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ABSTRACT

Originally motivated by computational considerations, we demonstrate how com-

putational efficient and scalable graph constructions can be used to encode both

statistical and spatial information and address the problems of dimension reduction

and structure discovery in high-dimensional data, with provable results.

We discuss the asymptotic behavior of power weighted functionals of minimal

Euclidean graphs, proving upper and lower bounds for the respective convergence

rates and connecting them to the problem of nonparametric estimation of entropy.

We then extend the convergence results from Euclidean graphs to the setting of

data that spans a high-dimensional space but which contain fundamental features

that are concentrated on lower-dimensional subsets of this space – curves, surfaces

or, more generally, lower-dimensional manifolds. In particular, we have developed a

novel geometric probability approach to the problem of estimating intrinsic dimension

and entropy of manifold data, based on asymptotic properties of graphs such as

Minimal Spanning Trees or k-Nearest Neighbor graphs. Unlike previous solutions to

this problem, we are able to prove statistical consistency of the obtained estimators

for the wide class of Riemann submanifolds of an Euclidean space. We also propose a

graph based dimensionality reduction method aimed at extracting lower dimensional

features designed expressly to improve classification tasks, with applications to both

supervised and semi-supervised learning problems.

Finally, using neighborhood graphs and the multidimensional scaling principle,

xi



we develop a general tool for dimensionality reduction in sensor networks, where

communication constraints exist and distributed optimization is required. This tool

is illustrated through an application to localization in sensor networks.

xii



CHAPTER 1

Introduction

1.1 High-dimensional Data Sets and Their Chal-

lenges

Increasingly intricate and rich data sets at the heart of many of today’s most

common applications, from video surveillance to medical information systems, are

raising new problems in data storage, access and especially data exploration. Con-

tinuing technological advances in both sensing and media storage capabilities are

enabling the development of systems that generate massive amounts of new types

of data and information. Today’s computer and wireless sensor networks, medical

and biological systems or imaging and remote sensing applications produce complex

high-dimensional signals that need careful interpretation in order to extract useful

information. How can one make sense of this enormous quantity of information and

use it in a meaningful way, from a simple problem of visualizing a relevant data

characteristic to more complex decision making tasks?

The problems inherent to the exploration of high dimensional datasets are pri-

marily consequence of the well known curse of dimensionality phenomenon. On the
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one hand, the computational complexity of many algorithms grows exponentially in

the number of input dimensions, making it impossible to handle large datasets. On

the other hand, the fact that filling a space with data points is increasingly harder as

dimension grows can have a drastic impact on the statistical performance of the same

algorithms. For example, considering data points with a one-dimensional standard

normal distribution, 70% of the probability mass is contained in a sphere/interval

of radius one standard deviation (i.e., the [−1, 1] interval). For a ten-dimensional

standard normal, the same sphere will contain only 0.02% of the probability mass

and a radius of more than three standard deviations is needed to obtain again 70%.

As consequence, achieving the same level of accuracy with a particular algorithm will

require increasingly larger datasets for higher dimensions. It is this tradeoff between

manageable computational resources and good statistical accuracy that apparently

makes it seem impossible to ever fully explore such rich and complex datasets.

However, many real life signals that have high dimensional representations, and

thus appear complex, can actually be explained by only a few simple variables, as a

result of coherent structures in nature that lead to strong correlations between inputs.

In fact, it is often the case that the apparent complexity of the data is an artifact

of its representation and is not related with the actual complexity of the generating

process. For concreteness, consider a set of many images of a person’s face observed

under different pose and lighting conditions (see Figure 1.1). Mathematically these

images can be regarded as a collection of points in a high dimensional vector space,

with each input dimension corresponding to the lighting intensity of a particular

image pixel. Although the images dimensionality may be quite high (e.g., 4096 for

64 × 64 pixel images), its meaningful structure can actually be described by only

a few variables. In fact, the set of images lies on a three-dimensional manifold, or

constrained surface, that can be parameterized by two pose variables, the up-down

2



Figure 1.1: Sample images from a face database [103].

and the left-right rotations of the face, and by one lighting angle variable.

Understanding the aforementioned high dimensional data sets thus requires greatly

reducing the dimensionality of the inputs while preserving perceptual similarities in

their structure. This would allow for the efficient processing of the data, reveal-

ing structure and providing further insight about the process generating the data

set. All these concerns currently play a central role in several scientific fields: from

feature extraction in pattern recognition, manifold learning in machine learning, la-

tent variable selection in statistics, compression and coding in information theory, to

decentralized detection and estimation in wireless sensor networks.

The aim of this dissertation is the development of robust nonparametric methods

to access fundamental quantities characterizing high-dimensional data sets and its

consequences for the exploration of complex large scale signals.

1.2 Background and Previous Work

Analyzing high-dimensional data sets can be divided into two complementary

tasks.

On the one hand, by looking at a high-dimensional data set, one would like

to infer quantities that characterize its complexity. Two important quantities play

a central role in this assessment. One is the intrinsic dimension of the data that

”roughly” characterizes the number of independent variables needed to explain the

3



phenomenon originating the data. The other is the differential entropy of the data

points that ”roughly” measures the statistical information conveyed by the complex

signals.

On the other hand, complementary to the task described above, is the problem

of transforming the data into a more efficient representation by reducing its dimen-

sionality.

1.2.1 Entropy Estimation

Entropy, relative information and divergence measures play a central role in many

applications where they can be used as a discriminant between samples with different

characteristics. For example, the α-divergence between two probability densities f

and g is:

Dα(f ||g) =
1

α− 1
ln

∫

fα(x)g1−α(x)dx .

Dα(f ||g) measures the similarity between f and g in the sense thatDα(f ||g) ≥ 0 with

equality iff f = g almost everywhere. When α→ 1, the well known Kullback-Leibler

divergence is obtained, D1(f ||g) =
∫

fα(x) ln (fα(x)/gα(x)) dx.

Applications where such discriminants have a natural application include: texture

classification, feature clustering, image indexing or image registration, which are all

core problems in areas such as geographical information systems, medical information

processing, multi-sensor fusion and image content based retrieval. For example, the

mutual information method of image registration (see [63] and references therein)

searches through a set of coordinate transformations to find the one that minimizes

an the entropy of the joint feature distribution of the two images. In a similar

way, a statistical image retrieval algorithm (see [40]) searches trough a database of

images to choose the image whose feature distribution is the closest to the query

4



image in a minimum information divergence sense. Other applications in signal

processing include vector quantization [30] and entropy characterization of time-

frequency distribution [84].

As the data distribution is usually not known in advance, estimating entropy and

divergence from a finite number of data points is central to practical implementations

in the above mentioned applications. The problem of entropy estimation has long

been of interest to several comunities: e.g., the paper by Beirlant et al. [5] presents

a thorough survey on the subject of Shannon entropy estimation. When no good

parametric model of the features’ probability distribution is available, one has to re-

sort to non-parametric methods for entropy estimation. Most of the non-parametric

entropy estimation techniques proposed so far are based on estimation of the underly-

ing probability distribution with subsequent substitution (plug-in) of these estimates

into the entropy functional. These methods, however, suffer from severe drawbacks,

specifically: density estimator performance is poor without smoothness conditions;

large number of tunable parameters (e.g., kernel bandwidth, type of kernel, etc);

no unbiased estimators generally exist; density estimators have high variance and

are sensitive to outliers; the high dimensional integration required to evaluate the

entropy might be difficult. Motivated by this observation, a method was developed

in [39] that directly estimates the entropy functional without having to estimate the

probability distribution. The study of the performance of this type of non-parametric

direct entropy estimator can thus have a considerable impact in practical applica-

tions.

1.2.2 Intrinsic Dimension Estimation

The classical solution to the problem of intrinsic dimensionality estimation is

based on the linear projection paradigm [44]. The data set is projected on subspaces

5



of different dimensions and intrinsic dimensionality is chosen to be the corresponding

dimension of the subspace that provides the best fit. This is usually accomplished

by applying principal component analysis (PCA), factor analysis, or multidimen-

sional scaling (MDS). Of course, these methods assume that the data set can be

well approximated by a linear subspace embedded in the original high-dimensional

vector space. As they do not account for non-linearities, linear methods tend to

overestimate intrinsic dimension. Both nonlinear PCA [52] methods and the ISO-

MAP [103] try to circumvent this problem but they still rely on approximate and

costly estimates of the fitting residuals.

More sophisticated methods for intrinsic dimension estimation are conceptually

related to the estimation of the following functional of the density f of the data

points:

log

∫

B(y0,r)

g(f(y))µ(dy) , (1.1)

where g is a strictly increasing function and B(y0, r) is the ball of radius r centered

at y0. Under suitable regularity conditions on f and g, using the mean value theorem

results in:

log

∫

B(y0,r)

g(f(y))µ(dy) = m log r + c+ o(1) , (1.2)

where m is the data intrinsic dimensionality, c is a constant depending on f, g and

the volume of the unit sphere and o(1) → 0 when r → 0. By choosing different

functions g and radii r one can develop new estimators for the intrinsic dimension

m.

For example, by choosing g(u) = 1, then functional (1.1) can be estimated by

the number of points falling into B(y0, r). This is the motivation behind correlation

dimension methods [34,49]. If r is chosen adaptively according to the distance from

y0 to its k-nearest neighbor, Tk(y0), then (1.1) is given by k/n, the proportion of

6



Figure 1.2: Finding a low-dimensional embedding of a high-dimensional set.

samples within a radius Tk(y0) of y0. This is the starting point for earlier methods

for estimating intrinsic dimension based on k-nearest neighbor distances [82].

In [62], a similar approach is followed, but the (binomial) number of points falling

in B(y0, Tk(y0)) is approximated by a Poisson process, for samples uniformly distri-

buted over the manifold. Then, the intrinsic dimension is estimated by maximum

likelihood, resulting in the following estimate:

m̂y0
=

1

k − 1

k−1
∑

j=1

log
Tk(y0)

Tj(y0)
.

1.2.3 Dimensionality Reduction

The general problem of dimensionality reduction consists of finding a mapping ϕ

from a high-dimensional space X into a low-dimensional space Y , such that the new

representation of the data points in Y is simpler, but their description still preserves

the important information about the data for the task intended. See figure 1.2.

By itself, the problem of dimensionality reduction is ill-posed and some additional

constraints have to be imposed on ϕ. Depending on the application, different char-

acteristics of the data should be preserved, resulting in a set of possible constraints.

The classical approach to dimensionality reduction is based on projecting the
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data on lower dimensional linear subspaces, while trying not to discard too much

information. Principal component analysis and multidimensional scaling [44] achieve

this by choosing the subspaces that keep most of the variance in the observed data

set. Of course this will only provide a good representation of the original data set

if, in fact, relationships between different coordinates of the data are constrained to

linear functions. Kernel PCA [97] tries to circumvent this problem by adding extra

freedom for including linear combinations from a basis of nonlinear functions.

