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Abstract

We introduce methods for detection and classi�cation of
noise contaminated patterns which are based on performing
subspace decomposition on a matrix of higher order spatial
moments. The subspace decomposition permits signal-alone
moments to be recovered from signal-plus-noise observations
arising from an unknown mixture distribution. The meth-
ods use normalized power moments and normalized factorial
moments as pattern descriptors. While the set of L-th order
factorial moments are in one-to-one correspondence with the
set of L-th order power moments, digital computation of fac-
torial moments is more numerically stable permitting a larger
number of moments to be utilized. We illustrate these meth-
ods for wordspotting in automatic processing of documents,
and for digital modulation classi�cation in communications.

I. Introduction

Moment methods of spatial pattern classi�cation have been
applied to a great variety of areas including: character recog-
nition [1], edge detection [2], galaxy cluster analysis [3], [4],
and word spotting [5].
Common justi�cations for spatial moments are: 1) they

provide a non-parametric pattern description; 2) combina-
tions of moments have been identi�ed with important invari-
ances such as rotation, scale, and translation [6], [7]; 3) sam-
ple moments can usually be treated as jointly Gaussian ran-
dom variables simplifying construction of statistical tests of
signi�cance. With the introduction of non-negative de�nite
higher moment matrices described in this paper, we provide
another justi�cation: moments can be used to e�ectively sep-
arate signal pattern from noise background via noise subspace
processing.
Noise subspace processing has been successfully applied

to achieve noise reduction for many signal processing prob-
lems. This type of processing involves performing eigencom-
positions on non-negative de�nite covariance matrices formed
from second order moment (autocorrelation) lag products. A
longstanding problem has been to generalize this technique
to accomodate higher order moments. In [8] a generaliza-
tion was obtained by applying a generalized singular value
decomposition to a tensor of moments of �xed order indexed
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by multivariate lag parameters. Here we introduce a noise
subspace technique which uses a generalization in a di�er-
ent direction: eigendecomposition of a non-negative de�nite
symmetric matrix of moments of di�erent orders at zero lag.

The crux of the technique is to arrange the higher order
spatial moments into a non-negative de�nite matrix, which
we call the moment matrix. Noise robusti�cation of the mo-
ment estimates is accomplished by applying the Cholesky
factor of the noise-alone moment matrix as a prewhitener,
performing an eigendecomposition on the whitened moment
matrix, and identifying and eliminating the noise-dependent
subspace. Renormalization of the remaining eigenvalues and
dewhitening leads to recovery of the noiseless moment matrix
and the noiseless spatial moments. The recovered moments
can be more reliably used in algorithms for constructing mo-
ment invariants, Neyman-Pearson and constant false alarm
rate (CFAR) detectors, Zernicke moments, etc.

The main disadvantage of standard power moment descrip-
tors is that under �nite register length arithmetic, they be-
come computationally unstable as the moment orders get
even moderately large. For this reason it is advantageous
to work with factorial moments. While power moments and
factorial moments are mathemetically equivalent, in the sense
that they are related through a 1-1 transformation, digital
computation of factorial moments is more accurate. This
means that for a �xed register length computer a larger num-
ber of factorial moments can be reliably computed result-
ing in more accurate pattern matching. Alternatively, for a
�xed number of moments factorial moments can be reliably
computed using shorter register lengths leading to potential
savings in hardware cost and power dissipation.

Factorial moments come in two varieties, ascending and
descending, and have mainly been applied to integer-valued
scalar random variables [9]. Descending factorial moments
appear to have been used in more applications than ascend-
ing factorial moments. One dimensional descending factori-
als (also known as negative factorials [10]) have been used in
statistics in diverse areas such as identi�cation of parameters
in discrete mixture distributions [11] and moment expansions
for stochastic processes [12]. One dimensional descending
factorial moments have also been used in many applications
in physics including: neutron-neutron coincidence counting
[13], discriminants of non-classical quantum states in cou-
pled lasers [14], galaxy distribution theory [4], discriminants
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of fractal behavior in high energy physics [15], and statistics
of nuclear interactions [16]. In this paper we introduce both
ascending and descending spatial factorial moments in the
more general context of multiple dimensions and non-integer
random variables.
The main focus of this paper is moment matrices for uni-

variate and bivariate mixture densities. Extensions are indi-
cated in the appendix for trivariate mixture densities. Uni-
variate densities arise in application areas involving multiple
observations of a single random variable, e.g. the interarrival
distribution of a Poisson process in a queuing network or
echo arrivals in seismic exploration. Bivariate densities arise
when the observation histogram is indexed by two parame-
ters such as: one dimensional continuous random processes,
e.g. speech signals (time and amplitude); or two dimensional
\0,1" processes, e.g. binary document images (row and col-
umn locations of the active pixels) or in phase and quadrature
signal constellations in digital communications (locations of
time samples in the complex plane). Trivariate densities are
required when the histogram is triply indexed such as occurs
for gray scale images (row, column and intensity). Exam-
ples are provided to illustrate how moment matrices can be
applied to these problems.

II. Moment Representations of Multivariate

Distributions

Let f = f(x) be the density function of a random point X
in n dimensional space IRn. It is well known that the den-
sity function f(x) can be characterized by its set of higher
order moments of mixed orders. For clarity, in the sequel we
will specialize to the case of spatial random variables evolv-
ing in the plane (x = (x; y)). The univariate moment ma-
trices associated with a random variable X are simply the
upper (L+ 1)� (L+ 1) blocks of the bivariate moment ma-
trices discussed below (see Proposition 2 in Appendix B).
The case of higher dimensional variables, e.g. 3D variables
x = (x; y; z), is more notationally burdensome. The trivariate
case is treated in the appendix (Appendix C).

A. Bivariate Power Moments

The bivariate power moment (PM) �X;Y (k1; k2) of (inte-
ger) order k1; k2 is de�ned as as the expectation

�X;Y (k1; k2) = E[Xk1Y k2 ]: (1)

Since the bivariate monomials form a basis for the space of
all three-dimensional square integrable functions, the set of
L2 power moments f�X;Y (k1; k2)gLk1;k2=1 completely charac-
terizes the density in the limit as L!1.

