ry as
required by Assumptions 3(ii) a, we obtain

sl e aakf(xk) _ )\jaq(ak—i-bk,\m*—mk\+ak)+ak\IJ(x*,wk)’

and, recalling that b* = |z* — 2*|,

sl e 8akf(xk) _ )\jaq(ak+bk,ak+bk)+akm(x*,xk)’ (47)
Since )\;r > Aj, we have

—)\jGQ(“k+bk’”k+bk)+“k\Il(x*,a:k) C —A;B’I(“ubk’”k*bk)*ak\Il(a:*,a:k)
which, when combined with (47), gives

s e 8akf(xk) . )\Zaq(ak+bk,ak+bk)+ak\Il(x*,mk)’

for any j € J*. Now, due to (43), p* is a convex combination of the subgradients s/, j € J*. Recalling that e—Goldstein
subdifferentials are closed and convex sets, we have

pk c 6@"’]‘.(1_]@) _ A;:aq(ak+bk’ak+bk)+akq](l.*’xk)

as desired.
The following lemma will be needed in the sequel.

Lemma 14 All the sequences (z*)ren, (¥*)ren, (8%)ren and (p¥)ren defined in the reqularized bundle algorithm are bounded.

Proof: Due to assumption 1 (i) of inf-compactness, and the fact that algorithm 2 is a descent method, the sequence (z*)xex
is bounded. The remainder of the proof can be easily adapted from [10, Lemma 3.3].

Lemma 15 Suppose that there exist sequences (x*)ren, (P*)ren and (a*)ren and a point T € R™ such that limy_, o z* = Z,
limy o0 p¥ = 0, limg_y0o a* = 0. Define )\;: = maxjcyx Aj for all k in N.  Assume that f subdifferentially dominates
AT at every point z* such that 0 € Of(z*) + ATOU(z*,x*) for some real number XT > 0. Assume in addition that
lim supy,_, o, )\;r < AT and that liminfy oo A\, > A~ > 0 for some real number A\~ and for every k € N. Then T is a
stationary point of f(x).
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Proof: Lemma, 13 above implies the existence of two sequences (p¥)ren and (p5)ren such that p¥ = p¥ + p& and
o k o
py € 0% f(z*),
pIQC c _)\;raq(ak+bk,ak+bk)+ak \I’(l‘*, l‘k)

Due to lemma 14, (z¥)gen is bounded and thus the local boundedness of the subgradients implies that the sequences (p¥)ren

(k)) o(v(k))

keN, and (pz( Jken with respective limits

and (p%)ken are bounded. Thus, we can extract convergent subsequences (p]
pi and p3 such that

pi +p5=0. (48)
On the other hand, using [13, lemma 3.1], we obtain
pi € 0f (). (49)

Furthermore, since limy_, o, ¥ = #, we have limj_,, b* = 0 and thus limy_, ., ¢(a* +b*,b* +a*) +a* = 0, due to Assumption
3(ii) c. Using [13, lemma 3.1] and the fact that A* = limsup,_, ., A} one easily obtains

ps € —ATOV(7, 7).
Now, due to quazisymmetry Assumption 3 (ii) in the case a = 0 and x = y = Z, we have

ph € ANTOU (3, 7). (50)
Finally, (48), (49) and (50) together give

0€af(z) +AT0¥(z,7). (51)

The proof is then easily completed using Lemma 2.

6.4 Convergence

Convergence of Algorithm 2 is established using the properties of Algorithm 2.1 in [10], to which it is structurally very close,
and the preliminary properties established in the previous section. In order to adapt the study of [10] to our generalized
proximal bundle method, we make the following important observation.

The behavior of the method principally relies on the output of the linesearch (Procedure 1). In particular, in the case of
descent steps, the linesearch procedure gives

F@*) = F ) = A > mptpo®.
Due to positivity of ¥, we obtain
f@") = f*h) > mptrot, (52)

This last equation corresponds exactly to the output given by Algorithm 2.1 of [10] in the descent case. On the other hand,
the case of a null step gives

F&@*) = F ) = MO (k") < mptgo”,
which is equivalent to
FAk (mka Cljk) - F)\k (wka ykJrl) < mRtRUk-

This corresponds exactly to the output of the linesearch procedure in Algorithm 2.1 of [10] when f(.) is replaced by Fy, (z¥,.).
Using these strong similarities between the two methods, we now establish convergence of our procedure. The first step is
study the linesearch procedure. In particular, we will need the following simple lemma.