One way of explicitly allowing for nonlinear dependencies among the data, is

to assume that the data set lies on a lower dimensional manifold embedded in the

original high-dimensional space. The recent papers of Tenenbaum et al [103] and

Roweis and Saul [94] emphasized the usefulness of this approach, popularizing a new

research field within the machine learning community and coining the term manifold

learning. To keep the problem the most general possible in manifold learning, a fully

nonparametric approach is followed. In particular, one wishes to estimate the data

manifold or its lower dimensional embedding using only a finite number of points

randomly sampled from the manifold. Within the class of manifold learning algo-

rithms, many methods have been proposed in the past five years. They range from

Locally Linear Embedding (LLE) [94], Laplacian Eigenmaps [6], Hessian Eigenmaps

(HLLE) [26], Local Space Tangent Analysis [111], ISOMAP [103], or Semidefinite

Embedding (SDE) [107].

1.3 Contributions of Thesis

This thesis presents a unified framework for the analysis of high-dimensional data

sets through the use of random graphs. Originally motivated by computational and

implementation issues, we propose the use of graph constructions like minimal span-
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ning trees (MST) or k-nearest neighbor (k-NN) graphs to encode both statistical and

spatial information and address the problems of dimension reduction and structure

discovery in high-dimensional data. This leads to the theoretical study of the proper-

ties of such objects, like almost sure convergence of certain functionals of the graph,

convergence rates, etc. Closing the loop, we use these results to develop practical

estimators of quantities of interest, with provable statistical consistency.

Chapter 2 is concerned with power-weighted weight functionals associated with

a minimal graph spanning a random sample of n points from a general multivariate

Lebesgue density f over [0, 1]d. It is known that under broad conditions, the log of the

normalized functional is a strongly consistent estimator of the Rényi α-entropy. We

derive Lp-norm (r.m.s. for p = 2) convergence rates of this functional. In particular,

we show that over the space of compacted supported multivariate densities f such

that f ∈ Σd(β, L) (the space of Hölder continuous functions), 0 < β ≤ 1, the Lp-

norm convergence rate is bounded above by O
(

n−αβ/(αβ+1) 1/d)
)

. We obtain similar

rate bounds for minimal graph approximations implemented by a progressive divide-

and-conquer partitioning heuristic. We also obtain asymptotic lower bounds for

the respective rates of convergence, using minimax techniques from nonparametric

function estimation.

In Chapter 3, we study data sets that span a high-dimensional space but which

contain fundamental features that are concentrated on lower-dimensional subsets of

this space – curves, surfaces or, more generally, lower-dimensional manifolds. We

extend the convergence results for minimal graphs from Euclidean spaces to gen-

eral Riemannian manifolds. In particular, we develop a novel geometric probability

approach to the problem of estimating intrinsic dimension and entropy of manifold

data, based on asymptotic properties of graphs such as MST or k-NN graphs. Un-

like previous solutions to this problem, we are able to prove statistical consistency
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of the obtained estimators under weak assumptions of compactness of the manifold

and boundedness of the (Lebesgue) sampling density supported on the manifold.

The validity of these algorithms is shown by applying them to real data, such as

high-dimensional image databases of faces and handwritten digits.

Complementary to Chapter 3, Chapter 4 addresses the problem of finding appro-

priate “compact” representations for high-dimensional data, particularly suited for

classification tasks. Using k-NN graphs to encode the similarity between data points,

we formulate the nonlinear dimensionality reduction problem as global quadratic op-

timization. To regularize the problem, class dependent constraints are added to the

standard geometric constraints. This results in a framework that is applicable to

both supervised and semi-supervised learning problems.

In Chapter 5, we shift the focus from using random graphs to extract properties

of the sample distribution to using random graphs to extract spatial information.

In particular, this framework is useful for distributed data gathering networks, like

wireless sensor networks, where adjacency graphs can be used to model the spatial

dependencies among the data. We introduce a distributed weighted multidimen-

sional scaling algorithm that is applied to node localization in sensor networks. The

proposed algorithm naturally accounts for communication constraints in a network

scenario and derived bounds on communication costs show its superiority versus a

centralized approach. For the localization problem, using received signal-strength

(RSS) based range measurements, we demonstrate via simulation that location es-

timates are nearly unbiased with variance close to the Cramér-Rao lower bound.

Further, RSS and time-of-arrival (TOA) channel measurements are used to demon-

strate performance as good as the centralized maximum-likelihood estimator (MLE)

in a real-world sensor network.
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CHAPTER 2

Minimal Euclidean Graphs and Entropy

Estimation

2.1 Introduction

Consider a set of n points, Xn = {X1, . . . ,Xn}, obtained by randomly sampling

from a probability density f supported on the d-dimensional unit cube, [0, 1]d. For

example, each point X i can be a d-dimensional feature vector or an image with a

total of d-pixels (organized in the usual lexicographical order).

Often, the solution to several problems of practical interest involves considering

the points in Xn as vertices of a graph that captures the behavior of the system under

study. A graph is defined by its set of vertices, a subset of edges, E, of the set of all

O (n2) possible edges connecting every pair of vertices in the graph, and a function

w that assigns weight w(e) to edge e ∈ E.

A particular case of graph constructions that will be used throughout this thesis

are minimal graphs. These graphs are usually constructed by solving an optimization

problem aimed at finding a set of edges with total minimum weight, over a class of
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allowable graphs. More formally, this optimization problem can be written as

L(Xn) = min
E∈E(Xn)

∑

e∈E
w(e) , (2.1)

where E(Xn) is the class of allowable graphs over Xn, specified by the constraints in

the original problem. L(Xn) is called the total edge weight functional of class E(Xn).

When w(e) = |e|γ, where |e| is the Euclidean distance between the two vertices

that edge e connects and γ > 0 is an edge exponent or power-weighting constant,

the resulting graphs are called minimal Euclidean graphs. Examples of such graphs

constructions include, among others:

– the Euclidean traveling salesman problem (TSP). In the TSP the objective is to

find a graph of minimum weight among the set C of graphs that have exactly

one cycle that visits each point in Xn once. The resultant graph is called

the minimal TSP tour and its total edge weight functional is LTSPγ (Xn) =

minC∈C
∑

e∈C |e|γ. Construction of the TSP graph is NP-hard and arises in

many different areas of operations research [59].

– the minimal spanning tree (MST). In the MST problem the objective is to find a

graph of minimum weight among the graphs T which span the sample Xn. This

problem admits exact solutions which run in polynomial time and the total edge

weight functional of the MST is LMSTγ (Xn) = minT∈T
∑

e∈T |e|γ. MST’s arise

in areas including: pattern recognition [104]; clustering [110]; nonparametric

regression [3] and testing for randomness [42].

– the k-nearest neighbor graph (k-NNG). The k-NNG problem consists of finding

the set Nk,i of k-nearest neighbors of each point Xi in the set Xn−{Xi}. This

problem has exact solutions which run in linear-log-linear time and the total
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edge weight functional is Lk−NNG
γ (Xn) =

∑n
i=1

∑

e∈Nk,i
|e|γ. The k-NNG arises

in computational geometry [24], clustering and pattern recognition [93], spatial

statistics [22], and adaptive vector quantization [31].

Due to the key role that the total edge weight functional plays in the construction

of minimal graphs, it is of great interest to characterize its behavior. It has long

been known that, under the assumption of n independent identically distributed

(i.i.d.) vertices in [0, 1]d, the (suitably normalized) total edge weight functional of

certain minimal Euclidean graphs converges almost surely (a.s.), as the number of

vertices increases, to a limit which is a monotone function of the Rényi entropy of

the multivariate density f of the random vertices. Recall that the Rényi entropy or

α-entropy is defined as

Hα(f) =
1

1− α
log

∫

fα(x)dx .

Graph constructions that satisfy this convergence property include the TSP, MST,

k-NNG or the minimal matching graph (MMG), and their power-weighted variants.

See the recent books by Steele [100] and Yukich [109] for introduction to this subject.

An O(n−1/d) bound on the a.s. convergence rate of the normalized weight functional

of these and other minimal graphs was obtained by Redmond and Yukich [90, 91]

when the vertices are uniformly distributed over [0, 1]d.

In the present chapter we obtain bounds on Lp-norm (r.m.s. for p = 2) conver-

gence rates of power-weighted Euclidean total edge weight functionals for Lebesgue

densities f over [0, 1]d, for which f ∈ Σd(β, L), the space of Hölder continuous func-

tions with Lipschitz constant L and 0 < β ≤ 1, and f
1
2
− γ

d is integrable. Here the

integer dimension d is greater than one and γ ∈ (1, d) is an edge exponent which is

incorporated in the weight functional to taper the Euclidean distance between ver-
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tices of the graph (see next section for definitions). As a special case of Proposition 6,

we obtain a O
(

n−αβ/(αβ+1) 1/d)
)

upper bound on the r.m.s. convergence. This bound

implies a slower rate of convergence than the analogous O(n−1/d) rate bound proven

for uniform f by Redmond and Yukich [90, 91]. Furthermore, the rate constants

derived here suggest that slower convergence occurs when either the (Rényi) entropy

of the underlying density f or the Lipschitz constant L is large. We also derive

lower bounds on the respective convergence rates by recasting the problem as that

of estimating the Rényi entropy, or equivalently
∫

fα(x)dx, over the non-parametric

class of densities f ∈ Σd(β, L). For this, we use standard minimax techniques from

non-parametric function estimation. Corollary 13 constitutes the main result of this

chapter in the form of upper and lower bounds on the rates of convergence of any

continuous quasi-additive Euclidean functional.

We also obtain Lp-norm convergence rate bounds for partitioned approximations

to minimal graphs implemented by the following fixed partitioning heuristic: 1)

dissect [0, 1]d into a set of md cells of equal volumes 1/md; 2) compute minimal

graphs spanning the points in each non-empty cell; 3) stitch together these small

graphs to form an approximation to the minimal graph spanning all of the points

in [0, 1]d. Such heuristics have been widely adopted, e.g. see Karp [46], Ravi et

al. [88], and Hero and Michel [39], for examples. The computational advantage of

this partitioning heuristic comes from its divide-and-conquer progressive-resolution

strategy to an optimization whose complexity is non-linear in n: the partitioned

algorithm only requires constructing minimal graphs on small cells, each of which

typically contains far fewer than n points. In Proposition 8 we obtain bounds on

Lp-norm convergence rate and specify an optimal “progressive-resolution sequence”

m = m(n), n = 1, 2, . . ., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of weight
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functionals for signal processing applications such as image registration, nonlinear

dimensionality reduction, pattern matching and non-parametric entropy estimation,

see e.g. [18, 39–41, 70]. Beyond the signal processing applications mentioned above

these results may have important practical implications in adaptive vector quantizer

design, where the Rényi entropy is more commonly called the Panter-Dite factor

and is related to the asymptotically optimal quantization cell density [30, 71]. Fur-

thermore, as empirical versions of vector quantization can be cast as geometric lo-

cation problems [33], the asymptotics of adaptive VQ may be studied within the

present framework of minimal Euclidean graphs. Other applications of the conver-

gence rate results of this chapter include classical problems in Euclidean optimization

theory, computational geometry and operations research; for further details see [100]

and [109].

