
Generalized Proximal Point Algorithms and Bundle Implementations

St�ephane Chr�etien and Alfred O. Hero

COMMUNICATIONS & SIGNAL PROCESSING LABORATORY

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

Technical Report No. 316, Aug. 1998

ABSTRACT

In this paper, we present a study of the proximal point algorithm using very general regularizations for minimizing
possibly nondi�erentiable and nonconvex locally Lipschitz functions. We deduce from the proximal point scheme simple and
implementable bundle methods for the convex and nonconvex cases. The originality of our bundle method is that the bundle
information incorporates the subgradients of both the objective and the regularization function. The resulting method opens
up a broad class of regularizations which are not restricted to quadratic, convex or even di�erentiable functions.
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1 Introduction

In this paper, we address the problem of minimizing a locally Lipschitz possibly nondi�erentiable and nonconvex function
f(x) on Rn , i.e.

min
x2Rn

f(x): (1)

One of the most widely studied methods for solving nondi�erentiable optimization problems is the bundle method �rst
proposed by Lemarechal [14] and Wolfe [31] for convex minimization and further developed by Mi�in [19, 20] and Kiwiel
[10, 11, 13] for the nonconvex case; see also [2], [17], [26] and the references therein. The bundle method can be interpreted as
a cutting plane algorithm stabilized by a quadratic penalty or regularization. In its simplest form, for f convex, the bundle
method generates a sequence of iterates, starting from x1 and de�ned by

xk+1 = argminx2Rnff̂(x) +
�

2
jxk � xj2g: (2)

where

f̂(x) = max
j2Jk

ff(yj) + hg(yj); x� yjig

is a piecewise linear approximation called the cutting plane model, yj , j 2 Jk are some points in a neighborhood of the
current iterate xk and g(y) is a subgradient of f at the point y. In the case where f is nonconvex, the following polyhedral
approximation is usually chosen, as in [10, 11, 13],

f̂(x) = f(xk) + max
j2Jk

f��kj + hg(yj); x� xki; j 2 Jkg; (3)

where

�kj = �(xk ; yj)

�(x; y) = jf(x) � f(y)� hg(y); xk � yij:

One fruitful interpretation of the bundle method is to consider iteration (2) as an implementable approximation of the well

known proximal point algorithm using a cutting plane model f̂ of the objective function. In the original form [18, 25], the
proximal point algorithm is de�ned by the reccurence

xk+1 = argminy2Rnff(y) +
�k
2
jx� yj2g:

where (�k)k2N is a sequence of positive relaxation parameters. The proximal point algorithm and the bundle method
share the same property of solving a sequence of minimization subproblems incorporating a quadratic penalty, also denoted
Moreau-Yosida regularization [16].
In this paper, we address the study of the proximal point algorithm and its bundle implementations using very general

nonquadratic penalty functions. In particular, we establish convergence for a class of locally Lipschitz regularizations without
any convexity nor di�erentiability assumptions. The utility of such nonquadratic regularization is motivated by the following
examples.

Example 1 (EM-type algorithms for maximum likelihood estimation) We show here that the case of Kullback reg-
ularization results in a proximal point method which is a generalization of the well known Expectation Maximization (EM)
algorithm for maximum likelihood estimation [5]. Consider as in [5] the sample spaces 
1 and 
2 on which one de�ned
the random variables V1 and V2 with respective probability densities p1(v1;x) and p2(v2;x), both indexed by an unknown
parameter x 2 R

n to be estimated. Assume that V2 is obtained from V1 through a many-to-one mapping V1 ! V2 = h(V1)

and de�ne p(v1 j v2;x) =
p1(v1;x)
p2(v2;x)

the density of V1 conditioned on V2 = v2. Then, the Kullback information measure between

p(v1 j v2;x) and p(v1 j v2; y) for two parameter values x and y takes the following form

I(x; y j v2) =

Z
fh�1(v2)g

log
�p(v1 j v2; y)
p(v1 j v2;x)

�
p(v1 j v2; y)dv1 (4)

Now, consider the following proximal point algorithm for maximizing the likelihood function f(x) = log p2(v2;x).

xk+1 = argminy2Rnf� log p2(v2; y) + �kI(x
k ; y j v2)g: (5)
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Using the facts that

p(v1 j v2; y) =
p(v1; y)

p(v2; y)

and Z
p(v1 j v2; y)dv1 = 1

it can be shown that (5) takes the equivalent form

xk+1 =argmaxy2Rn
n
� (1� �k) log p2(v2; y) (6)

+ �kE[log p1(v1; y) j V2 = v2;x
k]
o

where E[log p1(v1; y) j V2 = v2;x
k] =

R
log p1(v1; y)p(v1 j v2;xk)dv1 denotes conditional expectation. When �k = 1,

recursion (6) is identical to the EM algorithm introduced in [5] where V2 is the incomplete data and V1 is the complete data.
Furthermore, as implied by Lemma 4.1 below the recursion (6) monotonically increases the log-likelihood log p2(v2; y) as
does the standard EM algorithm of [5]. A special case of (5) is the case of Laplacian data,

p2(v2;x) =
x

2
exp(�xjv2j); x � 0:

When the complete data V1 is also chosen as Laplacian, it is easy to show that the Kullback regularization given by (4) is
nonsmooth and nonconvex.

Example 2 (Methods of multipliers) In [24] Rockafellar shows that the proximal point approach can be applied to the
dual of a constrained optimization problem to yield interesting classes of multiplier methods. Subsequent studies [28, 29, 8]
have demonstrated the bene�t of using nonquadratic regularization functions. Among the possible choices for regularization
functions proposed in [28] is the ��divergence

d�(x; x
0) =

nX
j=1

xj�(
x0j
xj
):

where, in [28], � was assumed strictly convex. In particular, consider the convex program

min
x2Rn

f(x) subject to gi(x) � 0; i 2 f1; : : : ;mg (7)

where f and g1; : : : ; gm are convex functions. The proximal point algorithm applied to the dual takes the form (see [8,
section 6])

p0 2 Rm+

pk+1 = argmaxp�0fc(p)� �kd�(p
k; p)g

with c(p) being the dual functional de�ned by infx2RnL(x; p) where L(x; p) is the Lagrangian

L(x; p) =

(
f(x) +

Pm

i=1 pigi(x) if pi � 0; 8i 2 f1; : : : ;mg

�1 otherwise

Thus, one obtains convergence of (xk)k2N and (pk)k2N to the solution of problem (7) (for instance, see [8]). Using di�erent
choices for the function �, some well known multiplier methods can be recovered. Our generalization of � to nonconvex
functions opens up many new possibilities.

Further examples of nonsmooth and nonconvex regularizations have also recently been studied in the context of inverse
problems in [21] and [22].
The outline of the paper is the following. In Section 2 the generalized proximal point algorithm is introduced for a wide

class of possible regularizations. In Section 3, the �xed points of the method are studied. In particular an analysis of
nondi�erentiable nonconvex regularization is provided which seems to have no precedent in the literature. In Section 4,
global convergence of the method is established. We then demonstrate local convergence when f is strictly convex in an open
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neighborhood of an accumulation point of the minimizing sequence. In sections 5 and 6, we turn to implementable bundle
methods for approximation of the generalized proximal point iterations. The case of convex function is discussed �rst in
Section 5 for the sake of clarity in the exposition. Then, algorithmic re�nements, including a linesearch, are introduced in
section 6 in order to accomodate the nonconvex case.
We recall the following notations and de�nitions [4]. The inner product on R

n is denoted by h:; :i and the associated
norm is j:j. The convex hull of a set S is denoted conv(S). The function f : Rn ! R is locally Lipschitz if for any bounded
set B � R

n there exists a constant L < 1 such that jf(x) � f(y)j � Ljx � yj 8x; y 2 B. The e�ective domain of f is
Cf = fx j f(x) <1g. The generalized derivative of f at x in the direction of d is

f 0(x; d) = lim sup
h!0
t#0

f(x+ h+ td)� f(x)

t

The subdi�erential of f at x is the set

@f(x) = convf lim
xi!x

rf(xi) j rf(xi) existsg;

Where rf denotes the gradient of f . The subdi�erential has the property that it is a closed and convex set. An equivalent
de�nition of @f(x) which will be useful is

@f(x) = fg 2 Rn j hg; di � f 0(x; d) 8d 2 Rng: (8)