Lemma 16 Let f; and fo be two weakly upper semismooth functions. Then fi + fo is also weakly upper semismooth.
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Proof The proof is an immediate consequence of the definition. Indeed, take p* € 8( fi+ f2)(a: + t*d). Then, we have
p* = py +p5 with

Pt € 0fi(z +t*d),
and

Py € 0fs(z + t*d).

Since fi; and f» are weakly upper semismooth, we have

td) —
lim inf(p, d) > lim sup fi(a +td) - fi (@)
k—o0 £10 ¢

and

’ td) —
lim inf (p%, d) > lim sup oo +td) = fo(2) .
k— o0 tlo t

Therefore, we easily obtain

likrninf(plf +pk,d) > limsup fi(z +td) + fo(z +ttd) — fi(@) — f2(2)
—00 £10

Recalling that the Lipschitz property is preserved by summation, this last equation proves the desired result.
Lemma 17 The linesearch (Procedure 1) terminates in a finite number of steps.

Proof: Due to Lemma 16 and Assumption 3(i), the function f(.) + A\ ¥(z*,.) is weakly upper semismooth. Therefore, the
proof of Theorem 4.1 (a) in [19] can be easily adapted to our linesearch procedure.

The following lemma due to Kiwiel [9] will be used in the proof of Theorem 3. In particular, given € > 0, this lemma
implies existence of a finite number of successive null steps without reset such that |d¥| < e.

Lemma 18 [9, 10] Let w* = 1|d*|? + o and assume t§ =0 and r¥ = 0. Then, there exists a constant C independent of k
such that

0 < wh <wh — (1 —mpg)?(w)?/8C2. (53)

We are now in a position to establish convergence of the generalized proximal bundle method. We first study the case of a
finite number of descent steps.

Lemma 19 Assume that f and U satisfy Assumptions 1, 2 and 3. Assume that f subdifferentially dominates \T¥ at every
point x* such that 0 € Of (z*) + AT OV (x*, z*) for some real number AT > 0. Assume in addition that limsup,_, . A\p < AT
and that iminfy, ..o Ax > A~ > 0 for some real number A\~ and for every k € N. Assume in addition that only a finite
number of descent step is taken and let ko denote the index of the last descent step. Then x* is a stationary point of f.

Proof: Using the same type of proof as in Lemma 3.4 of [10], we obtain that

lim p* =0 and lim o* =0.
k—o00 k—o00
Therefore, Lemma 15 implies the desired result.
The case of an infinite number of descent steps follows.

Lemma 20 Assume that f and U satisfy the assumptions in lemma 19. Assume that a infinite number of descent steps is
taken. Then, every accumulation point of (z*)ren is a minimizer of f.

Proof: Since the linesearch procedure 1 gives equation (52) in the case of a descent step, the sequence (f(z*))ren is nonde-
creasing. Furthermore, one can easily check that the proof of lemma 3.5 in [10] can also be adapted to our method. Therefore,
we obtain
lim p* =0 and lim a* =0.
k—o0 k—o0
Now, take any convergent subsequence from (z*).cy and let  denote its limit. Then, Lemma 15 implies the desired result.
Combining these two last lemmas, we obtain our convergence theorem for the generalized proximal bundle method 2.

Theorem 3 Let f and U satisfy the assumptions in lemma 19 Then, every accumulation point of (z*)ren defined by
Algorithm 2 is a minimizer of f.
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7 Numerical experiments

In this section, we illustrate the bundle implementation of Section 6 for a particular nonsmooth optimization problem arising
in adaptive digital signal processing for channel equalization. This problem is formulated as follows

i h = 1—|aTz|P|. 4
;relg;f(m), where f(z) ;I la; z|”| (54)

for a given set of n—dimensional vectors (a;)1<i<n. For odd p or g, the function is nondifferentiable. A popular algorithm for
implementing (54) is the well known constant modulus algorithm (CMA) [6, 30, 27]. The objective function has the shape
represented in Figure 1, for the casen =1, p =2, ¢ = 1.