The outline of this chapter is as follows. In Section 2.2 we briefly review Red-

mond and Yukich’s unifying framework of continuous quasi-additive power-weighted

edge functionals. In Section 2.3 we give convergence rate upper bounds for such

functionals with general Holder continuous density f . In Section 2.4 we extend these

results to partitioned approximations. In Section 2.5 we derive lower bounds to the

convergence rates. Finally, in Section 2.6 we make a brief comment about nonpara-

metric estimation of the Rényi entropy. We also give an extension of the convergence

rate upper bounds to densities in a Sobolev class in Section 2.9.

2.2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959 [4], the

asymptotic behavior of the total edge weight functional of a minimal graph such as

the MST and the TSP over i.i.d. random points Xn = {X1, . . . ,Xn} as n→∞ has
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Figure 2.1: The MST on a random set of n = 128 samples in [0, 1]2.

been of great interest. See Figures 2.1 and 2.2 for an illustration of this behavior.

The monographs by Steele [100] and Yukich [109] provide two engaging presen-

tations of ensuing research in this area. Many of the convergence results have been

encapsulated in the general framework of continuous and quasi-additive Euclidean

functionals recently introduced by Redmond and Yukich [90]. This framework al-

lows one to relatively simply obtain asymptotic convergence rates once a graph total

edge weight functional has been shown to satisfy the required continuity and quasi-

additivity properties. We follow this framework in this chapter.

Let F be a finite subset of points in [0, 1]d, d ≥ 2. A real-valued function Lγ
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defined on F is called an Euclidean functional of order γ if it satisfies:

1. Translation invariance: ∀y ∈ Rd , Lγ(F ) = Lγ(F + y).

2. Homogeneity of order γ: ∀α > 0 , Lγ(αF ) = αγLγ(F ).

2.2.1 Continuous Quasi-additive Euclidean Functionals

Intuitively, a weight functional Lγ(Xn) of a minimal graph on [0, 1]d is a “continu-

ous quasi-additive” functional if it can be closely approximated by the the sum of the

weight functionals of minimal graphs constructed on a dense partition of [0, 1]d. The

following technical conditions on a Euclidean functional Lγ were defined in [90,109].

• Null condition: Lγ(φ) = 0, where φ is the null set.

• Subadditivity: Let Qm = {Qi}md

i=1 be a uniform partition of [0, 1]d into md

subcubes Qi with edges parallel to the coordinate axes having edge lengthsm−1

and volumes m−d and let {qi}md

i=1 be the set of points in [0, 1]d that translate

each Qi back to the origin such that Qi − qi has the form m−1[0, 1]d. Then

there exists a constant C1 with the following property: for every finite subset
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F of [0, 1]d

Lγ(F ) ≤ m−γ
md
∑

i=1

Lγ (m[F ∩Qi − qi]) + C1m
d−γ (2.2)

• Superadditivity: For the same conditions as above on Qi, m, and qi,

Lγ(F ) ≥ m−γ
md
∑

i=1

Lγ (m[F ∩Qi − qi]) (2.3)

• Continuity: There exists a constant C2 such that for all finite subsets F and

G of [0, 1]d,

|Lγ(F ∪G)− Lγ(F )| ≤ C2(card(G))(d−γ)/d, (2.4)

where card(G) is the cardinality of the subset G. Note that continuity implies

|Lγ(F )− Lγ(G)| ≤ 2C2(card(F 4G))(d−γ)/d, (2.5)

where F 4G = (F ∪G) \ (F ∩G) denotes the symmetric difference of sets F

and G.

The functional Lγ is said to be a continuous subadditive functional of order γ if it

satisfies the null condition, sudadditivity and continuity. Lγ is said to be a continuous

superadditive functional of order γ if it satisfies the null condition, superadditivity

and continuity.

For many continuous subadditive functionals Lγ on [0, 1]d there exists a dual or

boundary superadditive functional L∗γ. The dual functional satisfies two properties:

1) Lγ(F ) + 1 ≥ L∗γ(F ) for every finite subset F of [0, 1]d; and, 2) for i.i.d. uniform
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random vectors U 1, . . . ,Un over [0, 1]d,

∣

∣E[Lγ(U 1, . . . ,Un)]− E[L∗γ(U 1, . . . ,Un)]
∣

∣ ≤ C3n
(d−γ−1)/d (2.6)

with C3 a finite constant. The condition (2.6) is called the close-in-mean approxi-

mation in [109].

A stronger condition which is useful for showing convergence of partitioned ap-

proximations is the pointwise closeness condition

∣

∣Lγ(F )− L∗γ(F )
∣

∣ ≤ o
(

[card(F )](d−γ)/d
)

, (2.7)

for any finite subset F of [0, 1]d.

A continuous subadditive functional Lγ is said to be a continuous quasi-additive

functional if Lγ is continuous subadditive and there exists a continuous superadditive

dual functional L∗γ. We point out that the dual L∗γ is not uniquely defined. It has

been shown by Redmond and Yukich [90, 91] that the boundary-rooted version of

Lγ, namely, one where edges may be connected to the boundary of the unit cube

over which they accrue zero weight, usually has the requisite property (2.6) of the

dual. These authors have displayed duals and shown continuous quasi-additivity

and related properties for total edge weight functionals of the power weighted MST,

Steiner tree, TSP, k-NNG and others.

Independently of its specific definition, once an Euclidean functional is shown

to verify the continuous quasi-additive properties, its asymptotic behavior follows

immediately from an umbrella theorem:

Theorem ( [109, Theorem 7.1]). Let d ≥ 2 and 1 ≤ γ ≤ d − 1. Assume

X1, . . . ,Xn are i.i.d. sample points over [0, 1]d with Lebesgue density f . Then, for
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any continuous quasi-additive Euclidean functional Lγ of order γ,

lim
n→∞

Lγ(X1, . . . ,Xn)]/n
(d−γ)/d = βLγ ,d

∫

[0,1]d
f (d−γ)/d(x) dx

almost surely, where βLγ ,d is a constant independent of the distribution of {X i}.

Furthermore, the mean length E[Lγ(Xn)]/n(d−γ)/d converges to the same limit.

In [90,109] almost sure limits with a convergence rate upper bound of O
(

n−1/d
)

were obtained for continuous quasi-additive Euclidean functionals Lγ(U 1, . . . ,Un)

under the assumption of uniformly distributed points U 1, . . . ,Un and an additional

assumption that Lγ satisfies the “add-one bound”

• Add-one bound:

| E[Lγ(U 1, . . . ,Un+1)]− E[Lγ(U 1, . . . ,Un)] | ≤ C5n
−γ/d. (2.8)

The MST length functional of order γ satisfies the add-one bound. A slightly weaker

bound on a.s. convergence rate also holds when Lγ is merely continuous quasi-additive

[109, Ch.5]. The n−1/d convergence rate bound is exact for d = 2.

2.3 Convergence Rate Upper Bounds for General

Density

In this section we obtain upper bounds on the rate of convergence of E[Lγ(Xn)]/n(d−γ)/d

to its asymptotic limit, for points sampled from a probability distribution with Hölder

continuous Lebesgue density. For convenience we will focus on the case that Lγ is

continuous quasi-additive and satisfies the add-one bound, although some of the

following results can be established under weaker assumptions. Our method of ex-
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tension follows common practice [99, 100, 109]: we first establish convergence rates

of the mean E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d for piecewise constant densities and then

extend to arbitrary densities. Then we use a concentration inequality to obtain

Lp-norm convergence rates of Lγ(X1, . . . ,Xn)/n
(d−γ)/d.

2.3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel, whose proof is given

in Section 2.8.

Lemma 1. Let g(u) be a continuously differentiable function of u ∈ R which is

concave and monotone increasing over u ≥ 0. Then for any uo > 0

g(uo)−
g(uo)

uo
|∆| ≤ g(u) ≤ g(uo) + g

′

(uo)|∆| ,

where ∆ = u− uo and g
′
(u) = dg(u)/du.

A density f(x) over [0, 1]d is said to be a block density with md levels if for some

set of non-negative constants {φi}md

i=1 satisfying
∑md

i=1 φim
−d = 1,

f(x) =
md
∑

i=1

φi1Qi
(x)

where 1Q(x) is the set indicator function of Q ⊂ [0, 1]d and {Qi}md

i=1 is the uniform

partition of the unit cube [0, 1]d defined above.

Proposition 2. Let d ≥ 2 and 1 ≤ γ ≤ d−1. Assume X1, . . . ,Xn are i.i.d. sample

points over [0, 1]d whose marginal is a block density f with md levels and support

S ⊂ [0, 1]d. Then for any continuous quasi-additive Euclidean functional Lγ of order
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γ that satisfies the add-one bound (2.8)

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

≤ O
(

(nm−d)−1/d
)

,

where βLγ ,d is a constant independent of f . A more explicit form for the bound on

the right hand side is

O
(

(nm−d)−1/d
)

=























K1+C4

(nm−d)1/d

∫

S f
d−γ−1

d (x) dx (1 + o(1)) , d > 2

K1+C4+βLγ,d

(nm−d)1/d

∫

S f
d−γ−1

d (x) dx (1 + o(1)) , d = 2

.

Proof. Let ni denote the number of samples {X1, . . . ,Xn} falling into the partition

cell Qi and let {U i}i denote an i.i.d. sequence of uniform points on [0, 1]d. By

subadditivity, we have

Lγ(X1, . . . ,Xn) ≤ m−γ
md
∑

i=1

Lγ (m[{X1, . . . ,Xn} ∩Qi − qi]) + C1m
d−γ

= m−γ
md
∑

i=1

Lγ(U 1, . . . ,Uni) + C1m
d−γ

since the samples in each partition cell Qi are drawn independently from a condi-

tionally uniform distribution given ni. Note that ni has a Binomial B(n, φim
−d)

distribution.

Taking expectations on both sides of the above inequality,

E[Lγ(X1, . . . ,Xn)] ≤ m−γ
md
∑

i=1

E [E [Lγ(U 1, . . . ,Uni)|ni]] + C1m
d−γ . (2.9)

The following rate of convergence for quasi-additive edge functionals Lγ satisfying
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the add-one bound (2.8) has been established for 1 ≤ γ < d [109, Thm. 5.2],

|E[Lγ(U 1, . . . ,Un)]− βLγ ,dn
d−γ
d | ≤ K1n

d−1−γ
d , (2.10)

where K1 is a function of C1, C3 and C5.

Using the result (2.10) and subadditivity (2.9) on Lγ, for 1 ≤ γ < d we have

E[Lγ(X1, . . . ,Xn)] ≤ m−γ
md
∑

i=1

E

[

βLγ ,d n
d−γ
d

i +K1 n
d−γ−1

d
i

]

+ C1m
d−γ

= m−γβLγ ,d n
d−γ
d

md
∑

i=1

E

[

(ni
n

)
d−γ
d

]

+ m−γK1 n
d−γ−1

d

md
∑

i=1

E

[

(ni
n

)
d−γ−1

d

]

+C1m
d−γ . (2.11)

Similarly for the dual L∗γ it follows by superadditivity (2.3) and the close-in-mean

condition (2.6)

E[L∗γ(X1, . . . ,Xn)]

≥ m−γβLγ ,d n
d−γ
d

md
∑

i=1

E

[

(ni
n

)
d−γ
d

]

− m−γ(K1 + C3)n
d−γ−1

d

md
∑

i=1

E

[

(ni
n

)
d−γ−1

d

]

,

(2.12)

for 1 ≤ γ < d.