The multivalued function x 7! @f(x) is upper semicontinuous and locally bounded. Notice that if a point x is a local
minimum of the function f we have f 0(x; d) � 0 for all d. In this case, following the second de�nition (8) of the subdi�erential,
0 2 @f(x). More generally, we say that x is a stationary point for f if 0 2 @f(x). For convex functions f(x) the subdi�erential
is equivalently de�ned by

@f(x) = fg 2 Rn j hg; y � xi � f(y)� f(x) 8y 2 Rng: (9)

An extention of the subdi�erential, called the �-subdi�erential, can be de�ned for convex function as follows

@�f(x) = fg 2 Rn j f(y) � f(x) + hg; y � xi � � 8y 2 Rng: (10)

In the nonconvex case, we will need to introduce another type of approximate subdi�erential called the Goldstein �-
subdi�erential. For any x 2 Rn and any � � 0 the Goldstein �-subdi�erential [10] of f at x is the set

@�f(x) = convf@f(y) j jy � xj � �g:

The multivalued function (x; �) 7! @�f(x) is locally bounded and upper semicontinuous, i.e., xk ! x, �k ! �, pk 2 @�kf(x
k)

and pk ! p imply p 2 @�f(x). We will also need the notion of weak upper semismoothness introduced by Mi�in [19]. A
function f : Rn ! R is said to be weakly upper semismooth at x 2 Rn if
a. f is Lipschitz on a ball about x and
b. for each d 2 R

n and for any sequences ftkg � R+ and fgkg � R
n such that ftkg # 0 and gk 2 @f(x + tkd) it follows

that

lim inf
k!1

hgk; di � lim sup
t#0

f(x+ td)� f(x)

t
:

Finally, for any function F (x; x0) satisfying the local Lipschitz property in x0, we will use the notation @F (x; x0) for the
subdi�erential in the second variable at x0.

2 Generalized Proximal Point Algorithms

In what follows, the regularization function is denoted 	(:; :). We �rst state some assumptions on the objective function f
and the regularization function 	.

Assumptions 1 (Objective function) (i) f is inf-compact, i.e. the ��level sets Lf (�) = fx 2 R
n j f(x) � �g are

bounded for any � 2 R
(ii) f is locally lipschitz over Rn .

Notice that Assumptions 1 (i) and (ii) together imply that f is bounded from below.
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Assumptions 2 (Regularization function) (i) (Positivity) 	(x; y) � 0 for all x, y 2 Rn .
(ii) (Identi�ability) 	(x; y) = 0, x = y.
(iii) 	(x; y) is locally lipschitz over Rn � R

n .
(iv) The e�ective domain C�(x;:) = R

n for any x 2 Rn .

A usefull property of the regularizing function 	 is now given

Lemma 1 Assume that 	(x; y) satis�es Assumptions 2. Then,

@	(x; x) = f0g;

for all x in R
n .

Proof: Fix x in Rn . Due to Assumptions 2, 	(x; y) > 	(x; x) for all y in Rn . Therefore, the �rst order optimality condition
gives

0 2 @	(x; x);

as desired.
We now de�ne the generalized proximal point algorithm

De�nition 1 Assume that f and 	(:; :) satisfy assumptions 1 and 2 respectively. Then, the generalized proximal point
algorithm is de�ned by the following recursion starting at x1

xk+1 2 argminy2Rnff(y) + �k	(x
k; y)g: (11)

The following result proves that recursion (11) de�nition is well de�ned.

Proposition 1 The set of minimizers of (11) is nonempty for any xk in R
n .

Proof: This result is a straightforward consequence of Assumptions 1 and 2. Indeed, the function f(x) + �k	(x
0; x) inherits

the inf-compactness and local Liptschitz properties of f and 	 and thus possesses at least one bounded minimizer.
Notice that, due to nonconvexity of the functions involved, the minimum in (11) may not be unique. In such cases, xk+1

in (11) can be arbitrarily chosen among the set of minimizers of (11).
For the sake of notational convenience, in the remainder of this paper, the regularized objective function with relaxation

parameter t will be denoted

Ft(x; y) = f(y) + t	(x; y) (12)

and the generalized proximal operator will be de�ned by

Pt(x) = argminy2RnFt(x; y):

3 Optimality for nonsmooth regularization

We �rst investigate theoretical diÆculties concerning optimality conditions for nonsmooth regularization. Indeed the problem
which one encounters in nonsmooth situations is that a stationary point of the regularized objective function is not in general
a stationary point of the unregularized objective function itself. Thus, it is important to establish suÆcient conditions which
guarantee that stationary points of the objective function coincide with those of the regularized problem. For that purpose, we
introduce the condition of subdi�erential domination. Under this condition, we show that the �xed points of the generalized
proximal point mapping are locally optimal.

3.1 Fixed points and nonsmooth regularization

Consider the regularized function (12) where, with no loss of generality, � is set to 1, i.e.

F (x; y) , F1(x; y) = f(y) + 	(x; y);

and the associated proximal operator

P (x) = argminy2RnF (x; y):
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The success of the proximal point approach relies on the condition that �xed points of P also be stationary points of f . In
the case where 	 is quadratic, say 	(x; y) = 1

2 jx � yj2, this property is well known and straightforward. In the case of the
general possibly nonconvex regularization considered in this paper, we only have

x� = argminy2RnF (x
�; y);

which is equivalent to

0 2 @F (x�; x�): (13)

Using the calculus of subdi�erentials, we have

@F (x; y) � @f(y) + @	(x; y);

and thus, (13) implies

0 2 @F (x�; x�) � @f(x�) + @	(x�; x�) (14)

Hence, consistence of the generalized proximal point approach reduces to the question of knowing in which circumstances a
point x� satisfying (14) is a stationary point of f .
In the case where 	(x�; y) is smooth in the second variable, e.g. 	(x�; y) = jx� � yj2, then @	(x�; x�) reduces to f0g,

and we deduce from (14) that 0 2 @f(x�) which proves that x� is a stationary point of the objective function. For 	(x�; y)
nonsmooth in the second variable, x� is no longer guaranteed to be a stationary point of f . To illustrate, consider the
following one dimensional example,

f(y) =

(
x� � y; if y � x�

1
2 (x

� � y); if y > x�

	(x�; y) = jx� � yj:

We then have @f(x�) = [�1;� 1
2 ] and @	(x�; x�) = [�1; 1]. On the other hand, @F (x�; x�) = [�2; 12 ]. Thus, in this case, we

have 0 2 @F (x�; x�) whereas x� is not a stationary point of f (indeed, f has no stationary point).

3.2 Subdi�erential domination

The reason that condition (14) fails in the latter example is that the subdi�erential of the regularization 	 is \bigger" than
the subdi�erential of the objective f . To overcome this diÆculty, we will impose that the objective have \greater" variation
than the regularization. The following de�nition makes precise the idea of \greater" variation.

De�nition 2 Let f1 and f2 be locally Lipschitzian functions. The function f1 subdi�erentially dominates f2 at the point x
if

jf 01(x; d)j > jf 02(x; d)j 8d 2 Rn : (15)

An important consequence is that if f1 subdi�erentially dominates f2 at x, then f1 subdi�erentially dominates tf2 for any
t satisfying 0 � t � 1 at x. The following lemma establishes that the conditions given by (14) specify a stationary point of
the objective function under the subdi�erential domination hypothesis.

Lemma 2 Let F (x; y) = f(y)+	(x; y) and assume the existence of a point x� satisfying the following stationarity condition

0 2 @f(x�) + @	(x�; x�); (16)

with 	 satisfying Assumptions 2. If f subdi�erentially dominates 	(x�; :) at x�, then x� is a stationary point of f .

Proof: For simplicity denote 	(x�; y) by 	x�(y). Since 0 2 @	x�(x
�), due to Lemma 1, we have 	0

x�(x
�; d) � 0 for all d 2 Rn .