B. Bivariate Factorial Moments

For a bivariate probability density function f(x; y) the
bivariate fractional factorial moment (FFM) ÆX;Y of (non-
negative integer) orders k1; k2 and fraction parameters s1; s2
is de�ned as the expectation

ÆX;Y (k1; k2; s1; s2) = E[(X)k1s1 (Y )k2s2 ]: (2)

where

(x)ks = x(x+ s) � � � (x+ s(k � 1)) (3)

is the Pochhammer symbol [17] denoting a fractional factorial
with fraction s and order k. By convention (x)0s = 1. For
s > 0, (x)ks is called an ascending factorial while for s < 0 it
is called a descending factorial [9].
The descending factorials are related to the ascending fac-

torials by the simple relation

(x)k
�s = (�1)k (�x)ks ; s > 0: (4)

When x is a positive integer and s = 1 or s = �1 the
FMM reduces to the standard (non-fractional) ascending

and descending factorial moments: (x)k1 = (x+k�1)!
(x�1)! and

(x)k
�1 =

x!
(x�k)! , respectively.

C. Finite Register Length E�ects

Lemma 1 in Appendix A establishes that the set of
L2 PM's f�X;Y (k1; k2)gLk1k2=1 and the set of L2 FFM's

fÆX;Y (k1; k2; s1; s2)gLk�1;k2=1 are equivalent in the sense that
they are related through a 1-1 transformation. However, as
we shall discuss here, the FFM's are less sensitive than PM's
to errors due to �nite register length computation.

III. Non-negative Definite Moment Matrices

Here we introduce non-negative de�nite matrices of higher
order moments which generalize the notion of a covariance
matrix.

A. Bivariate Power Moment Matrix

For a planar random vector (X;Y ) the (2L + 1) � (2L +
1) bivariate power moment matrix P2L+1

X;Y is de�ned as the
expectation overX;Y of the dyadic outer product of the 2L+
1 element vector U = [1; X;X2; : : : ; XL; Y; Y 2; : : : ; Y L]T , or
more explicitly

P2L+1
X;Y = (5)

E
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777777775
:

B. Bivariate Factorial Moment Matrix

A factorial moment matrix can be de�ned analo-
gously to the power moment matrix by taking the ex-
pectation of the dyadic product V V T where V =
[1; (X)1s1 ; (X)2s1 ; : : : ; (X)Ls1 ; (Y )

1
s1 ; (Y )

2
s1 ; : : : ; (Y )

L
s1 ]

T . The el-
ements of the moment matrix which are subject to the
maximum roundo� error are the (L + 1) � (L + 1) and
(2L + 1) � (2L + 1) elements [(X)Ls1 ]

2 and [(Y )Ls2 ]
2, respec-

tively. Below we give a better behaved factorial moment ma-
trix whose roundo� error is dominated by (X)2Ls , s > 0.
When X and Y are prescaled to the interval 0 < X < 1,
0 < Y < 1, which we will do in the next section, the latter
has much smaller roundo� error than [(X)Ls ]

2.
For a non-negative planar random vector (X;Y ) and

s1; s2 � 0 the (2L + 1) � (2L + 1) bivariate ascending fac-
torial moment matrix is de�ned as the following expectation
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over X;Y

F2L+1X;Y (s1; s2) = (6)

E

2
66666666664

1 (X)1s1
� � � (X)Ls1

(X)1s1
(X)2s1

� � � (X)
L+1
s1

.

.

.

.
.
.

.
.
.

.

.

.

(X)Ls1
(X)

L+1
s1

� � � (X)2Ls1

(Y )1s2
� � � (Y )Ls2

(X)1s1
(Y )1s2

� � � (X)1s1
(Y )

L+1
s2

.

.

.

.
.
.

.

.

.

(X)Ls1
(Y )1s2

� � � (X)Ls1
(Y )Ls2

(sym)

(Y )2s2
� � � (Y )

L+1
s2

.

.

.

.
.
.

.

.

.

(Y )
L+1
s2

� � � (Y )2Ls2

3
77777777775
:

IV. Noise Mitigation via Eigendecomposition

Let fs(x; y) and fn(x; y) be two probability densities and
consider the case where the observations X;Y are generated
by the additive mixture model

f(x; y) = �fs(x; y) + (1� �)fn(x; y); (7)

where � 2 [0; 1]. The mixture model arises in many appli-
cations [18], [19], [20]. Typically the density fn(x; y) is a
known \nominal" or \noise" density, fs(x; y) is an unknown
\signal" density of interest, and � plays the role of a pro-
portional signal-to-noise ratio. Two such examples will be
treated in section VI.
Assume that the L2 power moments f�n(i; j)gLi;j=1 (or

equivalent factorial moments) of the \noise density" are
known. Here we will present a method to exactly recover
both the mixture parameter � and the L2 power moments
f�s(i; j)gLi;j=1 of the \signal density" from the L2 power mo-

ments f�X;Y (i; j)gLi;j=1 of f(x; y). This method relies on the
symmetric non-negative de�niteness of the PM matrix (5)
and FMM matrix (6), which is established in Appendix B,
the known Cholesky decomposition of the noise alone PM or
FMM matrices, and the fact that, by construction, the (1,1)
elements of the PM and FMM matrices are equal to 1.
We start from the de�nition (7). For any function g(X;Y )

we have the additive signal-plus-noise decomposition of the
expectation

E[g(X;Y )] = �E[g(X;Y )jsignal alone] (8)

+(1� �)E[g(X;Y )jnoise alone]

where E[g(X;Y )jsignal alone] = R R
g(x; y)fs(x; y)dxdy and

E[g(X;Y )jnoise alone] = R R g(x; y)fn(x; y)dxdy.
Let M, Ms, and Mn denote the signal-plus-noise, signal-

alone, and noise-alone moment matrices (M, Ms, and Mn

denote either power moment or factorial moment matrices).
From (8) we have the key result