We next develop lower and upper bounds on the expected values in (2.11) and

(2.12). As the function g(u) = uν is monotone and concave over the range u ≥ 0 for

0 < ν < 1, from Lemma 1

(ni
n

)ν

≥ pνi − pν−1i

∣

∣

∣

ni
n
− pi

∣

∣

∣ , (2.13)

where pi = φim
−d. In order to bound the expectation of the above inequality we use
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the following bound

E
[∣

∣

∣

ni
n
− pi

∣

∣

∣

]

≤
√

E

[

∣

∣

∣

ni
n
− pi

∣

∣

∣

2
]

≤
√
pi√
n
.

Therefore, from (2.13),

E
[(ni

n

)ν]

≥ pνi − p
ν− 1

2
i /
√
n. (2.14)

By concavity, Jensen’s inequality yields the upper bound

E
[(ni

n

)ν]

≤
[

E
(ni
n

)]ν

= pνi (2.15)

Under the hypothesis 1 ≤ γ ≤ d − 1 this upper bound can be substituted into

expression (2.11) to obtain

E[Lγ(X1, . . . ,Xn)/n
(d−γ)/d]

≤ βLγ ,d

md
∑

i=1

φ
d−γ
d

i m−d +
K1

(nm−d)1/d

md
∑

i=1

φ
d−γ−1

d
i m−d +

C1
(nm−d)(d−γ)/d

= βLγ ,d

∫

S
f (d−γ)/d(x) dx+

K1

(nm−d)1/d

∫

S
f (d−γ−1)/d(x) dx+

C1
(nm−d)(d−γ)/d

.

(2.16)

Applying the bounds (2.15) and (2.14) to (2.12) we obtain an analogous lower

bound for the mean of the dual functional L∗γ

E[L∗γ(X1, . . . ,Xn)]/n
(d−γ)/d

≥ βLγ ,d

∫

S
f

d−γ
d (x) dx− βLγ ,d

(nm−d)1/2

∫

S
f

1
2
− γ

d (x) dx− K1 + C3
(nm−d)1/d

∫

S
f

d−γ−1
d (x) dx .

(2.17)
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By definition of the dual,

E[Lγ(X1, . . . ,Xn)]/n
d−γ
d ≥ E[L∗γ(X1, . . . ,Xn)]/n

d−γ
d − n−

d−γ
d (2.18)

which when combined with (2.17) and (2.16) yields the result

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]

n
d−γ
d

− βLγ ,d

∫

S
f

d−γ
d (x) dx

∣

∣

∣

∣

≤ K1 + C3
(nm−d)1/d

∫

S
f

d−γ−1
d (x) dx+

βLγ ,d

(nm−d)1/2

∫

S
f

1
2
− γ

d (x) dx

+
C1

(nm−d)(d−γ)/d
+ n−

d−γ
d . (2.19)

This establishes Proposition 2.

2.3.2 Mean Convergence Rate for Hölder Continuous Den-

sity Functions

To establish upper and lower bounds we adopt the setting of Hölder continuous

density functions.

Recall that the Hölder continuous class Σd(β, L) is defined by [53]

Σd(β, L) =
{

g : |g(z)− p
bβc
x (z)| ≤ L |x− z|β,x, z ∈ Rd

}

where pkx(z) is the Taylor polynomial (multinomial) of g of order k expanded about

the point x, |.| denotes a norm in Rd and bβc is defined as the greatest integer strictly

less than β. Σd(1, L) is the set of Lipschitz functions with Lipschitz constant L and

Σd(β, L) contains increasingly smooth functions as β increases.

Before extending Proposition 2 to this setting we will need to establish an ap-

proximation lemma for Hölder continuous functions.
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For Qm = {Qi}md

i=1 a uniform resolution-m partition as defined in Sub-section

2.2.1, define the resolution-m block density approximation φ(x) =
∑md

i=1 φi1Qi
(x)

of f , where φi = md
∫

Qi
f(x) dx. The following lemma establishes how close (in

L1([0, 1]
d) sense) these resolution-m block densities approximate functions in Σd(β, L).

Lemma 3. For 0 < β ≤ 1, let f ∈ Σd(β, L) have support S ⊂ [0, 1]d. Then there

exists a constant C6 > 0, independent of m, such that

∫

S
|φ(x)− f(x)| dx ≤ C4 Lm

−β. (2.20)

A proof of this lemma is given in Section 2.8.

Remark 1. Lemma 3 shows how close, in L1(Rd) sense, a function f ∈ Σd(β, L) can

be approximated by its resolution-m block density approximation. To extend the

results in this and the following sections to other classes of functions, all that it is

needed is an upper bound to the L1 approximation error similar to the one in (2.20).

In Section 2.9, we show how to do this for densities in the Sobolev space W 1,p(Rd),

1 ≤ p < ∞. The importance of Sobolev spaces derives from the fact that they

include functions that are not differentiable in the usual (strong) sense.

We can now return to the problem of finding convergence rate bounds on quasi-

additive Euclidean functionals for non-uniform density f . Let {X̃ i}ni=1 be i.i.d. ran-

dom vectors having marginal Lebesgue density equal to the block density approxi-
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mation φ. By the triangle inequality,

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]/n
d−γ
d − βLγ ,d

∫

S

f
d−γ
d (x) dx

∣

∣

∣

∣

(2.21)

≤
∣

∣

∣

∣

E[Lγ(X̃1, . . . , X̃n)]/n
d−γ
d − βLγ ,d

∫

S

φ
d−γ
d (x) dx

∣

∣

∣

∣

+ βLγ ,d

∣

∣

∣

∣

∫

S

φ
d−γ
d (x) dx−

∫

S

f
d−γ
d (x) dx

∣

∣

∣

∣

+
∣

∣

∣E[Lγ(X1, . . . ,Xn)]− E[Lγ(X̃1, . . . , X̃n)]
∣

∣

∣ /n
d−γ
d

= I + II + III

Term I can be bounded by Proposition 2. To bound II, consider the following

elementary inequality, which holds for a, b ≥ 0, 0 ≤ γ ≤ d,

∣

∣a(d−γ)/d − b(d−γ)/d
∣

∣ ≤ |a− b|(d−γ)/d,

and therefore, by Lemma 3 and Jensen’s inequality,

II ≤ βLγ ,d

∫

S
|φ(x)− f(x)| d−γd dx ≤ βLγ ,d C

′

4 L
(d−γ)/dm−β(d−γ)/d, (2.22)

where C
′

4 = C
(d−γ)/d
4 .

The following Lemma establishes an upper bound on term III in (2.21):

Lemma 4. Let d ≥ 2 and 1 ≤ γ ≤ d. Assume {X i}ni=1 are i.i.d. random vectors

over [0, 1]d with density f ∈ Σd(β, L), 0 < β ≤ 1, having support S ⊂ [0, 1]d. Let

{X̃ i}ni=1 be i.i.d. random vectors with marginal Lebesgue density φ, the resolution-m

block density approximation of f . Then, for any continuous quasi-additive Euclidean
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functional Lγ of order γ

∣

∣

∣
E[Lγ(X1, . . . ,Xn)]− E[Lγ(X̃1, . . . , X̃n)]

∣

∣

∣
/n

d−γ
d ≤ C ′2C

′
4 L

(d−γ)/dm−β(d−γ)/d,

(2.23)

where C ′2 = 2(2d−γ)/dC2.

Proof. As in equation (2.21), we denote the left hand side of (2.23) by III. First

invoke continuity (2.5) of Lγ

n(d−γ)/dIII ≤ 2C2E

[

card
(

{X1, . . . ,Xn} 4 {X̃1, . . . , X̃n}
)(d−γ)/d

]

.

To bound the right hand side of the above inequality we use an argument which is

discussed and proved in [99, Theorem 3]. There it is shown that if φ approximates

f in the L1(Rd) sense:
∫

S
|φ(x)− f(x)| dx ≤ ε,

then, by standard coupling arguments, there exists a joint distribution P for the pair

of random vectors (X, X̃) such that P{X 6= X̃} ≤ ε. It then follows by Lemma 3

and the set inequality {X1, . . . ,Xn} 4 {X̃1, . . . , X̃n} ⊆ ∪ni=1{X i} 4 {X̃ i} that

III ≤ 2C2E

[

card
(

∪ni=1{X i} 4 {X̃ i}
)(d−γ)/d

]

/n(d−γ)/d

≤ 2C2E





(

2
n
∑

i=1

1{
X i 6= ˜X i

}

)(d−γ)/d


 /n(d−γ)/d

≤ 2C2 (2nP{X1 6= X̃1})(d−γ)/d/n(d−γ)/d ≤ 2(2d−γ)/dC2 ε
(d−γ)/d,

where the second inequality follows from the fact card
(

{X i} 4 {X̃ i}
)

∈ {0, 2}.

Finally, by Lemma 3 we can make ε as small as C4 Lm
−β and still ensure that φ be

a block density approximation to f of resolution m.
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We can now substitute bounds (2.19), (2.22) and (2.23) in inequality (2.21) to

obtain

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d − βLγ ,d

∫

S
f(x)(d−γ)/d dx

∣

∣

∣

∣

(2.24)

≤ K1 + C3
(nm−d)1/d

(∫

S
f

d−1−γ
d (x) dx+ o(1)

)

+
βLγ ,d

(nm−d)1/2

(∫

S
f

1
2
− γ

d (x) dx+ o(1)

)

+
C1

(nm−d)(d−γ)/d
+

1

n(d−γ)/d
+ (βLγ ,d + C ′2)C

′
4 L

(d−γ)/dm−β(d−γ)/d

This bound is finite under the assumptions that f ∈ Σd(β, L) with support in S ⊂

[0, 1]d and that f
1
2
− γ

d is integrable over S.

The bound (2.24) is actually a family of bounds for different values ofm = 1, 2, . . ..

By selecting m as the function of n that minimizes this bound, we obtain the tightest

bound among them:

Proposition 5. Let d ≥ 2 and 1 ≤ γ ≤ d−1. Assume X1, . . . ,Xn are i.i.d. random

vectors over [0, 1]d with density f ∈ Σd(β, L), 0 < β ≤ 1, having support S ⊂ [0, 1]d.

Assume also that f
1
2
− γ

d is integrable over S. Then, for any continuous quasi-additive

Euclidean functional Lγ of order γ that satisfies the add-one bound (2.8)

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

≤ O
(

n−r1(d,γ,β)
)

,

where

r1(d, γ, β) =
αβ

αβ + 1

1

d

where α = d−γ
d
.

Proof. Without loss of generality assume that nm−d > 1. In the range d ≥ 2 and

1 ≤ γ ≤ d− 1, the slowest of the rates in (2.24) are (nm−d)−1/d and m−β(d−γ)/d. We

obtain anm-independent bound by selectingm = m(n) to be the sequence increasing
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in n which minimizes the maximum of these rates

m(n) = argmin
m

max
{

(nm−d)−1/d,m−β(d−γ)/d} .