Due to the �rst equation in (16), we deduce the existence of two vectors g1 and g2 such that

g1 + g2 = 0;

g1 2 @f(x�);

g2 2 @	x�(x
�);
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and thus

hg1; di+ hg2; di = 0;

for all d 2 Rn . Since, by de�nition, f 0(x; d) � hg1; di and 	x�(x
�; d) � hg2; di, we have f 0(x�; d) + 	0

x�(x
�; d) � 0. Thus, we

obtain

f 0(x�; d) � �	0
x�(x

�; d): (17)

We now proceed by contradiction. Suppose that f 0(x�; d) < 0 for some d 2 R
n . In this case, as 	0

x�(x
�; d) � 0, equation

(17) implies

jf 0(x�; d)j � j	0
x�(x

�; d)j:

Since this last equation contradicts the domination assumption, we deduce that f 0(x�; d) � 0 for all d 2 R
n . Using the

(second) de�nition (8) of the subdi�erential, we conclude that 0 2 @f(x�).
With this result in hand, we are now ready to discuss the case of the generalized proximal point operator. Using Lemma

2 we �rst deduce the optimality of the �xed points of the generalized proximal point mapping Pt with relaxation parameter
t � 0 in the following straightforward lemma.

Lemma 3 Assume that f(x) subdi�erentially dominates t	(x; x) at each �xed point x� of the generalized proximal mapping
Pt with relaxation parameter t � 0. Then any �xed point x� of Pt is a stationary point of f(x).

A last question of computational importance remains to be discussed. In real life situations, one may not know whether
a given regularization is subdi�erentially dominated by the function to be minimized. This problem is easily overcome by
forcing the relaxation parameter t towards zero in the generalized proximal point operator Pt. Indeed, the de�nition of
subdi�erential domination and Lemma 3 prescribe that

jf 0(x�; d)j > tj	0
x�(x

�; d)j; 8d 2 Rn ;

where, as above, x� is a �xed point of Pt and 	0
x�(x

�; d) is the directional derivative of 	(x�; :) in the direction of d at x�.
Therefore, one easily checks that, given f and 	, it is suÆcient to take a small enough relaxation parameter t to guarantee
(3.2). As a consequence, we may conclude that a safe strategy, when performing the generalized proximal point algorithm
with a nonsmooth regularization, is to take a sequence of relaxation parameters t = �k indexed by iteration k converging
towards a suÆciently small value1.

4 Convergence analysis

In this section, we give an asymptotic analysis of the generalized proximal point algorithm which does not require di�erentia-
bility nor convexity assumptions. A Lyapunov method is the guideline of the proof where the Lyapunov function is simply
the objective f(x). We show that the accumulation points of the sequence de�ned by (11) are locally optimal. Under a strict
local convexity assumption convergence is established.

4.1 Main results

We start with the following monotonicity result.

Lemma 4 Let f and 	 satisfy Assumptions 1 and 2. For any iteration k > 1, the sequence (xk)k2N satis�es

f(xk+1)� f(xk) � ��k	(x
k; xk+1) � 0: (18)

Proof: Iteration (11) implies that f(xk+1) + �k	(x
k; xk+1) � f(xk) + �k	(x

k; xk). Recall that 	(xk; xk) = 0 due to
identi�ability assumption 2 (ii) and 	(xk; xk+1) � 0 by positivity assumption 2 (i). Thus (18) follows.
We next deduce the following important property which is sometimes referred to as \asymptotic regularity"[1].

Lemma 5 Assume that there exists a real number � such that �k � � > 0. Then, the sequence of iterates (xk)k2N satis�es
limk!1 jxk � xk+1j = 0.

1We will require nevertheless that (�k)k2Ndoes not vanish to push through our convergence analysis
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Proof: By lemma 4, (f(xk))k2N is decreasing and thus the fact that f is bounded from below implies that (f(xk))k2N converges.
Thus, the left hand side of (18) tends towards zero and since �k � � > 0, for all k, we have limk!1	(xk; xk+1) = 0.
We now prove that limk!1 jxk � xk+1j = 0 by contradiction. Assume that there exits a subsequence (x�(k))k2N such

that jx�(k) � x�(k)+1j � 3� for some � > 0 and for all large k. The fact that (f(x)�(k))k2N � f(x1) implies that (x�(k))k2N
is bounded due to the inf-compactness assumption 1 (ii). Since (x�(k))k2N is bounded, one can extract a convergent
subsequence, and thus, we may assume without any loss of generality that (x�(k))k2N is convergent with limit x0. Using
the triangle inequality, we have jx�(k) � x0j+ jx0 � x�(k)+1j � 3�. Since (x�(k))k2N converges to x0, there exists a integer K
such that k � K implies jx�(k) � x0j � �. Thus for k � K we have jx0 � x�(k)+1j � 2�. Now extract from (x�(k)+1)k�K a
convergent subsequence (x�((k))+1)k�K with limit x00. Then, using the same arguments as above, we obtain jx0 � x00j � �.
Finally, recall that limk!1	(xk; xk+1) = 0. We thus have limk!1	(x�((k)); x�((k))+1) = 0, and, due to the fact that the
sequences are bounded and 	(:; :) is locally Lipschitz (and therefore continuous in both variables), we have 	(x0; x00) = 0.
Thus assumption 2 (ii) implies that jx0 � x00j = 0 and we obtain a contradiction. Hence, limk!1 jxk � xk+1j = 0 as claimed.
We are now ready to establish our global convergence theorem.

Theorem 1 Assume that the sequence (�k)k2N is bounded and satis�es �k � � > 0, 8k 2 N for a given �. De�ne
�+ = lim supk!1 �k. If f subdi�erentially dominates �+	(x�; :) at any �xed point x� of the operator P�+ , then every
accumulation point of the sequence (xk)k2N is a stationary point of f(x).

Proof: Take a convergent subsequence (x�(k))k2N of (xk)k2N with limit point x�. Lemma 5 implies that (x�(k)+1)k2N
also converges to x�. In accordance with Lemma 3, we need to prove the existence of a real �+ � t � 0, such that
Ft(x

�; x�) � Ft(x
�; x) for all x 2 Rn . In the following, we prove that this result holds with t = �+. By de�nition of (xk)k2N,

F�k (x
�(k); x�(k)+1) � F�k (x

�(k); x) for all x 2 Rn . Therefore, for all x

F�+(x
�(k); x�(k)+1) + (�k � �+)	(x�(k); x�(k)+1)

� F�+(x
�(k); x) + (�k � �+)	(x�(k); x): (19)

Since limk!1	(x�(k); x�(k)+1) = 0, for any � > 0, there exits an integer K1 such that 	(x�(k); x�(k)+1) � � for all k � K1.
On the other hand, F�+ is continuous in both variables, due to the locally Lipschitz property. Fix x 2 Rn . By continuity in
the �rst and second arguments of F�+(:; :), respectively, we have for any � > 0 there exists K2 2 N such that for all k � K2

F�+(x
�; x) � F�+(x

�(k); x) � �; (20)

and

F�+(x
�; x�) � F�+(x

�(k); x�(k)+1) + 2�: (21)

Combining equations (20) and (21) with (4.1), we obtain

F�+(x
�; x�) � F�+(x

�; x) � (�+ � �k)(	(x
�(k); x)�	(x�(k); x�(k)+1)) + 3�:

Now, since �+ = lim supk!1 �k, there exists an integer K3 such that �+ � �k � �� for all k � K3. Then for all
k � maxfK1;K2;K3g, we easily obtain

F�+(x
�; x�) � F�+(x

�; x) + �	(x�(k); x)� �2 + 3�:

Since (x�(k))k2N is bounded, and due to Assumption 2(iv) and Assumption 2(iii), there exists an upper bound C such that
	(x�(k); x) � C for all k � maxfK1;K2;K3g. Thus, we have

F�+(x
�; x�) � F�+(x

�; x) + �C � �2 + 3�:

Since no assumption was made on x, this holds for any x 2 Rn . Thus, letting � tend to zero, we see that x� is a �xed point
of argminx2RnF�+(x

k; x). Furthermore, recall that f(x) subdi�erentially dominates �+	(x; x) at the point x�. Therefore,
Lemma 3 implies that x� is a stationary point of f(x).

4.2 Convergence to local minima under additional convexity assumptions

Let S� be the set of accumulation points of the sequence (xk)k2N. We �rst establish the following lemma

Lemma 6 Let f and 	 satisfy Assumptions 1 and 2. Then, for a given starting point x1, the set x� of accumulation points
of the sequence (xk)k2N is compact and connected.
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Proof: This result follows directly from the fact that limk!1 jxk+1 � xkj = 0 and from [23, Theorem 28.1].