Numerical experiments were performed in order to compare the computational properties of the three following regular-
ization functions.

1
Uy (x,y) = §|m —y|> (Moreau-Yosida),
n

Uy(z,y) = Z |z; — yi| (I1 norm)

i=1

n
3(2,y) = Zlog(l + |zi — vil),

i=1

These three functions offer smooth convex, nonsmooth convex and nonsmooth nonconvex alternatives; see Figures 2, 3 and
4.

We will compare the three regularizations on the basis of the number of iterations required, the number of function/subgradient
calls and the computed minimum value of the objective function. The algorithms were run over a range of the relaxation
parameters Ay = A which we kept constant along iterations. The parameters of the regularized bundle method are set as
in Table 1. Our results are reported in Table 2. The symbols it, f* and nb denote, respectively, the minimum number of
iterations N necessary to achieve f(z") < €, and the total number of function/subgradient calls.

The table clearly demonstrates that the use of nonsmooth regularization functions is competitive with the standard
Moreau-Yosida regularization. Moreover, the best candidate often appears to be one of the nonsmooth regularizations ¥,
and V3 with regard to the number of function/subgradient calls and the number of iterations required for the algorithm to
terminate.

Algorithmic refinements of the basic regularized bundle method proposed in this paper will be investigated in future work.
Notice that the theoretical results demonstrated in Section 6 may apply to more sophisticated approaches recently developed
for the standard Moreau-Yosida regularization, including trust region techniques [13] and second order methods [16] in the
case of convex objective and regularization functions.

8 Conclusion

This paper developed a convergence analysis for the proximal point algorithm with general regularization functions. Strong
convergence results were obtained without any assumption on differentiability nor convexity of the regularization. A sufficient
condition, denoted “subdifferential domination”, on the regularization was defined in order for the method to converge toward
a stationary point. Similar convergence results were given for regularized bundle implementations of the proximal method.
The resulting bundle algorithms enjoys additional degrees of freedom when compared to the standard procedures, since many
types of regularization may be easily implemented in the procedure. Numerical experiments demonstrate that nonconvex
and even nonsmooth regularizations are competitive with the standard Moreau-Yosida regularization.

References

[1] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM Review,
38(3):367-426, 1996.

[2] A. Bihain. Optimization of upper semidifferentiable functions. Journal of Optimization Theory and Applications,
44:545-568, 1984.

[3] J. F. Bonnans, J.-Ch. Gilbert, C. Lemaréchal, and C. Sagastizabal. Optimization numérique. Aspects théoriques et
pratiques, volume 27. Springer Verlag, 1997. Series : Mathématiques et Applications.



Chretien and Hero, “Generalized proximal methods . ..

[4]
[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

” 22

F. H. Clarke. Optimization and nonsmooth analysis. Wiley-Interscience, 1983.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood for incomplete data via the EM algorithm (with
discussion). Journal of the Royal Statistical Society, 39:1-38, 1977.

M. Godard. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. [EEE
Trans. Commun., 28:1867-1875, 1980.

J. B. Hirriart Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I-II. Springer Verlag, 1993.
Grundlehren der mathematischen Wissenschaften 306.

A. N. Tusem, B. Svaiter, and M. Teboulle. Entropy-like proximal methods in convex programming. Mathematics of
Operations Research, 19:790-814, 1994.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming,
27:320-341, 1983.

K. C. Kiwiel. A linearization algorithm for nonsmooth minimization. Mathematics of Operations Research, 10(2):185—
194, 1985.

K. C. Kiwiel. A method of linearization for linearly constrained nonconvex nonsmooth minimization. Mathematical
Programming, 34:175-187, 1986.

K. C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Program-
ming, 46:105-122, 1990.

K. C. Kiwiel. Restricted step and Levenberg-Marquard techniques in proximal bundle methods for nonconvex nondif-
ferentiable optimization. STAM Journal on Optimization, 6(1):227-249, 1996.

C. Lemarechal. An extention of Davidon methods to nondifferentiable problems. Mathematical Programming Study,
3:145-173, 1975. M. Balinski and P. Wolfe, Eds.

C. Lemarechal and C. Sagastizabal. A class of variable metric bundle methods. Research Report INRIA 2128, 1993.

C. Lemarechal and C. Sagastizabal. Practical aspects of the moreau yosida regularization: Theoretical prelimiaries.
SIAM Journal on Optimization, 7(2):867-895, 1997.