M = �Ms + (1� �)Mn

Now let C be the upper triangular Cholesky factor of Mn,
i.e. Mn = CTC, and de�ne ~M = C�TMC�1. Then we have

~M = � ~Ms + (1� �)I (9)

where I is the (2L+1)� (2L+1) identity matrix, and ~Ms =
C�TMsC

�1 is the whitened moment matrix.
Except for the presence of the scalar mixture parameter �,

(9) is in the form of a standard additive decomposition of a

\measurement covariance" matrix ~M into \signal covariance"
~Ms plus \white noise covariance" I. While the latter is full
rank with 2L+1 identical eigenvalues f1; : : : ; 1g, the (ordered)
eigenvalues of the signal matrix ~Ms are non-negative and
typically fall o� rapidly to zero. As an approximation we
assume that the eigenvalues fsi gqi=1 of ~Ms are equal to zero
for i > q, some q in the range 1 � q < 2L+ 1.
Now from (9) the eigenvectors f�

i
g2L+1i=1 of ~M and ~Ms are

identical and hence the eigendecomposition of ~M is of the
form

~M =

2L+1X
i=1

i�i�
T

i

=

qX
i=1

[�si + (1� �)] �
i
�T
i
+ (1� �)

2L+1X
i=q+1

�
i
�T
i

Thus only the q largest eigenvalues i = �si + (1� �) of ~M
are related to the signal moments and the rest are pure noise
eigenvalues f(1��) : : : ; (1��)g. In particular, at least if we
know � a priori, then ~Ms can be exactly recovered from the
eigendecomposition of ~M via

~Ms =
1

�

qX
i=1

[i � (1� �)] �
i
�T
i
: (10)

However, it turns out that prior knowledge of � is not re-
quired. Indeed, since the (1; 1) element of Ms is equal to 1,
and eT1C�i = eT1 �i = �i1, we can determine � from the linear

equation � =
Pq

i=1 [i � (1� �)] j�i1j2 giving:

� =

Pq
i=1

�
i � j�i1j2

�
1�Pq

i=1 j�i1j2
:

V. Scaling for Numerical Stability

It will be necessary to center and scale the variates X;Y to
improve numerical stability of the computations. The least
numerically stable step in the signal moment recovery method
described above is computation of the Cholesky inverse C�1.
Thus scaling should improve the conditioning of M (P2L+1

X;Y

and F2L+1X;Y ) while minimizing roundo� errors in the compu-
tation of its elements.

A. Scaling the Power Moment Matrix

When X and Y are contained in the interval [xmin; xmax]
and [ymin; ymax], respectively, we can improve conditioning of
C by centering and scaling X and Y into the interval [�1; 1].
This forces Cij = 0 for all odd o�-diagonal entries (i + j
odd integer) and all other entries to be bounded in mag-
nitude by 1. By making C more sparse its upper triangular
Cholesky decomposition inherits sparseness and becomes bet-
ter conditioned, see Fig. 1. The centering and scaling is done

by making the transformations ~X = X�(xmax+xmin)=2
�x

and

~Y = Y�(ymax+ymin)=2
�y

where �x = (xmax�xmin)=2 and �y =

(ymax�ymin)=2. After normalization the (2L+1)� (2L+1)
power moment matrix P2L+1

X;Y becomes

~P2L+1
X;Y = P2L+1

~X;~Y
: (11)

Note that ~P remains non-negative de�nite.
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Fig. 1. The noise alone factorial moment matrix and its Cholesky factor
have sparse structure which can be exploited to reduce roundo�
error and explore structure of moment invariants.

B. Scaling the Factorial Moment Matrix

Since F2L+1X;Y is not de�ned for negative valued X;Y con-
struction of an appropriately scaled factorial moment matrix
requires more care than for the case of the power moment ma-
trix. First of all we need center and scale the integer variates
X and Y di�erently. De�ne the variates ~X and ~Y analogously
to above except that �x and �y are replaced by

�x = exp

(
1

2L

2LX
k1=1

[(xmax � xmin)=2 + (k1 � 1)s1]

)

and similarly for �y . This scaling ensures that the maximum
magnitude entry of FX;Y will be bounded by 1. Next, for any
real number T = T+�T�, we de�ne T+ as the positive part
of T and T� as the absolute value of the negative part of T .
De�ne the (2L + 1) � (2L + 1) normalized spatial factorial
moment matrix

~F2L+1X;Y = F2L+1~X+; ~Y +
(1=�f ) +D F2L+1~X�; ~Y �

(1=�f ) D
T ;(12)

where D = diagk=0;:::;2L((�1)k) is a diagonal matrix with
alternating +1 and �1 along the diagonal. The non-negative
de�niteness of F2L+1X;Y is obviously preserved under the trans-

formation (12) since ~F2L+1X;Y is the sum of two non-negative
de�nite matrices.
The step sizes s1 and s2 need to be selected so as to mini-

mize the spread between the maximum and minimum eigen-
values of F2L+1X;Y thereby minimizing the condition number of
the Cholesky factorC. Note that as s1 and s2 approach zero
F2L+1X;Y becomes equivalent to P2L+1

X;Y and the condition of C
becomes identical for the PM and FMM approaches. We have
observed from experiments that the condition number of C
improves as s1; s2 increases over [0; 10]. However, it was also
observed that the roundo� error in computing the elements of
F2L+1X;Y also increases for large values of s1 and s2. The choices
s1 = 2=(xmax � xmin) and s2 = 2=(ymax � ymin) appear to
achieve a good compromise for a wide variety of values of L.

VI. Applications

For illustration, we apply the power moment and factorial
moment matrix analysis to two applications areas: wordspot-
ting in noise degraded documents and modulation classi�ca-
tion in digital communications.

A. Wordspotting Example

Given a group of documents, it is frequently desirable to
know whether any of the documents contain a certain word or
set of words [21], [1]. It would be useful if this process could
be automated and work reliably on documents with di�erent
fonts, font sizes, and noise contamination, e.g. in faxed doc-
uments. here we illustrate the moment matrix methodology
for a simple wordspotting example.