Corollary 1 Suppose, in addition to the assumptions of Theorem 1, that f(x) is strictly convex in an open neighborhood N
of an accumulation point x� of (xk)k2N. Then the sequence (xk)k2N converges to a local minimizer of f(x).

Proof: We obtained in Theorem 1 that every accumulation point of (xk)k2N is a stationary point of f(x). Since f(x) is
strictly convex over N , the set of stationary points of f(x) belonging to N reduces to singleton. Thus x� is the unique
stationary point in N of f(x), and a fortiori, the unique accumulation point of (xk)k2N belonging to N . To complete the
proof, it remains to show that there is no accumulation point in the exterior of N . For that purpose, consider an open ball B
of center x� and radius � included in N . Then, x� is the unique accumulation point in B. Moreover, any accumulation point
x0, lying in the exterior of N must satisfy jx� � x0j � �, and we obtain a contradiction with the fact that S� is connected.
Thus every accumulation point lies in N , from which we conclude that x� is the only accumulation point of (xk)k2N or, in
other words, that (xk)k2N converges towards x�. Finally, notice that the strict convexity of f(x) over N implies that x� is a
local minimizer and the proof is completed.

5 Bundle implementations: the convex case

The study of the generalized proximal point algorithm gives an elegant framework for the exploration of a large class
of regularizations. In the two next sections, we use the bundle framework introduced by Lemar�echal [7] to make this
approach tractable in applications. The present section introduces the main ideas governing incorporation of nonquadratic
regularization functions into the bundle mechanism in the case where the functions are convex. More precisely we will require
that f(x) be convex and 	(x0; x) be convex with respect to x for every x0 in Rn . The case where the functions f and 	 are
only required to be locally Lipschitz will be discussed in the next section.

5.1 Background

Bundle methods have been widely recognized as a very eÆcient technique for minimization of nondi�erentiable functions.
They can be interpreted as implementations of stepwise approximations of the proximal point algorithm [16, 12]. However, to
our knowledge, bundle implementations of general nonquadratic regularizations have not been considered in the litterature.
This may be due to be fact that bundle methods are essentially sequential quadratic programs, which seems to exclude the
possibility of more general regularization functions.
The main idea behind application of bundle methods to nonquadratic proximal algorithms is the following. The generalized

proximal iteration is approximated using subgradient information with respect to f and 	 about the current iterate xk. Let
fyjgJk be a set of points in a neighborhood of xk, indexed by j 2 Jk. For any point y 2 R

n , let g(y) (resp. hk(y)) denote
an arbitrary subgradient in @f(y) (resp. @	(xk; y)). Hence, any point yj , j 2 Jk allows to de�ne approximate models

f̂j(x) = f(yj) + hg(yj); x� yji

and

	̂j(x
k ; x) = 	(xk; yj) + hhk(y

j); x� yji

of f and 	 respectively. To stabilize the model 	̂j(x
k ; x) a quadratic term 1

2 jx�x
kj2 is added and the following approximation

is obtained for the function F�k (x
k ; x) in the proximal point algorithm

F̂�k;j(x
k ; x) =f(yj) + hg(yj); x � yji+ �k

�
	(xk; yj) + hhk(y

j); x� yji

+
1

2
jx� xk j2

�
:

Note that convex functions are bounded from below by their local �rst order approximations and that the quadratic stabiliza-
tion term is independent from yj . Hence, the best approximation of F�k (x

k ; x) can be obtained by gathering the information
at each yj in the neighborhood of xk via the following max-function,

F̂�k (x
k ; x) =max

j2Jk
ff(yj) + hg(yj); x� yji+ �k

�
	(xk; yj) + hhk(y

j); x� yji

+
1

2
jx� xkj2g;
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Equivalently, F̂�k (x
k ; x) can be written

F̂�k (x
k ; x) = max

j2Jk
ff(xk)� �kj + hsk(yj); x� xkig+

1

2
�kjx� xkj2;

where �kj is the accumulated linearization error due to the fact that the subgradients are computed at the points yj instead

of xk, i.e.

�kj = f(xk)� f(yj)� hg(yj); xk � yji �	(xk; yj)� hhk(y
j); xk � yji; (22)

and s(yj) is the accumulated subgradient

sk(yj) = g(yj) + �khk(y
j):

With this model in hand, we are now ready to introduce the bundle mechanism. First, an approximate proximal step is
taken which de�nes a candidate for the next iterate,

yk+1 = argminx2RnF̂�k (x
k ; x); (23)

or, equivalently,

yk+1 = argminx2Rnmax
j2Jk

ff(xk)� �kj + hs(yj); x� xkig+
�k
2
jx� xkj2g:

The bundle approach is a strategy in order to decide wether the accumulated subgradient information at every point of the
set fyjg, j 2 Jk, is suÆciently accurate so that a reliable proximal step can be achieved, i.e. xk+1 = yk+1. It is well known
that iteration (23) may even not provide a descent step with regard to f if the subgradient information is innaccurate Hence,
a reasonable selection of candidates fyk+1g for a proximal step should be based on a test of descent in the objective function
f . In order to implement such a test, a parameter Æk is computed, representing the expected decrease given the model F̂�k ,

Æk = f(xk)� F̂�k (y
k+1; xk);

or equivalently

Æk = f(xk)�max
j2Jk

ff(xk)� �jk + hsk(yj); yk+1 � xkig �
�k
2
jyk+1 � xkj2:

The decrease obtained at yk+1 is then compared to a fraction m 2 (0; 1) of the expected decrease Æk, following the rule

� if f(xk)� f(yk+1) � mÆk, then a descent step is taken, i.e. xk+1 = yk+1,

� otherwise xk+1 = xk .

In either case, the subgradient information at yk+1 is collected and is incorporated to the polyhedral approximation of f
and 	 at iteration k + 1. In this manner the accuracy of the approximation F̂ (xk ; x) to f(x) + �k	(x

k; x) improves at each
iteration.

5.2 A generalized proximal bundle method

In this section, we present the details of our bundle implementation.

Algorithm 1 (Generalized Proximal Bundle Method for Convex Functions) Step 0 (Initialization) Choose a �-
nal accuracy parameter Æs > 0 and a parameter m 2 (0; 1). Choose the starting point x1 2 Rn . Set k = 1, y1 = x1, J1 = f1g,
g1 = g(y1), h1 = h1(y

1), s1 = g1 + h11 and �11 = 0.
Step 1 (Proximal step) Compute

yk+1 = argminx2Rnmax
j2Jk

�
f(xk)� �jk + hsj ; x� xkig+

�k
2
jx� xkj2

	
: (24)

Step 2 (Descent test) Set

Æk = f(xk)�max
j2Jk

ff(xk)� �jk + hsj ; yk+1 � xkig �
�k
2
jyk+1 � xk j2:
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� if f(xk)� f(yk+1) � mÆk, then set xk+1 = yk+1 (descent step),

� otherwise set xk+1 = xk (null step).

Step 3 (Stopping criterion) If Æk < Æs, then stop.
Step 4 (Variable updating) Set Jk+1 = Jk [ fk + 1g, choose �k+1, set g

k+1 = g(yk+1), hk+1 = hk+1(y
k+1), sk+1 =

gk+1 + �k+1h
k+1, set �jk+1 = �jk, for j 2 f1; : : : ; kg, �

k+1
k+1 = f(xk+1)� hsk+1; xk+1 � yk+1i. Finally, increase k by 1 and go

to Step 1.

We now establish some preliminary results concerning this algorithm. The following lemmas are standard in the analysis
of bundle methods. In particular, the following lemma expresses proximal step (24) in the form of a dual quadratic program:

Lemma 7 [3] Consider the constrained minimization problem

�u =argminu2Rk
n1
2
j
X
j2Jk

ujs
j j2 + �k

X
j2Jk

uj�
j
k

o
(25)

subject to (26)

u 2 �k =
�
z 2 (0; 1)k j

X
j2Jk

zj = 1
	
:

Then,

(i) yk+1 = xk �
1

�k

X
j2Jk

�ujs
j ; (27)

where yk+1 solves the proximal step (24) in Step 1 of Algorithm 1, and the polyhedral component �k(x) = maxj2Jkff(x
k)�

�jk + hsj ; x� yjig of F̂�k (x
k; x) satis�es

(ii) �k(y
k+1) = f(xk)�

1

�k

�� X
j2Jk

ujs
j
��2 � X

j2Jk

�uj�
j
k;

.