The solution m = m(n) occurs when (nm−d)−1/d = m−β(d−γ)/d, or m = n1/[d(αβ+1)]

(integer part) and, correspondingly, m−β(d−γ)/d = n−
αβ

αβ+1
1
d . This establishes Propo-

sition 5.

To convert the mean convergence bound in Proposition 3 to a Lp convergence

bound requires application of a concentration inequality. Any Euclidean functional

Lγ of order γ satisfying the continuity property (2.4) also satisfies the concentration

inequality [109, Thm. 6.3] established by Rhee [92]:

P (|Lγ(X1, . . . ,Xn)− E[Lγ(X1, . . . ,Xn)]| > t) ≤ C exp

(−(t/C2)2d/(d−γ)
Cn

)

,

(2.25)

where C is a constant depending only on the functional Lγ and d. The concentration

inequality can also be used to bound the Lp moments

E[|Lγ(X1, . . . ,Xn)− E[Lγ(X1, . . . ,Xn)]|p]1/p , p = 1, 2, . . .

In particular, as for any r.v. Z: E[|Z|] =
∫∞
0
P (|Z| > t) dt, we have by (2.25)

E [|Lγ(X1, . . . ,Xn)− E[Lγ(X1, . . . ,Xn)]|p]

=

∫ ∞

0

P
(

|Lγ(X1, . . . ,Xn)− E[Lγ(X1, . . . ,Xn)]| > t1/p
)

dt

≤ C2C

∫ ∞

0

exp

(−t2d/[p (d−γ)]
Cn

)

dt

= Ap n
p (d−γ)/(2d) , (2.26)
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where Ap = C2C
p (d−γ)/(2d)+1 ∫∞

0
e−u

2d/[p(d−γ)]
du.

Combining the above with (2.24), we obtain

Proposition 6. Let d ≥ 2 and 1 ≤ γ ≤ d−1. AssumeX1, . . . ,Xn are i.i.d. random

vectors over [0, 1]d with density f ∈ Σd(β, L), 0 < β ≤ 1, having support S ⊂ [0, 1]d.

Assume also that f
1
2
− γ

d is integrable over S. Then, for any continuous quasi-additive

Euclidean functional Lγ of order γ that satisfies the add-one bound (2.8)

[

E

∣

∣

∣

∣

Lγ(X1, . . . ,Xn)/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

p]1/p

(2.27)

≤ K1 + C2
(nm−d)1/d

(∫

S
f

d−1−γ
d (x) dx+ o(1)

)

+
βLγ ,d

(nm−d)1/2

(∫

S
f

1
2
− γ

d (x) dx+ o(1)

)

+
C1

(nm−d)(d−γ)/d
+

1

n(d−γ)/d
+ (βLγ ,d + C ′2)C

′
4 L

(d−γ)/dm−β(d−γ)/d

+ A1/pp n−(d−γ)/(2d)

Proof. For any non-random constant µ, using Minkowski inequality, [E|W+µ|p]1/p ≤

[E|W |p]1/p + |µ|. Identify

µ = E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx (2.28)

W = (Lγ(X1, . . . ,Xn)− E[Lγ(X1, . . . ,Xn)])/n
(d−γ)/d (2.29)

and use (2.26) and (2.24) to establish Proposition 6.

As the m-dependence of the bound of Proposition 6 is identical to that of the

bias bound (2.24), minimization of the bound over m = m(n) proceeds analogously

to the proof of Proposition 5 and we obtain the following.

Corollary 7. Let d ≥ 2 and 1 ≤ γ ≤ d− 1. Assume X1, . . . ,Xn are i.i.d. random

vectors over [0, 1]d with density f ∈ Σd(β, L), 0 < β ≤ 1, having support S ⊂ [0, 1]d.

Assume also that f
1
2
− γ

d is integrable over S. Then, for any continuous quasi-additive
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Euclidean functional Lγ of order γ that satisfies the add-one bound (2.8)

[

E

∣

∣

∣

∣

Lγ(X1, . . . ,Xn)/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

p]1/p

≤ O
(

n−r1(d,γ,β)
)

,

(2.30)

where r1(d, γ, β) is defined in Proposition 5.

2.3.3 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Corollary 7 hold uniformly over the class of Lebesgue densities

f ∈ Σd(β, L) and integrable f (d−γ)/d−1/2. If α = (d − γ)/d ∈ [1/2, (d − 1)/d]

then, as the support S ⊂ [0, 1]d is bounded, this integrability condition is auto-

matically satisfied. To extend Corollary 7 to the range α ∈ ((d−1)/d, 1) would

require extension of the fundamental convergence rate bound of O
(

n−1/d
)

used

in (2.10), established by Redmond and Yukich [90], to the case 0 < γ < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems

of [109, Ch. 7] that if f is not a Lebesgue density then the convergence rates in

Proposition 6 hold when the region of integration S is replaced by the support

of the Lebesgue continuous component of f .

3. The convergence rate bound satisfies r1(d, γ, β) < 1/d, which corresponds to

Redmond and Yukich’s rate bound for the uniform density over [0, 1]d [109,

Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates for

non-uniform densities.

4. When f is piecewise constant over a known partition of resolution m = mo

faster rate of convergence bounds are available. For example, in Proposi-

tion 2 the bound in (2.19) is monotone increasing in m. Therefore the se-
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quence m(n) = mo minimizes the bound as n → ∞ and, proceeding in the

same way as in the proof of Proposition 6, the best rate bound is of order

max
{

n−(d−γ)/(2d), n−1/d
}

. As the O(n−1/d) bound on mean rate of conver-

gence is tight [109, Sec. 5.3] for d = 2 and uniform density f , it is concluded

that for α = (d − γ)/d ≥ 2/d the asymptotic rate of convergence of the left

hand side of (2.49) is exactly O(n−1/d) for piecewise constant f and d = 2.

5. For α = (d − γ)) ≥ 2/d, it can be shown that the rate bound of Proposition

2 remains valid even if Lγ does not satisfy the “add-one bound.” Thus, with

α ≥ 2/d, Corollary 7 extends to any continuous quasi-additive functional Lγ

including, in addition to the MST, the TSP, the minimal matching graph and

the k-nearest neighbor graph functionals. As for the case α < 2/d, we can use

a weaker rate of mean convergence bound [109, Thm. 5.1], which applies to all

continuous quasi-additive functionals and uniform f , in place of (2.10) in the

proof of Proposition 2 to obtain

∣

∣

∣

∣

E[Lγ(X1, . . . ,Xn)]/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣

∣

∣

∣

≤ O
(

n−
α

d/β+2

)

.

(2.31)

6. A tighter upper bound than Corollary 6 on the Lp-norm convergence rate may

be derived if a betterm-dependent analog to the concentration inequality (2.25)

can be found.
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2.4 Convergence Rates for Fixed Partition Ap-

proximations

Partitioning approximations to minimal graphs have been proposed by many

authors, including Karp [46], Ravi etal [89], Mitchell [66], and Arora [2], as ways

to reduce computational complexity. These algorithms use a “divide and conquer”

strategy: first, partition the data into a collection of disjoint sets; second, compute

the minimal graphs on each resulting set; and, finally, use the the total edge weight

functionals of the resulting graphs to approximate the desired global total edge weight

functional. The fixed partition approximation (i.e., non data-dependent) is a simple

example whose convergence rate has been studied by Karp [46,47], Karp and Steele

[48] and Yukich [109] in the context of a uniform density f .

Fixed partition approximations to a minimal graph weight function require spec-

ification of an integer resolution parameter m controlling the number of cells in the

uniform partition Qm = {Qi}mi=1 of [0, 1]d discussed in Section 2.2. When m is de-

fined as an increasing function of n we obtain a progressive-resolution approximation

to Lγ(Xn). This approximation involves constructing minimal graphs of order γ on

each of the cells Qi, i = 1, . . . ,md, and the approximation Lm
γ (Xn) is defined as the

sum of their weights plus a constant bias correction b(m)

Lmγ (Xn) =
md
∑

i=1

Lγ(Xn ∩Qi) + b(m), (2.32)

where b(m) is O
(

md−γ). In this section we specify a bound on the Lp-norm con-

vergence rate of the progressive-resolution approximation (2.32) and specify the op-

timal resolution sequence {m(n)}n>0 which minimizes this bound. Our derivations

are based on the approach of Yukich [109, Sec. 5.4] and rely on the concrete version
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of the pointwise closeness bound (2.7)

∣

∣Lγ(F )− L∗γ(F )
∣

∣ ≤























C[card(F )](d−γ−1)/(d−1), 1 ≤ γ < d− 1

C log card(F ), γ = d− 1 6= 1

C, d− 1 < γ < d

, (2.33)

for any finite F ⊂ [0, 1]d. This condition is satisfied by the MST, TSP and minimal

matching function [109, Lemma 3.7].

We first obtain a fixed-m bound on L1 deviation of Lm
γ (Xn)/n(d−γ)/d from its a.s.

limit.

Proposition 8. Let d ≥ 2 and 1 ≤ γ < d − 1. Assume that the Lebesgue density

f ∈ Σd(β, L), 0 < β ≤ 1, has support S ⊂ [0, 1]d. Assume also that f 1/2−γ/d are

integrable over S. Let Lm
γ (Xn) be defined as in (2.32) where Lγ is a continuous quasi-

additive functional of order γ which satisfies the pointwise closeness bound (2.33) and

the add-one bound (2.8). Then if b(m) = O(md−γ)

E

[∣

∣

∣

∣

Lmγ (Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

]

≤ O
(

max
{

(nm−d)−γ/[d(d−1)], m−β(d−γ)/d, n−(d−γ)/(2d)
})

(2.34)

Proof. Start with

E

[∣

∣

∣

∣

Lmγ (Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣

∣

∣

∣

]

(2.35)

≤ E

[∣

∣

∣

∣

Lγ(Xn)/n
d−γ
d − βLγ ,d

∫

S
f

d−γ
d (x)dx

∣

∣

∣

∣

]

+ E
[∣

∣Lmγ (Xn)− Lγ(Xn)
∣

∣

]

/n
d−γ
d .