A.1 Experiments

We obtained an electronic copy (ascii) of Thomas Payne's
Common Sense, segmented the ascii text, and generated
postscript versions of each word in Helvetica 48 point font.
homogeneous salt and pepper noise were added modulo-2 to
the bitmaps of each word. Note that modulo-2 addition pro-
duces noise which is not strictly additive or linear. Raw mo-
ments of various mixed orders were computed empirically and
sample power and sample factorial moments matrices were
constructed using Matlab 4.0. Note that the number of pix-
els, or window size, for each word depends on the number of
letters in the word, the presence of capitalization, punctua-
tion, etc. To standardize the computation the bitmap coor-
dinates for each word were scaled to a square of length 1 on
a side. The Cholesky factor C of the spatially homogeneous
noise moment matrix was applied to prewhiten the empirical
word moment matrix. An eigendecomposition was performed
on the prewhitened empirical moment matrix, with the signal
subspace dimension determined by a threshold rule, and the
original noiseless moment matrix was recovered by eliminat-
ing the noise subspace and renormalization, as discussed in
the previous section of this paper.
A representative example of the noiseless and noise de-

graded bitmaps moment matrices is shown in Figs. 2-4 for
SNR (�) = 0:5. It was found that L = 23 could be used in
the factorial moment matrix without running into run time
errors due to numerical roundo�. This is to be compared to
the upper limit of L = 20 encountered for the power mo-
ment matrix computations. Note that this 15% increase in
L translates into an over 30% increase in the number of dis-
tinct mixed raw moments that can be used for discrimina-
tion (232 � 1 = 528 as compared to 202 � 1 = 399). The
noiseless whitened power moment matrices appear to better
distinguish between the two words as compared to the noise-
less factorial matrices. However the noisy factorial moment
matrices are observed to be much less sensitive to the noise
contamination. Our results suggest that the whitened mo-
ment matrices may themselves be an excellent feature space
for robust discrimination between words.
We de�ned a simple discriminant based on computing the

mean square distances between noisy moment matrix to the
corresponding noiseless moment matrices for \will" or \War."
The discrimination was implemented using a minimum dis-
tance decision rule. Three classes of discriminants were com-
pared: (D1) mean square distances between the raw empir-
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ical moment matrix M and the noiseless moment matrices
Ms for the two words; (D2) mean square distances between
the recovered prewhitened signal moment matrices ~Ms and
noiseless prewhitened moment matrices C�TMsC

�1 for the
two words; (D3) the mean square distances between the re-

covered signal moment matrix M̂s = CT ~MsC and the noise-
less moment matrices Ms for the two words. In each case a
mask was used to screen out elements of the moment matrices
which were not substantially di�erent from \will" to \War."

The probability of decision error for each of discrimina-
tors rules is shown in Figs. 5 and 6 as a function of SNR.
For unwhitened moment matrix discriminators D1 and D3
we compare probability of error using only lower order mo-
ments extracted from the noisy and recovered 37�37 moment
matrices, respectively. The number used range from 3 mo-
ments (�X;Y (1; 0); �X;Y (1; 1); �X;Y (0; 1)), denoted by L = 1
in the �gures, to 99 moments (�X;Y (i; j), i; j = 0; : : : ; 9, i; j
not simultaneously equal to zero), denoted by L = 9 in the
�gures. The performance of D1 is uniformly worse than that
of D3 for all L values. Note that the use of more moments
in the raw moment discriminant D1 actually degrades dis-
crimination performance. This is consistent with the well
known variance increase in estimation of higher order statis-
tics as the order increases [22]. Interestingly, the opposite
trend is observed in the whitened moment discriminant D3
where variance reduction has been acheived in the higher or-
der moments via the subspace eigendecomposition of the raw
37 � 37 moment matrix. Finally, as expected, note that D2
attains very low probability of error by using minimum dis-
tance discrimination directly in the whitened moment matrix
domain. We suspect that the reason that D3 is incapable
of matching the excellent performance of D2 is due to poor
condition number of the Cholesky factor C used to recover
the cleaned raw moment matrix from the cleaned whitened
moment matrix.
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Fig. 2. Top: the words will and War in helvetica font and severe
additive noise. Bottom: the unwhitened power moment matrices
empirically estimated from the data strongly resemble noise alone
moment matrices and no distinctive features are evident between
words.

p=18, [p1,p2]=[29, 30], [SNR1,SNR2]=[0.2883, 0.2911], [min,max]=[−0.5595, 1.336]
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Fig. 3. Top: Noiseless whitened power moment matrices for words will
and War for L = 18. Bottom: denoised empirical moment matrix
from noisy vesrions of words shown in Fig 2. Note that distinctive
features of noiseless whitened power moments are recovered after
denoising.

Whitened Factorial Moment Matrices: p = 32
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Fig. 4. Same as Fig. 3 except that L = 32 factorial moment matrix is
shown.
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Fig. 5. Probability of error curves for D1 = minimum distance decision
rule based on raw moments. Here we are matching di�erent numbers
of empirical moments to corresponding noiseless moments obtained
from Fig. 2 without additive noise. SNR is the relative number of
bit ip errors as compared to active pixels in noiseless bitmap.
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Fig. 6. Bottom curve: probability of error for D2 = minimum distance
decision rule based on moment matching in denoised prewhitened
moment matrix domain. Here we are matching the empirical
whitened moment matrices to noiseless whitened moment matrices
shown in Fig. 3. Upper curves: same for D3 = minimum distance
decision rule based on moment matching in recovered moment ma-
trix domain.

B. Modulation Classi�cation Example

A typical RF receiver uses an in-phase and quadrature (IQ)
detector shown in the block diagram in Fig. 7. The trans-
mitter produces a carrier modulated signal s(t) at carrier fre-
quency fo Hz. The transmitted signal passes through a noisy
bandpass channel before arriving at the receiver as the noisy
bandpass signal w(t) = s(t) + n(t). The in phase (wI) and
quadrature (wQ) baseband components are detected sepa-
rately by two orthogonal frequency mixers, each centered at
frequency wo = 2�fo radians, each followed by an integrator.
These components are each sampled at integer multiples of
the symbol period to produce a sequence of complex measure-
ments yI(ti) + jyQ(ti), i = 1; : : : ; N . In the absence of noise
and intersymbol interference the N points in the complex IQ
plane specify a complex signal constellation which depends
on the type of modulation used.

w(t)

y   (t)

y   (t)

Q

IΙ

Ι

cos(w  t)

sin(w  t)o

o

Fig. 7. Coherent IQ receiver for bandpass carrier modulated signal w(t)
at carrier frequency wo = 2�fo.