In the sequel, we adopt the notation

pk =
X
j2Jk

�ujs
j : (28)

We must also introduce another dual variable which plays an important role in the bundle method. For this purpose, notice
that the quadratic program given by (25) is equivalent to

�u =argminu2Rk
1

2

�� X
j2Jk

ujs
j
��2 (29)

subject to (30)

u 2 �kX
j2Jk

uj�j � �k; (31)

where �k in (25) is identi�ed with the Lagrange multiplier associated with the contraint (31). Using lemma 7 (ii), and the
de�nition of Æk in step 2 of Algorithm 1

f(xk)��(yk+1)�
�k
2
jyk+1 � xkj2 =

1

2�k

�� X
j2Jk

�ujs
j
��2 + X

j2Jk

�u�jk: (32)

Recalling that �u is solution to the quadratic program (29), we have

�k =
X
j2Jk

�uj�
j
k: (33)

Therefore (32) is equivalent to (see also [3])

Æk = �k +
1

2�k
jpkj2: (34)

With this result in hand, we obtain the following lemma.
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Lemma 8 Let pk be the direction de�ned by (28). Then,

pk 2 @�k
�
f(xk) + �k	(x

k; xk)
�
:

Proof: The polyhedral function �k(x) may be written

�k(x) = max
j2Jk

ff(yj) + hgj ; x� yji+ �k
�
	(xk; yj) + hhj ; x� yji

�
g:

Then, due to convexity, we have

f(x) � f(yj) + hgj ; x� yji

and

	(xk; x) � 	(xk; xk) + hhj ; x� yji:

Therefore,

f(x) + �k	(x
k; x) � �k(x): (35)

On the other hand, optimality in the proximal step (24) (Step 1 of Algorithm 1), gives

0 2 @�k(y
k+1) + �k(y

k+1 � xk):

Noticing that �k(y
k+1 � xk) = pk, we thus obtain that

pk = @�k(y
k+1):

Hence, using the subgradient inequality, we obtain

�k(x) � �k(y
k+1) + hpk; x� yk+1i: (36)

Recalling that, due to Lemma 7 (ii)

�k(y
k+1) = f(xk)�

1

�k
jpkj2 �

X
j2Jk

�uj�
j
k;

and combining this result with (36), (35) becomes

f(x) + �k	(x
k; x) � f(xk)�

1

�k
jpkj2 �

X
j2Jk

�uj�
j
k + hpk; x� yk+1i:

Since � 1
�k
jpkj2 = hpk; yk+1 � xki, we obtain

f(x) + �k	(x
k; x) � f(xk) + hpk; x� xki �

X
j2Jk

�uj�
j
k:

Furthermore, recalling that

�k =
X
j2Jk

�uj�
j
k;

and that 	(xk ; xk) = 0, we easily obtain

f(x) + �k	(x
k; x) � f(xk) + �k	(x

k; xk) + hpk; x� xki � �k;

which is equivalent to

pk 2 @�k
�
f(xk) + �k	(x

k; xk)
�
:

This last result shows in particular the well known fact that bundle methods may be interpreted as ��subgradient methods
(see [7]). The main feature of bundle methods is therefore the control of the parameter �k via (34) and the descent step/null
step strategy using the expected decrease Æk. We now discuss convergence of this method to a minimizer of f .
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5.3 Convergence

For the convex case, the proof of convergence of the generalized proximal bundle method is similar to the proof of convergence
of the standard form of bundle methods. In the sequel, K denotes the set of indices k where a descent step is taken. We
start with the following lemma.

Lemma 9 Consider the following convergent sequences, xk ! �x, yk ! �y, �k ! ��, �k ! �� and pk ! �d. Assume that

pk 2 @�k
�
f(yk) + �k	(x

k ; yk)
�

for all k 2 N. Then, �d 2 @��
�
f(�y) + ��	(�x; �y)

�
.

Proof: Fix y in Rn . The fact that pk 2 @�k
�
f(yk) + �k	(x

k ; yk)
�
implies that for �xed y

f(y) + �k	(x
k; y) � f(yk) + �k	(x

k ; yk) + hpk; y � yki � �k:

Therefore,

f(y) + �k	(x
k; y) �f(yk) + �k	(x

k ; �y) + �k
�
	(xk; yk)�	(xk; �y)

�
(37)

+ hpk; y � yki � �k:

Now, since 	k is assumed locally Lipschitz over Rn � R
n , and since (xk)k2N and (yk)k2N are bounded due to convergence,

there exists a constant C such that

j	(xk; yk)�	(xk; �y)j � C
q
jxk � xkj2 + jyk � �yj2 = Cjyk � �yj:

Therefore, as yk converges to �y

lim
k!1

	(xk; yk)�	(xk; �y) = 0:

Using a similar argument one easily deduces that 	(xk; y) converges to 	(�x; y) and that 	(xk; �y) converges to 	(�x; �y).
Furthermore, Assumption 1 (ii) implies (lower semi-) continuity of f and thus, passing to the limit in (37) gives

f(y) + ��	(�x; y) � f(�y) + ��	(�x; �y) + h �d; y � �yi � ��;

which proves the desired result.
We will also need a more technical result the proof of which can be found in [3].

Lemma 10 Let f and 	 satisfy assumptions 1 and 2. Let K be the set of indices where a descent step is taken. Let
f� = limk!1;k2K f(xk). Then

X
k2K

Æk �
f(x1)� f�

m
:

The following convergence analysis is divided into two parts. In the �rst part, we consider the case where an in�nite
number of descent steps are taken. Then, we will turn to the �nite case.

Lemma 11 Assume that f and 	 satisfy Assumptions 1 and 2. Assume that f subdi�erentially dominates �+	 at every
point x� such that 0 2 @f(x�) + �+@	(x�; x�) for some real number �+ > 0. Assume in addition that lim supk!1 �k � �+

and that lim infk!1 �k � �� > 0 for some real number �� and for all k in N. Finally, assume that an in�nite number of
descent steps is taken. Then, every accumulation point of (xk)k2N is a minimizer of f .

Proof: Using (34), we obtain

1

2�k
jpkj2 = Æk � �k � Æk;

for all k 2 K. Hence, we haveX
k2K

jpkj2 � 2�k
X
k2K

Æk: (38)
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Recall that Assumption 1 implies that f is bounded from below. Thus, Lemma 10 implies that limk!1;k2K Æk = 0, and
therefore, (34) implies that limk!1;k2K �k = 0. The assumptions on the sequence (�k)k2N imply boundedness of �k and
thus, equation (38) givesX

k2K

jpkj2 < +1;

which proves that limk!1;k2K jpkj = 0. On the other hand, inf-compactness of f and the fact that (f(xk))k2K is strictly
decreasing imply that the sequence (xk)k2K is bounded. Now, take a convergent subsequence (x�(k))k2K and let �x be its
limit. Since (�k)k2K is bounded, a convergent subsequence can be taken, say (��((k)))k2K , tending towards ��. Then,
Lemma 8 and Lemma 9 together imply

0 2 @
�
f(�x) + ��	(�x; �x)

�
; and 0 2 @f(�x) + ��@	(�x; �x):

Finally, since every accumulation point �� satis�es �� � �+, subdi�erential domination and lemma 2 imply that 0 2 @f(�x).
Finally, convexity implies that �x is a minimizer of f is convex, which �nishes the proof.
We now discuss the case of a �nite number of descent steps.

Lemma 12 Let the functions f and 	 satisfy the assumptions in Lemma 11 Assume that only a �nite number of descent
steps is taken and let k0 denote the index of the last descent step. Then, xk0 is a minimizer of f .