C. Lemarechal, J. J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth optimization. Nonlinear Program-
ming, 4:245-281, 1981. O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Eds.

B. Martinet. Régularisation d’inéquation variationnelles par approximations successives. Revue Francaise d’Informatique
et de Recherche Operationnelle, 3:154-179, 1970.

R. Mifflin. An algorithm for constrained optimization with semismooth functions. Mathematics of Operations Research,
2:191-207, 1977.

R. Mifflin. A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. nondifferential and
variational techniques in optimization. Mathematical Programming Study, 17:77-90, 1982. D.C. Sorensen and R.-J.B.
Wets, Eds.

M. Nikolova. Estimées localement fortement homogenes. Comptes Rendus de I’Académie des Sciences, Paris, Série I,
325:665-670, 1997.

M. Nikolova. Local strong homogeneity using a regularized estimator. Internal Report, UFR Mathématiques et Infor-
matiques, Université René Descartes, Paris 5, 1997.

A. M. Ostrowski. Solution of equations and systems of equations. Academic, New York, 1966.

R. T. Rockafellar. Augmented lagragians and application of the proximal point algorithm in convex programming.
Mathematics of Operations Research, 1:96-116, 1976.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization,
14:877-898, 1976.

H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, conver-
gence analysis, numerical results. SIAM Journal on Optimization, 2(1):121-152, 1992.



Chretien and Hero, “Generalized proximal methods ... ” 23
[27] O. Tanrikulu, A. G. Constantinides, and J. A. Chambers. New normalized constant modulus algorithms with relaxation.
IEEE Sig. Proc. Letters, 4(9):256-258, 1997.

[28] M. Teboulle. Entropic proximal mappings with application to nonlinear programming. Mathematics of Operations
Research, 17:670-690, 1992.

[29] M. Teboulle. Convergence of proximal-like algorithms. SIAM Journal on Optimization, 7:1069-1083, 1997.

[30] J. R. Treichler and M. G. Larimore. New processing techniques based on the constant modulus adaptive algorithm.
IEEE Trans. ASSP, 33:420-431, 1985.

[31] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable funtions. Mathematical Programming
Study, 3:145-173, 1975. M. Balinski and P. Wolfe, Eds.



Chretien and Hero, “Generalized proximal methods ... ”

Table 1: Parameters of the regularized bundle algorithm

n | 2

p| 2

q |1

€s | 1075
mr, 1
mpg .3
Ma .15

Kk | .8

Figure 1: The objective f and its derivative f'.

Figure 2: Moreau-Yosida regularization ¥,
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”

Figure 3: l; norm regularization ¥,

Table 2: Numerical results for the three regularizations

T, s T3

X | it I nb | it 7 nb | it I nb
05 | 155 0.0001 278 | 183 0.0000 353 | 203 0.0000 347
15 | 198 0.0000 314 | 96 0.0002 180 | 90 _ 0.0000 164
20 | 220 0.0005 360 | 73  0.0000 137 | 121  0.0000 227
25 | 182 0.0002 336 | 102 0.0000 194 | 145 0.0000 280
30 | 138 0.0002 257 | 90  0.0000 172 | 79 _ 0.0001 149
35 | 79 0.0003 141 | 124 0.0000 245 | 88  0.0001 166
40 | 136 0.0002 208 | 136 0.0000 267 | 118 0.0000 229
45 | 148 00014 287 | 112 0.0000 219 | 78  0.0000 148
50 | 74 0.0004 139 | 129 0.0000 254 | 147 0.0000 288
55 | 83 0.0000 154 | 115 0.0000 222 | 84  0.000L 161
60 | 99 0.0008 186 | 65  0.0000 127 | 75 _ 0.0000 147
65 | 123 0.0003 267 | 96 0.0000 186 | 96 0.0000 186
770 | 165 0.0005 269 | 84  0.0000 163 | 66  0.0000 127
75 | 106 0.0001 203 | 102 0.0000 199 | 58  0.0000 108
80 | 82 0.0000 158 | 74  0.0000 145 | 101 0.0000 210
85 | 95  0.0003 179 | 66 0.000L 129 | 67  0.0001 129
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