Automated detection and classi�cation of modulation type
is an important problem arising in non-cooperative communi-
cations environments, surveillance, and multi-user networks.
A wide variety of techniques have been proposed for constant
and non-constant envelope signals such as M-ary PSK, FSK
and QAM including: zero crossing analysis [23], likelihood ra-
tio approximation [24], [25], wavelet expansions [26], higher
order correlations [27], and moment methods [28]. Most clas-
si�cation methods, including those cited above, are applied
to the in-phase and quadrature (IQ) components of the re-
ceived bandpass communications signal which can be plotted
in the complex plane.
Here we apply the moment matrix classi�er methodology

to classi�cation of modulation types for M-ary PSK, FSK
and QAM in the IQ plane in the presence of noise, unknown
phase angle, and unknown magnitude. More detailed cov-
erage of this method can be found in [29]. Our application
of moment matrices can be viewed as a generalization of the
approach of [28], which was based solely on the eighth order
phase moment. In particular, the use of moment matrices
allows us to use linear combinations of a large number of
di�erent orders (more than 100) of joint phase and magni-
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tude moments in addition to providing a denoising procedure
for extracting signal-alone joint moments from noise contam-
inated measurements.
The IQ plane is composed of 2B � 2B pixels, where B is

number of bits of the A/D converter which samples and quan-
tizes the output of the baseband IQ signal. Therefore, unlike
the relatively low spatial resolution wordspotting example,
for a 16 bit A/D the number of pixels is huge. To reduce
computation, it will be more convenient to down sample the
IQ plane to fewer pixels. As each downsampled pixel can con-
tain multiple samples, the downsampled IQ plane produces
a Gray scale image for which the three dimensional repre-
sentation (X;Y; Z) (2 spatial coordinates and one grey scale
coordinate) described in the previous Section and Appendix
C will be adopted.

B.1 Polar Power Moments

In addition, communications signals in the IQ plane have
special structure that can be exploited: the IQ signal samples
are always distributed symmetrically about the origin (0; 0).
In this subsection we represent the IQ samples in polar coor-
dinates relative to the known origin in order to express rota-
tion in cartesian coordinates as angular-translation in polar
coordinates. By so doing it is a simple matter to enforce ro-
tation invariance via retaining magnitude-only information of
the higher order moments, inducing discrimination invariance
with respect to unknown phase.
De�ne complex moments of the phase-magnitude polar rep-

resentation of the IQ image

mp;q;s
r;�;z = E

�
rp ej�qzs

�
where r; � denotes magnitude and phase of a pixel location,
and z denotes the grey level of the image. In order to make
these moments rotation invariant, the magnitude squared of

the complex moments
���mp;q

r;�

���2 can be used in the moment

matrix. Speci�cally, de�neM as the (3L+1)� (3L+1) non-
negative de�nite Hermitian matrix of complex momentsM =
((mp;q;s

r;�;z))p;q;s where p 2 f0; : : : ; Lg and q; s 2 f1; : : : ; Lg.
Then the rotation invariant moment matrix is de�ned by the
direct product matrix M2 = MH ÆM, where Æ denotes ele-
ment by element multiplication. Note that M2 is symmetric
and non-negative de�nite since the direct product preserves
non-negative de�niteness.

B.2 Experiments

The moment matrix techniques described in the previous
section were implemented in the complex IQ plane. Here the
number of symbols transmitted is N = 25. Note that the
channel noise produces a spatial blurring of the signal con-
stellation in the IQ plane, i.e. the noise in the IQ plane is
not spatially homogeneous and is signal dependent. For the
experiments below we �xed an assumed signal modulation
(4-PSK at unit power) and noise variance (�2 = 25) and gen-
erated the Cholesky factors of the associated moment matrix.
This Cholesky factor was then used to \whiten" the empir-
ically calculated moment matrices for each of the measured
signal types. Note that in each of the experiments described
below this whitening is mismatched to the actual noise dis-
tribution in the IQ plane. Nonetheless, we will show that an

improvement in modulation discrimination results even with
a moderate amount of mismatch.
Figures 8 and 9 illustrate the IQ images and moment ma-

trices for the cases that s(t) is a 4-PSK signal with noise
power of �2 = 25 , while Figs. 10 and 11 are for 4-QAM
with �2 = 25). While the 4-QAM constellation shown is not
desirable due to its poor minimum distance properties, such
a constellation can arise when the ampli�cation factors of the
I and Q stages of the transmitter become uncalibrated due
to parameter drift. This constellation was chosen for these
experiments due to its close similarity to 4-PSK, making dis-
crimination particularly diÆcult. The �rst column of each of
the �gures 8 and 9 are, from top to bottom: the signal alone
represented in the IQ plane, the unwhitened power moment
matrix of the signal, the whitened power moment matrix of
the signal, and the assumed spatial distribution of the noisy
measurements used to calculate the Cholesky factor of the
moment matrix. The second column of these �gures are, from
top to bottom: the noise contaminated signal in the IQ plane,
the unwhitened moment matrix estimated from the N = 25
noisy measurements, the estimated whitened moment matrix,
and the resultant cleaned power moment matrix after noise
subspace processing.
By comparing the signal alone unwhitened moment matrix