Proof: The proof is easily adapted from [15]. The de�nition of Æk gives

f(xk)� Æk = max
j2Jk

ff(yj) + �k	(x
k; yj) + hsj ; yk+1 � yjig+

�k
2
jyk+1 � xkj2:

Take k � k0. Since x
k = xk0 for all k � k0, we obtain

f(yj) + �k	(x
k0 ; yj) + hsj ; yk+1 � yji+

�k
2
jyk+1 � xk0 j2 � f(xk0)� Æk; (39)

for all j in Jk. On the other hand, nondescent steps imply

f(xk)�mÆj � f(yj);

for k � j � k0. Thus, as f(x
k) = f(xk0) for k � k0, (39) gives

�k	(x
k0 ; yj) + hsj ; yk+1 � yji+

�k
2
jyk+1 � xk0 j2 � mÆj � Æk;

for k � j � k0, which implies, due to positivity of both 	 and the quadratic term, that

hsj ; yk+1 � yji � mÆj � Æk; (40)

for k � j � k0. The case j = k0 gives y
j = yk0 = xk0 , the last equality coming from the fact that k0 is the index of the last

descent step. Using this fact along with (39)

hsk0 ; yk+1 � xk0i+
�k
2
jyk+1 � xk0 j2 � �Æk � 0:

The left term of this last equation is a quadratic form in the variable yk+1, which cannot take negative values except on a
bounded neighborhood of xk0 . Hence, the sequence (yk)k2N is bounded. As a consequence, sj is also bounded, due to the
local boundedness property of the subgradients of f(:) and 	(xk0 ; :) and the boundedness of �k. On the other hand, due to
re�nement of the polyhedral approximation, and since �k = �k0 and xk = xk0 for k � k0,

F̂�k (x
k ; x) � F̂�k+1

(xk+1; x);

for all x in Rn , which proves that (Æk)k�k0 is decreasing and thus, has a limit. We now prove that this limit is zero. Indeed,
take a convergent subsequence (y�(k))k�k0 . Hence, for any j satisfying �(j) � k0, we have, using (40),

hs�(j); y�(j+1) � y�(j)i � mÆ�(j) � Æ�(j+1)�1:
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Since limj!1 jy�(j+1) � y�(j)j = 0 and due to boundedness of sj , we have

lim
j!1

mÆ�(j) � Æ�(j+1)�1 � 0: (41)

Recall that (Æk)k2N is convergent. Let �Æ be its limit. By continuity, (41) gives

(m� 1)�Æ � 0:

Since 0 < m < 1, and �Æ � 0 by positivity of Æk for all k 2 N, we have (m � 1)�Æ = 0 which implies �Æ = 0, as desired. Now
recall that

Æk = �k +
1

2�k
jpkj2;

to conclude, using lower and upper boundedness of �k, that limk!1 �k = 0 and limk!1 jpkj = 0. As in lemma 11, we
therefore obtain that

0 2 @
�
f(xk0 ) + ��	(xk0 ; xk0)

�
for every accumulation point �� of (�k)k2N. Since every accumulation point �� satis�es �� � �+, subdi�erential domination
gives

0 2 @f(xk0);

which proves optimality of xk0 since f is convex.
Combining these two lemmas yields the following convergence theorem for our bundle implementation of the generalized

proximal point algorithm for convex optimization.

Theorem 2 Let the functions f and 	 satisfy the assumptions in Lemma 11 Then, every accumulation point of (xk)k2N
de�ned by Algorithm 1 is a minimizer of f .

6 Bundle implementations: the nonconvex case

6.1 Preliminary comments

In this section, a bundle approach for implementing generalized proximal steps is developed for the case of nonconvex
functions. The main ideas remain the same as in the convex situation. Nevertheless, several modi�cations need to be
introduced in order to overcome the diÆculties associated with nonconvexity. The algorithmic structure used in the sequel is
similar to the one proposed by Kiwiel [10] and therefore inherits useful convergence properties. This allows us to concentrate
on the particular problems induced by the use of our generalized regularization. We �rst introduce the main characteristics
of the method.
One important property satis�ed in the convex case by the polyhedral approximations to f and 	 is that they are lower

approximations, i.e. they lie below the original functions f and 	. Therefore �jk in (22) is always positive. This property no

longer holds in the nonconvex case. Nevertheless, a similar property can be obtained when �jk is de�ned by

�jk = jf(xk)� f(yj)� hgj ; xk � yjij+ �kj	(x
k; yj) + hhj ; xk � yjij

with gj 2 @f(yj) and hj 2 @	(xk; yj) and recalling that 	(xk; xk) = 0. The approximate model is therefore written in the
same manner as in the convex case, i.e.

F̂�k (x
k ; x) = max

j2Jk
ff(x)� �kj + hsj ; x� xkig+

1

2
�kjx� xkj2;

using the new de�nition of �jk and where as before sj is de�ned by sj 2 gj + �kh
j and fyjgj2Jk is a collection of points in a

neighborhood of xk.
With this lower approximation in hand, an approximate proximal step is taken, yielding a precandidate for xk+1

zk+1 = argminz2Rnmax
j2Jk

ff(xk)� �jk + hsj ; x� xkig+
�k
2
jx� xkj2:
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Let dk denote the direction given by dk = zk+1 � xk or, in other words,

dk =
1

�k

X
j2Jk

�ujs
j ;

and let pk denote the convex combination of collected subgradients

pk =
X
j2Jk

�ujs
j :

In the following implementation, zk+1 does not directly provide a candidate for a descent step. Rather, a linesearch is
performed along the direction dk. The goal of this linesearch is twofold. Firstly, the linesearch provides a improvement of the
result obtained using only �rst order approximation of f and 	, and therefore re�nes the implementation given in section 5
for the convex case. Secondly, if the linesearch only leads to a null step, the linesearch provides a systematic re�nement of the
local subgradient information. Indeed, as discussed in [7] and[19], under some assumptions of weak upper semi-smothness,
a new candidate is obtained which satis�es

hsk+1; dki > 0

when a null step is taken.
The question of optimality is solved in the following manner. The main di�erence between the convex case and the

nonconvex case is the manner in which an approximate subdi�erential is generated. In the convex case, the same threshold
Æk was used to control both descent tests and the size of the �-subdi�erential (recall relation (33) and Lemma 8). In the
nonconvex case, the use of the Goldstein �-subdi�erential, based on the distance from past subgradients to the current
iterate, leads to a di�erent strategy. A locality measure ak is chosen for bounding from above the \size" of the Golstein
�-subdi�erentials. In Lemma 13 below, we show that pk belongs to the sum of Goldstein �-subdi�erentials at xk, whose size
is controled by ak. For this purpose, we introduce a property called quazi-symmetry. Quazi-symmetry is then added to the
assumptions on 	. Along the iterations, past subgradients are deleted from the bundle information when the distance from
the corresponding neighbor yj to the current iterate becomes excessive. More precisely, deletion occurs when

jpkj > maa
k;

where ma is a �xed parameter supplied to the algorithm. In other words, jpkj should not vanish faster than a fraction of the
locaty measure. Convergence of pk towards zero is obtained using the same type of proof as in [10] which implies convergence
of ak to zero.

6.2 A generalized proximal bundle method for nonconvex functions

In the sequel, at iteration k we will use the notation s(y) for any element of @f(y) + �k@	(x
k; y) and

�(x; y) = jf(x) � f(y)� �k	(x; y)� hs(y); x� yij

Algorithm 2 Step 0 (Initialization) Select the starting point x1 and a �nal accuracy tolerance �s > 0. Choose the line
search parameters mL and mR 2 (0; 1), m� 2 (0;mR), � 2 (0; 1) and a positive reset tolerance ma. Set the threshold stepsize
t1 = 1 and the reset indicator r1a = 1. Set J1 = f1g, y1 = x1, s1 = s(y1), and s11 = 0. Set the counters k = 1, l = 0 and
k(0) = 1.
Step 1 (Proximal step) Solve the following quadratic subproblem

�u = argmin
u2Rcard(Jk)f

1
2

���Pj2Jk ujs
j
���2 +P

j2Jk uj�
k
j g

subject to
uj � 0;

P
j2Jk uj = 1:

(42)

Set

pk = �
X
j2Jk

�ujs
j (43)

�k =
X
j2Jk

�uj�
j
k

vk = jpkj2 + �k
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If rka = 1, set ak = maxfskj j j 2 Jkg.

Step 2 (Stopping criterion) If maxfjdkj;maa
kg � �s, terminate. Otherwise go to Step 3.

Step 3 (Resetting test) If jdkj > maa
k then go to Step 5. Otherwise go to Step 4.

Step 4 (Resetting) (i) If rka = 0 then set rka = 1 and go to step 1.
(ii) If Jk 6= fk(l)g then delete from Jk one among the elements j with the largest skj > 0 and go to Step 1.