Analogously to the proof of [109, Thm. 5.7], using the pointwise closeness bound

(2.33) one obtains a bound on the difference between the partitioned weight function
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Lmγ (F ) and the minimal weight function Lγ(F ) for any finite F ⊂ [0, 1]d

b(m)− C1m
d−γ ≤ Lmγ (F )− Lγ(F ) ≤ m−γC

md
∑

i=1

(card(F ∩Qi))
(d−γ−1)/(d−1)

+1 + C2m
d−γ + b(m) . (2.36)

As usual let φ(x) =
∑md

i=1 φim
−d be a block density approximation to f(x). As

{Xn ∩Qi}md

i=1 are independent and E[|Z|u] ≤ (E[|Z|])u for 0 ≤ u ≤ 1

E[
∣

∣Lmγ (Xn)− Lγ(Xn)
∣

∣]− |b(m)− C1m
d−γ| − 1− C2m

d−γ − b(m)

≤ m−γC
md
∑

i=1

E
[

(card(Xn ∩Qi))
(d−γ−1)/(d−1)

]

≤ m−γn(d−γ−1)/(d−1)C
md
∑

i=1

(φim
−d)(d−γ−1)/(d−1)

= mγ/(d−1)n(d−γ−1)/(d−1)C
md
∑

i=1

φ
(d−γ−1)/(d−1)
i m−d

= mγ/(d−1)n(d−γ−1)/(d−1)C

∫

S
φ(d−γ−1)/(d−1)(x)dx

Note that the bias term |b(m) − C1m
d−γ| can be eliminated by selecting b(m) =

C1m
d−γ . Dividing through by n(d−γ)/d, noting that

(

|b(m)− C1m
d−γ|+ C2m

d−γ + b(m)
)

/n(d−γ)/d ≤ B(nm−d)−(d−γ)/d

for some constant B,

E

[∣

∣

∣

∣

Lmγ (Xn)− Lγ(Xn)
n(d−γ)/d

∣

∣

∣

∣

]

(2.37)

≤ (nm−d)−γ/[d(d−1)] C

∫

S
φ(d−γ−1)/(d−1)(x) dx+ (nm−d)−(d−γ)/dB + n−(d−γ)/d .
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Combining this with Proposition 6 we can bound the right hand side of (2.36) to

obtain

E

[∣

∣

∣

∣

Lmγ (Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

]

≤ K1 + C3
(nm−d)1/d

(∫

S
f

d−1−γ
d (x) dx+ o(1)

)

+
βLγ ,d

(nm−d)1/2

(∫

S
f

1
2
− γ

d (x) dx+ o(1)

)

+
C1

(nm−d)(d−γ)/d
+

2

n(d−γ)/d
+ (βLγ ,d + C ′2)C

′
4 L

(d−γ)/dm−β(d−γ)/d + A1n
−(d−γ)/(2d)

+
C

(nm−d)γ/[d(d−1)]

(∫

S
f (d−γ−1)/(d−1)(x) dx+ o(1)

)

+ (nm−d)−(d−γ)/dB. (2.38)

Over the range 1 ≤ γ < d − 1 the dominant terms are as given in the statement of

Proposition 8.

Finally, by choosing m = m(n) to minimize the maximum on the right hand side

of the bound of Proposition 8 we have an analog to Corollary 7 for fixed partition

approximations:

Corollary 9. Let d ≥ 2 and 1 ≤ γ < d − 1. Assume that the Lebesgue density

f ∈ Σd(β, L), 0 < β ≤ 1, has support S ⊂ [0, 1]d. Assume also that f 1/2−γ/d is

integrable over S. Let Lm
γ (Xn) be defined as in (2.32) where Lγ is a continuous

quasi-additive functional of order γ which satisfies the pointwise closeness bound

(2.33) and the add-one bound (2.8). Then if b(m) = O(md−γ)

E

[∣

∣

∣

∣

Lm(n)γ (X1, . . . ,Xn)/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

]

≤ O
(

n−r2(d,γ,β)
)

,

(2.39)

where

r2(d, γ, β) =
αβ

d−1
γ
αβ + 1

1

d
,

where α = d−γ
d
. This rate is attained by choosing the progressive-resolution sequence
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m = m(n) = n1/[d(
d−1
γ

αβ+1)].

2.4.1 Discussion

We make the following remarks.

1. Under the assumed condition γ < d− 1 in Corollary 9, r2(d, γ, β) ≤ r1(d, γ, β),

where r1(d, γ, p) is defined in Corollary 7. Thus, as might be expected, the

partitioned approximation has a Lp-norm convergence rate (2.39) that is always

slower than the rate bound (2.49), and the slowdown increases as (d − 1)/γ

increases.

2. In view of (2.38), up to a monotonic transformation, the rate constant multiply-

ing the asymptotic rate n−r2(d,γ,β) is an increasing function of
∫

S f
(d−γ−1)/(d−1)(x)dx,

which is the Rényi entropy of f of order (d− γ − 1)/(d− 1). Thus fastest con-

vergence can be expected for densities with small Rényi entropy.

3. It is more tedious but straightforward to show that the L2 deviation

E

[

∣

∣

∣

∣

Lmγ (Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

2
]1/2

obeys the identical asymptotic rate bounds as in Proposition 8 and Corollary

9 with identical bound minimizing progressive-resolution sequence m = m(n).

4. As pointed out in the proof of Proposition 8 the bound minimizing choice

of the bias correction b(m) of the progressive-resolution approximation (2.32)

is b(m) = C1m
d−γ , where C1 is the constant in the subaddivity condition

(2.2). However, Proposition 8 asserts that, for example, using b(m) = Cmd−γ

with arbitrary scale constant C, or even using b(m) = 0, are asymptotically
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equivalent to the bound minimizing b(m). This is important since the constant

C1 is frequently difficult to determine and depends on the specific properties

of the minimal graph, which are different for the TSP, MST, etc.

5. The partitioned approximation (2.32) is a special case k = n of the greedy ap-

proximation to the k-point minimal graph approximation introduced by Ravi

etal [88] whose a.s. convergence was established by Hero and Michel [39] (Note

that the overly strong BV condition assumed in [39] can be considerably weak-

ened by replacing BV space with Hölder space and applying Lemma 3 of this

paper). Extension of Proposition 8 to greedy approximations to k-point graphs

is an open problem.

2.5 Convergence Rate Lower Bounds

In this section we derive lower bounds for the convergence rates of minimal

graphs based on minimax estimation theory. While these bounds are not gener-

ally tight lower bounds, they indicate a performance margin between graph es-

timators and minimax estimators of entropy. Our results can be obtained as an

application of the general theory developed by Birgé and Massart in [10] for obtain-

ing lower bounds on the minimax risk of nonparametric estimation of a functional

T (f) =
∫

ϕ(f(x), f ′(x), . . . , f (k)(x), x) dx. In fact, Proposition 12, in this section,

can be derived as a corollary to Theorem 3 in [10], after some suitable modifications

as suggested in Remark 3 of that paper. However, for the benefit of the reader, we

provide a more elementary and self contained proof of the lower bound in the sequel,

which applies to the specific functional of form (2.40).

Define

Iα(f) =

∫

fα(x) dx . (2.40)
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From Sections 2.2 and 2.3, Lγ(X1, . . . ,Xn)/n
(d−γ)/d is a (strongly) consistent esti-

mator of Iα(f) for α = d−γ
d
. Thus, it is natural to recast our problem as that of

estimating Iα(f) over the nonparametric class of densities f ∈ Σd(β, L).

Let Îα be an estimator of Iα(f) (0 < α < 1) based on a sample of n i.i.d. observa-

tions from a density f . To access the “quality” of Îα we adopt the usual (nonpara-

metric) minimax risk criterion, i.e., we look at supf∈F E|Îα− Iα(f)|p, the worst case

performance of Îα over a known class of densities F , for a choice of p ≥ 1. Under this

criterion it is natural to ask what is the minimum achievable risk for any estimator,

i.e., what is

inf
Îα

sup
f∈F

E|Îα − Iα(f)|p ,

where the infimum is taken over all estimators of Iα(f), as this quantifies the best

performance possible for any estimator. Of course, as Lγ(X1, . . . ,Xn)/n
α is valid

estimator of Iα(f), this will also yield a lower bound to the convergence rates of

interest. The rest of this section is devoted to deriving these (asymptotic) bounds

using standard minimax techniques.

2.5.1 Notation

In the following, we will take the class F as the set of multivariate Lebesgue

densities defined on the unit cube [0, 1]d (d ≥ 1), belonging to the Hölder class of

functions Σd(β, L).

We will also use the affinity ‖P ∧Q‖ between measures P and Q defined by:

‖P ∧Q‖ = 1− 1

2
‖P −Q‖1 (2.41)
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where ‖P‖1 is the total variation norm of P defined as

‖P‖1 = sup
|f |≤1

∣

∣

∣

∣

∫

f dP

∣

∣

∣

∣

and the supremum is taken over all measurable functions f bounded by 1. If P and

Q are absolutely continuous w.r.t. a measure µ, with densities p and q, respectively,

then ‖P −Q‖1 =
∫

|p− q| dµ. In this case, we will write ‖p− q‖1 for ‖P −Q‖1 and

‖p∧ q‖ for ‖P ∧Q‖. Also, write pn as shorthand notation for
∏n

i=1 p(xi), the density

of the product measure ⊗nP .

Finally, write co(F) to denote the convex hull of F .

2.5.2 Lower Bounds

In order to get lower bounds for the minimax risk, the usual technique is to

build, for every n, a subset F0,n ⊂ F of finite cardinality, such that the problem of

estimating Iα(f) over F0,n is essentially as difficult as the full problem. Assouad’s

lemma or Fano’s lemma are the commonly used tools to address such constructions

[43]. However, in the case of entropy estimation (as well as many other functional

estimation problems, [108], [61]), these methods only give the trivial lower bound

zero. We will thus rely on a result by Le Cam (see for example [108]) that relates

the minimax risk to a testing problem between two sets of hypothesis, whose convex

hulls are “well” separated in a total variation distance sense. Below is a simplified

version of this result suitable for our needs (for a simple proof see [108]):

Lemma 10. Let Î be an estimator of I(f)1 based on n i.i.d. observations from a

density f ∈ F . Suppose that there are subsets G1 and G2 of G = {fn : f ∈ F} that

are 2δ-separated, in the sense that, |I(f1)− I(f2)| ≥ 2δ for all fn1 ∈ G1 and fn2 ∈ G2.
1From now on, we will omit the subscript α from Îα and Iα(f), unless necessary.
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Then

sup
f∈F

E|Î − I(f)| ≥ δ · sup
pi ∈ co(Gi)

‖p1 ∧ p2‖ .

We will apply Lemma 10 to the usual small perturbations of the uniform density,

u, on [0, 1]d. Towards this goal, fix g ∈ Σd(β, 1) with support in [0, 1]d such that
∫

g(x) dx = 0, ‖g‖22 =
∫

g2(x) dx > 0 and |g(x)| ≤ M . Let {Qj}md

j=1 be the uniform

resolution-m partition and {xj}md

j=1 be the set of points in [0, 1]d that translate each

Qj back to the origin, as defined in Sub-section 2.2.1. Let gj(x) = g (m(x− xj)).

For λ ∈ Λ = {−1, 1}md
, define the perturbation of u as

fλ(x) = 1 +
md
∑

j=1

L

2
m−β λj gj(x) (2.42)

It is easy to see that
∫

fλ(x) dx = 1, fλ ∈ Σd(β, L) and, for m large enough, f ≥ 0.

Hence (for m sufficiently large) f ∈ F .