to that of the noise contaminated signal it is evident that
the raw moments are quite sensitive to additive noise (com-
pare left and right panels in the second rows of Figs. 8-11).
On the other hand, by comparing the left and right panels
in each of the third rows of the �gures, it is evident that
the prewhitened moment matrices are much less sensitive to
noise. This can be explained by the fact that, as the variables
x = (r; �; z) are prenormalized to the interval [�1; 1], the
higher order moments pairs E[rpej�q ], E[ej�qzs] and E[rpzs]
are exponentially decreasing to zero as p; q; s become large.
The prewhitening of the moment matrix via Cholesky decom-
position rescales all of these moments to produce entries of
comparable magnitudes and thus all high and low order mo-
ments are put on equal footing. This matrix rescaling can be
interpreted as a generalization of variance normalization, such
as those used to produce correlation coeÆcients and spectral
coherence functions, which have been widely used to study
dependencies in two or more random variables of greatly dif-
ferent average magnitudes.
It is noteworthy that even with noise mismatch the

whitened and cleaned moment matrices provide a stable rep-
resentation of any speci�ed noise contaminated modulation
(note similarity of 3rd rows of Figs. 8 and 9 for 4-PSK with
two di�erent received noise powers) while they provide a good
degree of discrimination between di�erent modulation for-
mats (note dissimilarity of 3rd rows of Figs. 8 and 10). Note
also that, by construction, the moment representations are in-
variant to rotation and scale of the signal constellation due to
unknown carrier phase angle or signal amplitude. Figure 11
shows the moment matrices for the case of 4-QAM where the
exact constellation noise distribution, shown in the lower left
hand panel, is used to construct the matrix in the Cholesky
decomposition.
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Fig. 8. First row: signal alone (left) and noise contaminated IQ im-
ages for 4-PSK, second row: unwhitened polar PMMs, third row:
whitened polar PMMs, fourth row: spatial distributuion of the noise
(left) and the denoised, whitened polar PMM.
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Fig. 9. The order of the panels is the same as in �gure 8. Note that there
is now a mismatch between the model noise and the actual noise
vaiance of the received signal. Note further the rotation invariance
of polar PMM.
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Fig. 10. First row: signal alone (left) and noise contaminated IQ im-
ages for 4-QAM, second row: unwhitened polar PMMs, third row:
whitened polar PMMs, fourth row: spatial distributuion of the
noise (left) and the denoised, whitened PMM. Here the mismatched
Cholesky factor is used, i.e. the Cholesky factor corresponding to
4-PSK, to whiten the PMM for 4-QAM.
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Fig. 11. The order of the panels is the same as in �gure 10. Here,
the 4-QAM cholesky factor is used. There is hardly any di�erence
between the moment matrices of �gure 10 and the moment matrices
in this �gure.
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Fig. 12. From top to bottom: Noisy IQ-images, whitened noiseless
M

2s, whitened noisy M2s, denoised M2s.

In Fig. 12 the additive noise level has been increased to
�2n = 81 which, as can be seen from the similarities between
the polar moment matrices, stretches the discrimination ca-
pability of the rotation invariant moment method to its limit.
In this high noise regime, the imposition of rotation invari-
ance has e�ectively robbed the moments of their ability to
accurately discriminate between the QPSK and QAM sig-
nals. Thus for operation in high noise environments the com-
putationally simple magnitude squared of complex moments
is not e�ective. In the next section we introduce a discrimi-
nant based on the outputs of a bank of non-invariant moment
matrix computers, each matched to a particular IQ rotation.
This will be called the moment matrix �lter-bank classi�er.
As will be seen this produces a more sensitive, but also more
computationally intensive, discriminant for low SNR situa-
tions.

B.3 Probability of Classi�cation Error

Fig. 13 shows the probability of correct classi�cation for
the moment matrix �lter-bank classi�er as compared to two
popular methods of modulation classi�cation for discrimi-
nating between BPSK and QPSK signals. The curves are
indexed by a function of the symbol-carrier-to-noise ratio
(SCNR) de�ned as

s =
A2Ts
2�2n

:

where A2 is amplitude of the received signal envelope, Ts is
the symbol period, and �2n is the variance of the additive
Gaussian noise in the signal passband. Shown in Fig. 13 are
correct classi�cation probability curves for the eighth order
phase moment discriminant of [28], labeled PMC in the �g-
ure, the log-likelihood function classi�er of [24], labeled q2,
and the power moment matrix discriminant, labeled PMM,
implemented with L = 2, i.e. a 7� 7 moment matrix. Both
coherent and incoherent receivers were simulated, the curves
for the coherent system (known IQ rotation) are subscripted
cs while the curves for the incoherent system (unknown IQ
rotation) are subsripted ns. The curve for PMC corresponds
to the coherent case - as proposed in [28] the PMC method
is not implementable for non-coherent systems. The perfor-
mance curves for qcs2 , qns2 and PMC are directly extracted
from the simulations shown in [24, Fig. 4]. The PMMmethod
was implemented by computing the Mahalanobis distance be-
tween each moment matrix �lter-bank output and the associ-
ated noiseless moment matrix template. The �lter bank was
comprised of 12 �lters performing empirical and theoretical
moment matrix computations as described in Sections III and
IV. Each of these moment matrices were whitened using the
Cholesky decomposition of a noise matrix corresponding to
one of 12 rotations of the IQ plane by increments of approx
15Æ (for more details see [29]. In all cases, the number of
samples N in the IQ plane is equal to 100 and the number of
experiments is equal to 1000. Observe from the probability of
correct classi�cation curves in Fig. 13 that the PMM method
performs almost as well as the LLFCmethod and signi�cantly
outperforms the PMC method for the case of coherent recep-
tion. For non-coherent reception the PMM method attains a
probability of correct classi�cation that is only slightly poorer
than in the coherent case and is signi�cantly better than the
LLFC.

VII. Conclusion

In this report a new method for performing feature classi-
�cation in multi-dimensional spatial feature space has been
described. The method is based on selecting principal compo-
nents from a Cholesky-whitened symmetric non-negative def-
inite matrix of higher order moments in feature space. Both
power moments and factorial moments were introduced, the
latter having more stable numerical properties for higher or-
ders. Two very di�erent applications were investigated to
illustrate the application of these methods. In the wordspot-
ting application the use of principal components was seen to
counterbalance the increased variance inherent to the high
dimensional moment matrix discriminant. By performing
discrimination directly on the principal components of the
whitened moment matrix substantial improvement in prob-
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Fig. 13. Performance Comparison

ability of error was observed relative to the standard un-
whitened raw moment discriminants. In the digital com-
munications example, application of these moment matrix
methods to the IQ complex plane produced a low complexity
modulation discriminant which outperforms the well known
maximum likelihood approach of Polydoros for incoherent re-
ceivers.