Step 5 (Linesearch) Compute two stepsizes tkL and tkR, t
k
L � tkR using procedure 1 below and such that the two corresponding

points xk+1 = xk + tkLd
k and yk+1 = xk + tkRd

k satisfy either

� f(xk)� f(xk+1)� �k	(x
k; xk+1) > mLtjvkj and(

tL = tR > tk or

�(xk ; xk+1) > m�jvkj;

(descent step)

or

� ��(xk+1; yk + 1) + hsk+1; dki � mRv
k, tkR � tk and tkL = 0, (null step)

with

sk+1 = g(yk+1) + �khk(y
k+1): (44)

Step 6 (Threshold stepsize updating) If tkL = 0, set tk+1 = �tk. Otherwise, set tk+1 = 1, k(l + 1) = k + 1 and increase l
by 1.
Step 7 (Updating) Update �k. Set

nk+1j = nkj + jxk+1 � xkj; (45)

nk+1k+1 = jxk+1 � yk+1j (46)

Jk+1 = Jk [ fk + 1g, calculate ak+1 = maxfak + jxk+1 � xkj; nk+1k+1g and set rka = 0.
Step 8 Increase k by 1 and go to Step 1.

We now describe the line search procedure.

Procedure 1 (Linesearch) (i) Set tL = 0, t = tU = 1 and m = (mR �m� +mL).
(ii) If f(xk)� f(xk + tdk)� �k	(x

k ; xt + tdk) > mtjvkj set tL = t. Otherwise set tU = t.
(iii) If f(xk)� f(xk + tdk)� �k	(x

k; xk + tdk) > mLtjvkj and either tL � tk or �(xk ; xk + tdk > m�jvkj, set tkL = tkR = t,
sk+1 = s(xk + tLd

k) and return.
(iv) If t < tk and

��(xk; xk + tdk) + hs(xk + tdk); dki � mRv
k;

set tkR = t, tkL = 0, sk+1 = s(xk + tRd
k) and return.

(v) Choose t = tL+tU
2 and go to (ii).

6.3 Intermediate results

The convergence analysis for Algorithm 2 will require the additional assumptions below.

Assumptions 3 (i) The functions f(y) and 	(x; y) are semi-smooth in the variable y for any x in R
n .

(ii) There exists a function q(:; :), R2+ 7! R+ satisfying
a. q(:; b) is increasing for all b 2 R+ and q(a; :) is increasing for all a 2 R+ ,
b. q(:; :) is continuous at the point (0; 0),
c. lim(a;b)!(0;0) q(a; b) = 0,

and such that if g 2 @a	(x; y), a � 0 then g 2 �@q(a;jx�yj)	(y; x).

We assume that the functions f and 	 satisfy assumptions 1, 2 and 3. We now prove two essential lemmas. The �rst one
establishes that pk belongs to certain Goldstein �-subdi�erentials at xk . The second lemma proves an important continuity
result at stationary points.
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Lemma 13 At any iteration k, de�ne �+k = supj2Jk �j . Fix a point x� in the level set fx j f(x) � f(x1)g and de�ne

bk = jxk � x�j. Then, under Assumptions 3, for any k 2 N, the direction pk de�ned in Step 1 of Algorithm 2 satis�es

pk 2 @a
k

f(xk)� �+k @
q(ak+bk;ak+bk)+ak	(x�; xk);

where ak is the locality measure de�ned in steps 1 and 6.

Proof: Using (44), we have for any j 2 Jk,

sj 2 @f(yj) + �j@	(x
j ; yj):

Therefore, using the fact that jxk � yj j � ak and the de�nition of the Goldstein ��subdi�erential

sj 2 @a
k

f(xk) + �j@
ak	(xj ; xk);

and

sj 2 @a
k

f(xk) + �j@
ak+bk	(xj ; x�):

Now, by assumption 3 (ii) of quazisymmetry,

sj 2 @a
k

f(xk)� �j@
q(ak+bk;jx��xj j)	(x�; xj);

Thus, using the fact that jxk � xj j � ak, jx� � xj j � jx� � xkj + ak, and that q(a; :) is increasing for all �xed a 2 R+ as
required by Assumptions 3(ii) a, we obtain

sj 2 @a
k

f(xk)� �j@
q(ak+bk;jx��xkj+ak)+ak	(x�; xk);

and, recalling that bk = jx� � xkj,

sj 2 @a
k

f(xk)� �j@
q(ak+bk;ak+bk)+ak	(x�; xk); (47)

Since �+k � �j , we have

��j@
q(ak+bk;ak+bk)+ak	(x�; xk) � ��+k @

q(ak+bk;ak+bk)+ak	(x�; xk)

which, when combined with (47), gives

sj 2 @a
k

f(xk)� �+k @
q(ak+bk;ak+bk)+ak	(x�; xk);

for any j 2 Jk. Now, due to (43), pk is a convex combination of the subgradients sj , j 2 Jk. Recalling that ��Goldstein
subdi�erentials are closed and convex sets, we have

pk 2 @a
k

f(xk)� �+k @
q(ak+bk;ak+bk)+ak	(x�; xk)

as desired.
The following lemma will be needed in the sequel.

Lemma 14 All the sequences (xk)k2N, (y
k)k2N, (s

k)k2N and (pk)k2N de�ned in the regularized bundle algorithm are bounded.

Proof: Due to assumption 1 (i) of inf-compactness, and the fact that algorithm 2 is a descent method, the sequence (xk)k2N
is bounded. The remainder of the proof can be easily adapted from [10, Lemma 3.3].

Lemma 15 Suppose that there exist sequences (xk)k2N, (p
k)k2N and (ak)k2N and a point �x 2 Rn such that limk!1 xk = �x,

limk!1 pk = 0, limk!1 ak = 0. De�ne �+k = maxj2Jk �j for all k in N. Assume that f subdi�erentially dominates
�+	 at every point x� such that 0 2 @f(x�) + �+@	(x�; x�) for some real number �+ > 0. Assume in addition that
lim supk!1 �+k � �+ and that lim infk!1 �k � �� > 0 for some real number �� and for every k 2 N. Then �x is a
stationary point of f(x).



Chretien and Hero, \Generalized proximal methods : : : " 19

Proof: Lemma 13 above implies the existence of two sequences (pk1)k2N and (pk2)k2N such that pk = pk1 + pk2 and

pk1 2 @a
k

f(xk);

pk2 2 ��
+
k @

q(ak+bk;ak+bk)+ak	(x�; xk):

Due to lemma 14, (xk)k2N is bounded and thus the local boundedness of the subgradients implies that the sequences (pk1)k2N
and (pk2)k2N are bounded. Thus, we can extract convergent subsequences (p

�(k)
1 )k2N, and (p

�((k))
2 )k2N with respective limits

p�1 and p�2 such that

p�1 + p�2 = 0: (48)

On the other hand, using [13, lemma 3.1], we obtain

p�1 2 @f(�x): (49)

Furthermore, since limk!1 xk = �x, we have limk!1 bk = 0 and thus limk!1 q(ak+ bk; bk+ak)+ak = 0, due to Assumption
3(ii) c. Using [13, lemma 3.1] and the fact that �+ = lim supk!1 �+k one easily obtains

p�2 2 ��
+@	(�x; �x):

Now, due to quazisymmetry Assumption 3 (ii) in the case a = 0 and x = y = �x, we have

p�2 2 �+@	(�x; �x): (50)

Finally, (48), (49) and (50) together give

0 2 @f(�x) + �+@	(�x; �x): (51)

The proof is then easily completed using Lemma 2.

6.4 Convergence

Convergence of Algorithm 2 is established using the properties of Algorithm 2.1 in [10], to which it is structurally very close,
and the preliminary properties established in the previous section. In order to adapt the study of [10] to our generalized
proximal bundle method, we make the following important observation.
The behavior of the method principally relies on the output of the linesearch (Procedure 1). In particular, in the case of

descent steps, the linesearch procedure gives

f(xk)� f(yk+1)� �k � mLtLv
k:

Due to positivity of 	, we obtain

f(xk)� f(yk+1) � mLtLv
k: (52)

This last equation corresponds exactly to the output given by Algorithm 2.1 of [10] in the descent case. On the other hand,
the case of a null step gives

f(xk)� f(yk+1)� �k	(x
k; yk+1) � mRtRv

k;

which is equivalent to

F�k (x
k ; xk)� F�k (x

k; yk+1) � mRtRv
k:

This corresponds exactly to the output of the linesearch procedure in Algorithm 2.1 of [10] when f(:) is replaced by F�k (x
k ; :).