We can now apply Lemma 10 to the sets G1 = {un} and G2 = {fnλ : λ ∈ Λ}. We

will start by determining the 2δ-separation between G1 and G2. Consider the second

order Taylor expansion

(1 + y)α = 1 + αy +
1

2
α(α− 1) ξα−2y2 ,

where ξ lies between 1 and 1 + y. This implies that

∫

fαλ (x) dx− 1 =
md
∑

j=1

∫

Qj

(

1 +
L

2
m−β λj gj(x)κ

)α

dx− 1

=
1

2

(

L

2

)2

α(α− 1)m−2β
md
∑

j=1

∫

Qj

ξα−2(x)g2j (x) dx , (2.43)

where 1 − M L
2
m−β ≤ ξ(x) ≤ 1 + M L

2
m−β. Inserting these bounds in equation
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(2.43), we have

1

2

(

L

2

)2

α(α− 1) ‖g‖2m−2β
(

1−M
L

2
m−β

)α−2
≤
∫

fαλ (x) dx− 1

≤ 1

2

(

L

2

)2

α(α− 1) ‖g‖2m−2β
(

1 +M
L

2
m−β

)α−2
,

which essentially means that
∫

fαλ (x) dx− 1
.
= m−2β. We can now use this result to

conclude that, for any λ ∈ Λ and m sufficiently large,

|I(fnλ )− I(un)| =
∣

∣

∣

∣

∫

fαλ (x) dx− 1

∣

∣

∣

∣

≥ 2C m−2β = 2δ , (2.44)

for some constant C > 0.

We next derive a lower bound for suppi ∈ co(Gi) ‖p1∧p2‖, or equivalently, by (2.41),

an upper bound on ‖p1 − p2‖1. To this end, let hn = 2−m
d∑

λ∈Λ f
n
λ ∈ co(G2). The

following Lemma provides the required result:

Lemma 11.

‖un − hn‖21 ≤ exp

{

1

2

(

L

2
‖g‖2

)4

n2m−(4β+d)
}

− 1 . (2.45)

A proof of this Lemma is given in Section 2.8.

Plugging the bounds from equations (2.44) and (2.45), together with (2.41), into

Lemma 10 gives us a family of lower bounds, for different values of m:

sup
f∈F

E|Î − I(f)| ≥ 1

2
C m−2β ·

(

3− exp

{

1

2

(

L

2
‖g‖2

)4

n2m−(4β+d)
})

. (2.46)

We can now choose m = m(n) in order to maximize this bound. This can easily

be done by inspection: the first term on the RHS of (2.46) should be as large as

possible, i.e., m should be as small as possible; however, such a choice will make
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the second term on the RHS of (2.46) negative, rending this bound useless. Hence,

under this constraint, a choice for m that maximizes the bound is:

m =









{

√

1

2

(

L

2
‖g‖2

)2

n

} 2
4β+d









, (2.47)

where the constants multiplying n in the previous expression guarantee the positivity

of the second term on the RHS of (2.46). Finally, inserting this optimum choice for

m into (2.46) and using Jensen’s inequality, gives us the desired lower bound:

Proposition 12. For Fβ,L = {f : f is a Lebesgue density on [0, 1]d and f ∈ Σd(β, L)},

p ≥ 1 and n sufficiently large, there exists a constant c = c(β, L, d, α) > 0 such that

inf
Îα

sup
f∈Fβ,L

[

E|Îα − Iα(f)|p
]1/p

≥ c n−
4β

4β+d , (2.48)

where the infimum is taken over all estimators Îα of Iα(f) based on n i.i.d. observa-

tions from density f .

We make the following comments about this proposition.

1. For sufficiently smooth densities, i.e., for β ≥ d/4, we have 4β/(4β + d) ≥ 1/2.

This is the usual
√
n-rate of convergence for regular parametric problems. This

suggests that the lower bound in Proposition 12 can be replaced by

inf
Îα

sup
f∈Fβ,L

[

E|Îα − Iα(f)|p
]1/p

≥ c n−(
4β

4β+d
∧ 1

2) .

2. It was shown in [10], for β ≥ d/4, that there exists an estimator that achieves

the
√
n-rate, for densities bounded from above and bounded from below by

some positive constant. In [50], Kerkyacharian and Picard closed the problem

by showing that the corresponding rates for β < d/4 are also achievable. Such
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estimators are based on corrections, up to second or third order, of a prelim-

inary plug-in estimator T (f̂), where f̂ is a nonparametric density estimate of

f , based on a small part of the sample. However, these type of estimators are

of little use in a practical high-dimensional setting, as multivariate integration

and density estimation became unmanageable in a high dimensional space.

3. If, instead of the Rényi entropy, we were interested in the Shannon entropy

H1(f) = −
∫

f(x) log f(x) dx, the same rates would be obtained. This can be

seen by considering the second order Taylor expansion,

(1 + y) log(1 + y) = y +
1

2
ξ−1 y2

and following the same steps as for Iα(f). In [58], Laurent exhibits an efficient

estimator of this entropy, for densities defined on a compact set of the real line

with smoothness parameter β ≥ 1/4, that achieves the
√
n-rate on densities

bounded away from zero on their domain.

Now, combining Proposition 12 with Corollary 7, we obtain upper and lower

bounds for the convergence rates of minimal Euclidean graphs:

Corollary 13. Let d ≥ 2 and 1 ≤ γ ≤ d− 1. Assume X1, . . . ,Xn are i.i.d. random

vectors with density f ∈ Fβ,L, β ∈ (0, 1]. Assume also that f
1
2
− γ

d is integrable. Then,

for any continuous quasi-additive Euclidean functional Lγ of order γ that satisfies

the add-one bound (2.8), there exist positive constants c, C, depending on β, L, d and

γ such that for n sufficiently large

c n−(
4β

4β+d) ≤ sup
f∈Fβ,L

[

E

∣

∣

∣

∣

Lγ(X1, . . . ,Xn)/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣

∣

∣

∣

p]1/p

≤ Cn−r1(d,γ,β) , (2.49)
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where r1(d, γ, β) is defined in Proposition 5.

There is a big gap between the lower and upper bound in (2.49). For example,

for small β or large d, the lower bound rate exponent is at least 4 times faster than

the corresponding upper bound rate.

We do not believe that the bounds of Corollary 13 are the tightest possible

bounds. On the one hand, the derivation of the upper bound is based on a cou-

pling argument (see proof of Proposition 4) which may over estimate the error. On

the other hand, the derivation of the lower bounds was solely based on minimax argu-

ments that do not account for the intrinsic geometric structure of minimal Euclidean

graphs.

2.6 Performance of Minimal Graph and Plug-in

Entropy Estimators

In this section we derive upper bounds for the maximum risk of plug-in estimators,

based on first estimating the density and then plug it in the entropy functional, and

compare to minimal-graph based estimators of entropy.

We consider entropy estimates of the form Ĥα = (1 − α)−1 log Îα, where Îα is a

consistent estimator of Iα(f) =
∫

fα(x) dx. By a standard perturbation analysis of

lnx,

|Ĥα −Hα(f)| =
1

1− α

|Îα − Iα(f)|
Iα(f)

+ o(|Îα − Iα(f)|) .

Thus, as Iα(f) is bounded away from zero uniformly over the class F (i.e., inff∈F Iα(f) > 0),

the asymptotic rate of convergence of Ĥα−Hα(f), as a function of n, will be identical

to that of Îα − Iα(f).

Let f̂ be a density estimate of f based on n i.i.d. observations (from density f).
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We have the following upper bound for plug-in estimators Iα(f̂):

Proposition 14. For F as defined in Proposition 12,

sup
f∈F

E
∣

∣

∣
Iα(f̂)− Iα(f)

∣

∣

∣
≤ C1 n

− αβ
2β+d (2.50)

for C1 = C1(β, L, d) > 0.

Proof. The proof relies on the well known minimax rates for density estimation

available in the literature (see, for example, [72]). Specifically, these rates are of

order O
(

n−β/(2β+d)
)

, i.e.,

sup
f∈F

E

∫

|f̂(x)− f(x)| dx ≤ C1 n
− β

2β+d

for the best estimators f̂ (for example, wavelet thresholding based estimators).

Using the above result, the inequality |aα−bα| ≤ |a−b|α (a, b ≥ 0) and successive

applications of Jensen’s inequality yield the desired result,

E
∣

∣

∣Iα(f̂)− Iα(f)
∣

∣

∣ ≤ E

∫

∣

∣

∣f̂(x)− f(x)
∣

∣

∣

α

dx ≤ E

[∫

∣

∣

∣f̂(x)− f(x)
∣

∣

∣ dx

]α

≤
[

E

∫

∣

∣

∣
f̂(x)− f(x)

∣

∣

∣
dx

]α

≤ C1 n
− αβ

2β+d

For Îα denoting the minimal graph estimator of Iα(f), we have from Proposition

6 the following result:

Proposition 15. For F as defined in Proposition 12, with 0 < β ≤ 1, 1/2 ≤ α ≤

(d− 1)/d,

sup
f∈F

E
∣

∣

∣Îα − Iα(f)
∣

∣

∣ ≤ C2 n
− αβ

αβ+1
1
d (2.51)
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for C2 = C2(β, L, d, α) > 0.

Comparing Propositions 14 and 15, it can be seen that upper bound in (2.51) is

smaller than (2.50) for α < 2/d. This shows that for small values of α, graph based

estimators of entropy will have a faster convergence rate. For other values of α, the

looseness of the bound in (2.51) does not allow to reach any conclusion.

2.7 Conclusion

In this chapter we have given upper and lower bounds on the convergence rates

for length functionals of minimal-graphs satisfying continuous quasi-additivity con-

ditions, for general multivariate densities of the vertices. These bounds make explicit

the dependency of the approximation error not only as a function of the number of

samples, n, but also in terms of the dimension of the space, d, and the underlying

class of densities. These results may be useful for exploring the asymptotic behavior

of minimal graphs, e.g., for estimation of Rényi divergence, Rényi mutual informa-

tion, and Rényi Jensen difference [40]. For example, by studying how the constants

involved in the bounds depend on the graph constructions, one could compare the

performance of different graphs, e.g., MST, k-NNG, etc, for entropy estimation in

the finite sample size case.

There are still many open problems that remain to be studied. Of great interest is

the extension of these results to k-point graphs (such as the k-MST), as, not only do

they provide robustness against outliers, but they also have a natural application to

unsupervised clustering. Also, to complete the results given in this paper, it would

be interesting to extend the rate bounds to smoother Hölder continuous densities

(i.e., β > 1). With regards to future applications, we feel that these methods can

be applied in problems such as independent component analysis (ICA) or clustering
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techniques. Finally, establishing general weak convergence results, e.g., a central

limit theorem, for these types of minimal graphs could have a significant impact in

applications such as hypothesis testing and goodness of fit tests.

2.8 Appendix: Proofs of Technical Lemmas

Proof of Lemma 1. Since g(u) is concave the tangent line y(u)
def
= g(uo)+g

′
(uo)(u−uo)

upper bounds g. Hence

g(u) ≤ g(uo) + g
′

(uo)|u− uo| .

On the other hand, as g is monotone and concave, the function z(u)
def
= g(uo)+

g(uo)
uo

(u−

uo)1{u≤uo} is a lower bound on g, where 1{u≤uo} is the indicator function of the set

{u ≤ uo}. Hence,

g(u) ≥ g(uo)−
g(uo)

uo
|u− uo| .