Appendix A

Lemma 1: The set of L2 power moments
f�X;Y (k1; k2)gLk1;k2=1 de�ned in (1) and the set of L2 fac-

torial moments fÆX;Y (k1; k2; s1; s2)gLk1;k2=1 de�ned in (2) are
equivalent.

Proof

The proof consists of deriving a 1-1 transformation be-
tween each of the (L + 1) � (L + 1) matrices of moments
ML

X;Y = ((�X;Y (k; l)))
L
kl=0, D

L
X;Y = ((ÆX;Y (k; l; s1; s2)))

L
kl=0.

It is easily shown that

(x)ks =

kX
l=0

d
(l)
k xl;

where the d
(l)
k are coeÆcents, related to the Stirling numbers

[17], which obey the recursions

d
(l)
k+1 = d

(l�1)
k + skd

(l)
k ; l = 1; : : : ; k + 1

; k = 1; 2; : : :

d
(k)
1 =

�
1; k = 1
0; o:w:

Note that when s > 0 the coeÆcients d
(l)
k are non-negative.

In particular, we have the relations

2
64

(x)Ls
...

(x)0s

3
75 =

2
66666664

1 d
(L�1)
L � � � � � � d

(0)
L

0 1 d
(L�2)
L�1 � � � d

(0)
L�1

...
. . .

. . .
. . .

...
...

. . .
. . . 1 d

(0)
1

0 : : : : : : 0 1

3
77777775

2
64

xL

...
x0

3
75 (13)

Let the (L+1)�(L+1) upper triangular matrix in (13) be de-
noted U. This matrix is obviously invertible since it has ones
along its diagonal. Now consider the expectation of the outer
product of the vectors [(X)Ls ; : : : ; (X)0s] and [(Y )Ls ; : : : ; (Y )

0
s]

which is equal to the matrix of factorial moments DL
X;Y . In

view of relation (13) we have the identity

DL
X;Y = UML

X;YU
T

relating the (L + 1) � (L + 1) matrices DL
X;Y and ML

X;Y .

Since U is invertible we have the inverse mapping ML
X;Y =

U�1DL
X;YU

�T which establishes that there exists a 1-1 trans-
formation between the power moments and the factorial mo-
ments. 2

Appendix B

The power moment matrix P2L+1
X;Y = E[UUT ] is the

expectation of a rank one outer product where U =
[1; X; : : : ; XL; Y; : : : ; Y L]T . Thus P2L+1

X;Y is obviously a non-
negative de�nite matrix. Likewise for the outer product fac-
torial moment matrix P2L+1

(X);(Y ) = E[V (s1)V
T (s2)], where

V = [1; (X)1s1 ; : : : ; (X)Ls1 ; (Y )
1
s2 ; : : : ; (Y )

L
s2 ]

T .
We next turn to the ascending factorial moment matrix

F2L+1X;Y (s1; s2). Note that while the power moment matrix
is constructed as the expectation of a rank one outer prod-
uct, i.e. it is a covariance-type matrix, the factorial moment
matrix is not expressible in this way. Thus the proof of non-
negative de�niteness is more involved than before.
Note that for positive real m and jsj = 1 the factorial

moment (m)ks = m(m+s) : : : (m+s(k�1)) can be expressed
in the form

(m)ks =

(
�(m+k)
�(m) ; s = 1

�(m�k)
�(m) ; s = �1 ; (14)

where

�(�) =

Z
1

0

t��1e�tdt (15)

is Euler's (complete) Gamma function (�(n+1) = n! for n a
non-negative integer).
Lemma 2: Let m > 0 and �x an integer L � 1. The fol-

lowing (L+ 1)� (L+ 1) Hankel matrix is positive de�nite

G(m)
def
=

2
64

�(m) � � � �(m+ L)
... �(m+ i+ j)

...
�(m+ L) � � � � � ��(m+ 2L)

3
75

Proof:
Let z = [z0; : : : ; zL]

T be an arbitrary real vector. Consider
the following function

f(z) =

Z
1

0

 
q(t)

LX
i=0

zit
i

!2

dt; (16)
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where
q(t) =

p
tm�1e�t:

Since q(t) > 0 and gi(t) = ti, i = 0; : : : ; L, is a linearly
independent set of functions: f(z) > 0 for z not identically
zero. The right hand side of (16) expands to the form

LX
i;j=0

zizj

Z
1

0

tm+i+j�1e�tdt = zTG(m)z;

where the Euler integral representation of the Gamma func-
tion (15) has been identi�ed. Combining the positivity of
(16) with the above we have zTG(m)z > 0 which establishes
the lemma. 2

For 0 � x < 1 and s � 0 de�ne the (2L + 1) � (2L + 1)
Hankel matrix

A(x; s) =

2
666666664

1 (x)1s � � � � � � (x)Ls

(x)1s (x)2s � � � � � � (x)L+1s
...

...
. . .

. . .
...

...
. . .

. . .
. . .

...
(x)Ls (x)L+1s � � � � � � (x)2Ls

3
777777775
(17)

=

�
1 aT (x; s)

a(x; s) H(x; s)

�
> 0 (18)

where H(x; s)
def
=
��
x)i+js

��
i;j=1;:::;L

is an L�L Hankel ma-

trix and a(x; s) = [(x)1s ; : : : ; (x)
L
s ]

T is an L-element vector.
Lemma 3: For x; s � 0 the matrices A(x; s), H(x; s) and

H(x; s) � a(x; s)aT (x; s) are all non-negative de�nite. They
are positive de�nite for x > 0.
Proof: The case s = 0 is quickly disposed of since for this

case A(x; s) reduces to the outer product UUT where U =
[1; x; : : : ; xL]T . When x = 0, A(x; s) is non-negative de�nite
since it is a matrix of zeros except for a 1 at the (1; 1) element.