Using these strong similarities between the two methods, we now establish convergence of our procedure. The �rst step is
study the linesearch procedure. In particular, we will need the following simple lemma.

Lemma 16 Let f1 and f2 be two weakly upper semismooth functions. Then f1 + f2 is also weakly upper semismooth.
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Proof: The proof is an immediate consequence of the de�nition. Indeed, take pk 2 @
�
f1 + f2

�
(x + tkd). Then, we have

pk = pk1 + pk2 with

pk1 2 @f1(x + tkd);

and

pk2 2 @f2(x + tkd):

Since f1 and f2 are weakly upper semismooth, we have

lim inf
k!1

hpk1 ; di � lim sup
t#0

f1(x+ td)� f1(x)

t

and

lim inf
k!1

hpk2 ; di � lim sup
t#0

f2(x+ td)� f2(x)

t
:

Therefore, we easily obtain

lim inf
k!1

hpk1 + pk2 ; di � lim sup
t#0

f1(x+ td) + f2(x+ td)� f1(x)� f2(x)

t
:

Recalling that the Lipschitz property is preserved by summation, this last equation proves the desired result.

Lemma 17 The linesearch (Procedure 1) terminates in a �nite number of steps.

Proof: Due to Lemma 16 and Assumption 3(i), the function f(:) + �k	(x
k; :) is weakly upper semismooth. Therefore, the

proof of Theorem 4.1 (a) in [19] can be easily adapted to our linesearch procedure.
The following lemma due to Kiwiel [9] will be used in the proof of Theorem 3. In particular, given � > 0, this lemma

implies existence of a �nite number of successive null steps without reset such that jdkj < �.

Lemma 18 [9, 10] Let wk = 1
2 jd

k j2 + �k and assume tkL = 0 and rka = 0. Then, there exists a constant C independent of k
such that

0 � wk+1 � wk � (1�mR)
2(wk)2=8C2: (53)

We are now in a position to establish convergence of the generalized proximal bundle method. We �rst study the case of a
�nite number of descent steps.

Lemma 19 Assume that f and 	 satisfy Assumptions 1, 2 and 3. Assume that f subdi�erentially dominates �+	 at every
point x� such that 0 2 @f(x�) + �+@	(x�; x�) for some real number �+ > 0. Assume in addition that lim supk!1 �k � �+

and that lim infk!1 �k � �� > 0 for some real number �� and for every k 2 N. Assume in addition that only a �nite
number of descent step is taken and let k0 denote the index of the last descent step. Then xk0 is a stationary point of f .

Proof: Using the same type of proof as in Lemma 3.4 of [10], we obtain that

lim
k!1

pk = 0 and lim
k!1

ak = 0:

Therefore, Lemma 15 implies the desired result.
The case of an in�nite number of descent steps follows.

Lemma 20 Assume that f and 	 satisfy the assumptions in lemma 19. Assume that a in�nite number of descent steps is
taken. Then, every accumulation point of (xk)k2N is a minimizer of f .

Proof: Since the linesearch procedure 1 gives equation (52) in the case of a descent step, the sequence (f(xk))k2N is nonde-
creasing. Furthermore, one can easily check that the proof of lemma 3.5 in [10] can also be adapted to our method. Therefore,
we obtain

lim
k!1

pk = 0 and lim
k!1

ak = 0:

Now, take any convergent subsequence from (xk)k2N and let �x denote its limit. Then, Lemma 15 implies the desired result.
Combining these two last lemmas, we obtain our convergence theorem for the generalized proximal bundle method 2.

Theorem 3 Let f and 	 satisfy the assumptions in lemma 19 Then, every accumulation point of (xk)k2N de�ned by
Algorithm 2 is a minimizer of f .
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7 Numerical experiments

In this section, we illustrate the bundle implementation of Section 6 for a particular nonsmooth optimization problem arising
in adaptive digital signal processing for channel equalization. This problem is formulated as follows

min
x2Rn

f(x); where f(x) =

nX
i=1

j1� jaTi xj
pjq: (54)

for a given set of n�dimensional vectors (ai)1�i�n. For odd p or q, the function is nondi�erentiable. A popular algorithm for
implementing (54) is the well known constant modulus algorithm (CMA) [6, 30, 27]. The objective function has the shape
represented in Figure 1, for the case n = 1, p = 2, q = 1.
Numerical experiments were performed in order to compare the computational properties of the three following regular-

ization functions.

	1(x; y) =
1

2
jx� yj2 (Moreau-Yosida);

	2(x; y) =
nX
i=1

jxi � yij (l1 norm)

	3(x; y) =

nX
i=1

log(1 + jxi � yij);

These three functions o�er smooth convex, nonsmooth convex and nonsmooth nonconvex alternatives; see Figures 2, 3 and
4.
We will compare the three regularizations on the basis of the number of iterations required, the number of function/subgradient

calls and the computed minimum value of the objective function. The algorithms were run over a range of the relaxation
parameters �k = � which we kept constant along iterations. The parameters of the regularized bundle method are set as
in Table 1. Our results are reported in Table 2. The symbols it, f� and nb denote, respectively, the minimum number of
iterations N necessary to achieve f(xN ) � �s, and the total number of function/subgradient calls.
The table clearly demonstrates that the use of nonsmooth regularization functions is competitive with the standard

Moreau-Yosida regularization. Moreover, the best candidate often appears to be one of the nonsmooth regularizations 	2

and 	3 with regard to the number of function/subgradient calls and the number of iterations required for the algorithm to
terminate.
Algorithmic re�nements of the basic regularized bundle method proposed in this paper will be investigated in future work.

Notice that the theoretical results demonstrated in Section 6 may apply to more sophisticated approaches recently developed
for the standard Moreau-Yosida regularization, including trust region techniques [13] and second order methods [16] in the
case of convex objective and regularization functions.

8 Conclusion

This paper developed a convergence analysis for the proximal point algorithm with general regularization functions. Strong
convergence results were obtained without any assumption on di�erentiability nor convexity of the regularization. A suÆcient
condition, denoted \subdi�erential domination", on the regularization was de�ned in order for the method to converge toward
a stationary point. Similar convergence results were given for regularized bundle implementations of the proximal method.
The resulting bundle algorithms enjoys additional degrees of freedom when compared to the standard procedures, since many
types of regularization may be easily implemented in the procedure. Numerical experiments demonstrate that nonconvex
and even nonsmooth regularizations are competitive with the standard Moreau-Yosida regularization.
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Table 1: Parameters of the regularized bundle algorithm

n 2
p 2
q 1
�s 10�5

mL .1
mR .3
m� .15
� .8

Figure 1: The objective f and its derivative f 0.
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Figure 2: Moreau-Yosida regularization 	1
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Figure 3: l1 norm regularization 	2
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Figure 4: log(1 + j:j) regularization 	3
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Table 2: Numerical results for the three regularizations

	1 	2 	3

� it f� nb it f� nb it f� nb

.05 155 0.0001 278 183 0.0000 353 203 0.0000 347

.15 198 0.0000 314 96 0.0002 180 90 0.0000 164

.20 220 0.0005 360 73 0.0000 137 121 0.0000 227

.25 182 0.0002 336 102 0.0000 194 145 0.0000 280

.30 138 0.0002 257 90 0.0000 172 79 0.0001 149

.35 79 0.0003 141 124 0.0000 245 88 0.0001 166

.40 136 0.0002 208 136 0.0000 267 118 0.0000 229

.45 148 0.0014 287 112 0.0000 219 78 0.0000 148

.50 74 0.0004 139 129 0.0000 254 147 0.0000 288

.55 83 0.0000 154 115 0.0000 222 84 0.0001 161

.60 99 0.0008 186 65 0.0000 127 75 0.0000 147

.65 123 0.0003 267 96 0.0000 186 96 0.0000 186

.70 165 0.0005 269 84 0.0000 163 66 0.0000 127

.75 106 0.0001 203 102 0.0000 199 58 0.0000 108

.80 82 0.0000 158 74 0.0000 145 101 0.0000 210

.85 95 0.0003 179 66 0.0001 129 67 0.0001 129