We henceforth assume x; s > 0. Let S
def
= diagk=0;:::;L(s

k=2)

and let m
def
= x=s. Since (x)ks = x(x+ s) : : : (x+ (k � 1)s) =

sk(m)(m+ 1) : : : (m+ k � 1)

A(x; s) = STA(m; 1)S

= STG(m)S
1

�(m)

where G(m) is the positive de�nite matrix de�ned in Lemma
2. Thus A(x; s) is positive de�nite. The positive de�niteness
of H(x; s) and H(x; s) � a(x; s)aT (x; s) follows immediately
from [30, Thm. 7.7.6] and the partition representation (18)
of A(x; s). 2

The (L+ 1)� (L+ 1) univariate factorial matrix FL+1
X;X(s)

is the statistical expectation over X of A(X; s). Note that it
follows from Lemma 2 and the assumption E[X2L] <1 that
all elements of FL+1

X;X (s) exist and are �nite. Hence we have
Proposition 1: Fix an integer L � 1 and assume X � 0,

0 < E[X2L] < 1, and s � 0. Then the univariate factorial
moment matrix FL+1

X;X(s) is �nite and non-negative de�nite.
Next we use Lemma 3 to establish the same result for the

bivariate factorial matrix F2L+1X;Y (s1; s2) which is the statis-
tical expectation over X and Y of the (2L + 1) � (2L + 1)

matrix

MX;Y =

2
4 1 aT (X; s1) aT (Y; s2)

a(X; s1) H(X; s1) a(X; s1)a
T (Y; s2)

a(Y; s2) a(Y; s2)a
T (X; s1) H(Y; s2)

3
5 : (19)

Proposition 2: Fix an integer L � 1 and assume X;Y � 0,
0 < E[X2L]; E[Y 2L] < 1, and s1; s2 � 0. Then the bi-
variate factorial moment matrix F2L+1X;Y (s1; s2) is �nite and
non-negative de�nite.

Proof:

When either X = 0 or Y = 0 (w.p.1), MX;Y is equivalent
to a block diagonal matrix equivalent to A, de�ned in (17),
plus zero padding and the proposition follows by Lemma 3.
Thus we assume that X;Y > 0 (w.p.1) in what follows. We
�rst show the positive de�niteness of the 2L�2L lower block
of MX;Y

Q
def
=

�
H(X; s1) a(X; s1)a

T (Y; s2)
a(Y; s2)a

T (X; s1) H(Y; s2)

�
:

To simplify notation denote H(X; s1) by Hx, a(X; s1) = ax,
etc. Note that by Lemma 3 Hy is positive de�nite. By [30,
Thm. 7.7.6] positive de�niteness of Q will follow from posi-
tive de�niteness ofHx�axaTyH�1y aya

T
x . But again by Lemma

3 Ay is positive de�nite and hence 1�aTyH
�1
y ay > 0 . Hence

Hx � axa
T
yH

�1
y aya

T
x > Hx � axa

T
x > 0.

Now

Q�
�
ax
ay

�
[aTx ; a

T
y ] ="

Hx � axa
T
x O

O Hy � aya
T
y

#
;

is positive de�nite by Lemma 3. HenceMX;Y , de�ned in (19),
is positive de�nite for X;Y > 0 and non-negative de�nite for
X;Y = 0. Since F2L+1X;Y (s1; s2) = E[MX;Y ] the Lemma is
established. 2

Appendix C

For a three dimensional random variable (X;Y; Z) the
trivariate power moment matrix is a (3L(L+1)+1)�(3L(L+
1) + 1) matrix de�ned as the statistical expectation of the
outer product

P
3L(L+1)+1
X;Y;Z = E[WW T ];

where W = [1; X; Y ; Z; vecXY T ; vecY ZT ; vecXZT ]T .
where, X = [X; : : : ;XL], Y = [Y; : : : ; Y L], Z = [Z; : : : ; ZL],
and, for a m� n matrix B, vec(B) denotes the mn element
row vector formed by concatenation of all m rows of B.

The (3L(L+1)+1)�(3L(L+1)+1) trivariate factorial mo-

ment matrix F
3L(L+1)+1
X;Y;Z (s1; s2; s3; s4; s5; s6) is de�ned as the

expectation over X;Y; Z of the following generalized version
of the matrix MX;Y in (19)

MX;Y;Z =
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2
666666664

1 aTx aTy aTz aTxy aTyz aTxz
ax Hx axa

T
y axa

T
z axa

T
xy axa

T
yz axa

T
xz

ay aya
T
x Hy aya

T
z aya

T
xy aya

T
yz aya

T
xz

az aza
T
x aza

T
y Hz aza

T
xy aza

T
yz aza

T
xz

axy axya
T
x axya

T
y axya

T
z Hxy axya

T
yz axya

T
xz

ayz ayza
T
x ayza

T
y ayza

T
z ayza

T
xy Hyz ayza

T
xz

axz axza
T
x axza

T
y axza

T
z axza

T
xy axza

T
yz Hxz

3
777777775
;

where ax = a(X; s1), ay = a(Y; s2), az = a(Z; s3), axy =
a(XY; s4), ayz = a(Y Z; s5) and axz = a(XZ; s6), and simi-
larly for the 6Hmatrices. The proof of non-negative de�nite-
ness of the trivariate factorial moment matrix is a straight-
forward extension of the bivariate case.
Note that all moments of the form E[Xk1Y k2Zk3 ] for

0 � k1; k2; k3 � L can be extracted from either of these
trivariate moment matrices. Hence the moment matrices
completely characterize the trivariate density as L ! 1. In
many applications the pairwise higher order moments of the
form E[Xk1Y k2 ]; E[Y k2Zk3 ] and E[Xk1Zk3 ] may be suÆcient
to perform pattern discrimination. In this case only the up-
per (3L+1)�(3L+1) block submatrices of PX;Y;Z or FX;Y;Z

need be computed and used.
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