Proof of Lemma 3. By the mean value theorem, there exist points ξi ∈ Qi such that

φi = md

∫

Qi

f(x)dx = f(ξi) .

Note that, in what follows, |.| means both the absolute value in R and any norm in

Rd. Using now the fact that f ∈ Σd(β, L),

∫

S
|φ(x)− f(x)|dx =

md
∑

i=1

∫

Qi

|f(ξi)− f(x)|dx ≤
md
∑

i=1

∫

Qi

L |x− ξi|βdx .

As x, ξi ∈ Qi, a sub-cube with edge length m−1,
∫

Qi
|x−ξi|βdx = O(m−β−d). Thus,

51



we have
∫

S
|φ(x)− f(x)|dx ≤ C Lm−β .

Proof of Lemma 11. This proof is inspired by [83]. Define

Gi(λ) = G(X i,λ) =
md
∑

j=1

L

2
m−βλjgj(X i) =

L

2
m−βλtg(X i)

where λ = (λ1, . . . , λmd)t ∈ Λ and g = (g1, . . . , gmd)t. Define also

τi(λ,µ) = EunGi(λ)Gi(µ)

for λ,µ ∈ Λ. Note that, as
∫

g(x)dx = 0,

EunGi(λ) = 0 , (2.52)

and due to identically distributed samples assumption, τi(λ,µ) = τ1(λ,µ).

Now, rewrite hn as:

hn =
∑

λ∈Λ
2−m

d

fnλ =
∑

λ∈Λ

wλ

n
∏

i=1

(1 +Gi(λ))

=
∑

λ∈Λ

wλ

(

1 +
∑

i

Gi(λ) +
∑

i<j

Gi(λ)Gj(λ) +
∑

i<j<k

Gi(λ)Gj(λ)Gk(λ) + . . .

)

where wλ = 2−m
d
.
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Using Jensen’s inequality,

‖hn − un‖21 = (Eun |hn − 1|)2 ≤ Eun |hn − 1|2

= Eun







∑

λ,µ∈Λ

wλwµ

(

∑

i

Gi(λ) +
∑

i<j

Gi(λ)Gj(λ) + . . .

)(

∑

i

Gi(µ)+

+
∑

i<j

Gi(µ)Gj(µ) + . . .

)}

(2.53)

Expanding out the product in (2.53), due to independence and (2.52), only the

terms where each factor Gi(λ) is paired with a corresponding Gi(µ) will survive. All

other terms with an isolated factor will be zero. The simplified result is

Eun|hn − 1|2 =
∑

λ,µ∈Λ

wλwµ

(

∑

i

τi(λ,µ) +
∑

i<j

τi(λ,µ)τj(λ,µ) + . . .

)

=
∑

λ,µ∈Λ

wλwµ (1 + τ1(λ,µ))
n − 1 (2.54)

Regarding the double sum in (2.54) as an expectation of a pair of independent random

variables λ and µ, each distributed according to a uniform prior in Λ, we get the

following bound for the total variation norm:

‖hn − un‖21 ≤ E (1 + τ1(λ,µ))
n − 1 ≤ E exp{n τ1(λ,µ)} − 1 , (2.55)

where the last inequality comes from ex ≥ 1 + x.

Now, note that the functions gi have disjoint supports and, so, are orthogonal in

the sense that Eugi(X1)gj(X1) = 0, for i 6= j. Thus, we have

τ1(λ,µ) =

(

L

2
m−β

)2

λtEun
{

g(X1)g
t(X1)

}

µ = σ2 λtµ ,
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with σ2 =
∫ (

L
2
m−βg1(x)

)2
dx =

∫ [

L
2
m−βg(m(x− x1))

]2
dx =

(

L
2
‖g‖2

)2
m−(2β+d),

where ‖g‖22 =
∫

g2(x)dx. Equation (2.55) simplifies to

‖hn − un‖21 ≤ E exp{nσ2 λtµ} − 1 .

The above expectation is easy to compute because the choice of a uniform prior on

Λ makes the coordinates λi independent, taking values +1 and −1 with probability

1/2:

E exp{nσ2 λtµ} =
(

1

2
enσ

2

+
1

2
e−nσ

2

)md

≤ exp

{

1

2
md (nσ2)2

}

.

Lemma 11 now follows.

2.9 Appendix: Convergence Rates for Sobolev Den-

sities

In this Appendix we will introduce some concepts from the theory of Sobolev

spaces and then show how to extend the previous results on convergence rate bounds

to densities in the Sobolev class.

Let Lp(Rd) be the space of measurable functions over Rd such that ‖f‖p =

(
∫

|f(x)|pdx)1/p < ∞. For f a real valued differentiable function over Rd, let

Dxjf = ∂f/∂xj be the xj-th partial derivative of f , and Df = [∂f/∂x1, . . . , ∂f/∂xd]

be the gradient of f . The concept of derivative can be extended to non-differentiable

functions. For f ∈ L1(Rd), g is called the xj-th weak derivative of f [114], written

as g
def
=Dxjf if

∫

Rd

f(x)Dxjϕ(x)dx = −
∫

Rd

g(x)ϕ(x)dx
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for all functions ϕ infinitely differentiable with compact support. The weak derivative

g is sometimes called the generalized derivative of f or distributional derivative of f .

If f is differentiable, then its weak derivative coincides with the (usual) derivative.

We now define a function space whose members have weak derivatives lying in

the Lp(Rd) spaces [114]. For p ≥ 1, define the Sobolev space

W 1,p(Rd) = Lp(Rd) ∩ {f : Dxjf ∈ Lp(Rd), 1 ≤ j ≤ d} .

The space W 1,p is equipped with a norm

‖f‖1,p = ‖f‖p + ‖Df‖p .

The Sobolev spaceW 1,p(Rd) is a generalization of the space of continuously differ-

entiable functions, in the sense that W 1,p(Rd) contains functions that do not have to

be differentiable (in the usual sense), but can be approximated arbitrarily close in the

‖.‖1,p norm by infinitely differentiable functions with compact support ( [114, Thm.

2.3.2]).

Let φ be the resolution-m block density approximation of f , as defined in section

2.3.2. The following lemma establishes how close (in L1(Rd) sense) these resolution-

m block densities approximate functions in W 1,p(Rd).

Lemma 16. For 1 ≤ p <∞, let f ∈ W 1,p(Rd) have support S ⊂ [0, 1]d. Then there

exists a constant C > 0, independent of m, such that

∫

S
|φ(x)− f(x)|dx ≤ Cm−1(‖Df‖p + o(1)) . (2.56)

Proof. First assume that f is a continuously differentiable function. By the mean
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value theorem, there exist points ξi ∈ Qi such that

φi = md

∫

Qi

f(x)dx = f(ξi) .

Also by the mean value theorem there exist points ψi ∈ Qi such that

|f(x)− f(ξi)| = |Df(ψi) · (x− ξi)|, x ∈ Qi .

Using the above results, Jensen inequality and Cauchy-Schwarz inequality

(∫

S
|φ(x)− f(x)|dx

)p

≤
∫

S
|φ(x)− f(x)|pdx =

md
∑

i=1

∫

Qi

|f(ξi)− f(x)|pdx

=
md
∑

i=1

∫

Qi

|Df(ψi) · (x− ξi)|pdx

≤
md
∑

i=1

|Df(ψi)|p
∫

Qi

|x− ξi|pdx .

As x,ψi ∈ Qi, a sub-cube with edge length m−1:
∫

Qi
|x − ξi|pdx = O(m−p−d).

Thus, we have

(∫

S
|φ(x)− f(x)|dx

)p

≤ Cm−p
md
∑

i=1

|Df(ψi)|pm−d ≤ Cm−p
(∫

S
|Df(x)|pdx+ o(1)

)

.

Since smooth functions are dense inW 1,p(Rd) ( [114, Thm. 2.3.2]), using the standard

limiting argument the above inequality holds for f ∈W 1,p(Rd). This establishes the

desired result.

Lemma 16 now provides the necessary result to extend the convergence rate

bounds derived previously to the Sobolev case. As it can be seen from section 2.3.2,

the L1 approximation error will influence the final rate upper bound only through the
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exponent β in equation (2.20). As the Sobolev approximation error (2.56) is similar

to the Holder class case for β = 1, we immediately have the following proposition:

Proposition 17. Let d ≥ 2 and 1 ≤ γ ≤ d − 1. Assume X1, . . . ,Xn are i.i.d.

random vectors over [0, 1]d with density f ∈ W 1,p(Rd), 1 ≤ p < ∞, having support

S ⊂ [0, 1]d. Assume also that f
1
2
− γ

d is integrable over S. Then, for any continuous

quasi-additive Euclidean functional Lγ of order γ that satisfies the add-one bound

(2.8)

[

E

∣

∣

∣

∣

Lγ(X1, . . . ,Xn)/n
(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣

∣

∣

∣

κ]1/κ

≤ O
(

n−
α

α+1
1
d

)

.
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CHAPTER 3

Intrinsic Dimension and Entropy Estimation of

Manifold Data

3.1 Introduction

Consider a class of natural occurring signals, e.g., recorded speech, audio, images,

or videos. Such signals typically have high extrinsic dimension, e.g., as characterized

by the number of pixels in an image or the number of time samples in an audio

waveform. However, most natural signals have smooth and regular structure, e.g.

piecewise smoothness, that permits substantial dimension reduction with little or

no loss of content information. For support of this fact one needs only consider

the success of image, video and audio compression algorithms, e.g., MP3, JPEG

and MPEG, or the widespread use of efficient computational geometry methods for

rendering smooth three dimensional shapes.

A useful representation of a regular signal class is to model it as a set of vectors

which are constrained to a smooth low dimensional manifold embedded in a high

dimensional vector space. The manifold may in some cases be a linear, i.e., Euclidean,

subspace but in general it is a non-linear curved surface. This raises the question of
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how to infer this lower dimensional manifold structure from high-dimensional data

(e.g., a sequence of images). In the recent past this problem has received substantial

attention from researchers in machine learning, computer vision, signal processing

and statistics [6,26,94,103,107,111], being coined as manifold learning by the pattern

recognition and machine learning communities.

In a practical setting, the complexity of representing such manifolds in closed

form is unmanageable and all that is available is a finite number of (possibly random)

samples obtained from these manifolds. It is thus important to be able to determine

fundamental properties of manifolds directly from this finite representation, without

resorting to cumbersome algorithms that first perform manifold reconstruction. In

this chapter we address the problem of estimating the intrinsic dimension of a mani-

fold and the intrinsic entropy of the measured manifold random samples. These two

quantities measure the geometric and statistical complexity of the underlying mani-

fold space and play a central role in many applications, ranging from computational

biology [27] to image processing [40].

Formally, the intrinsic dimension of a manifold is the dimension of the vector

space that is homeomorphic to local neighborhoods of the manifold [13]. Informally,

intrinsic dimension describes how many “degrees of freedom” are necessary to gen-

erate the observed data. The classical way to estimate such a quantity is based on

linear projection techniques [44]: a linear map is explicitly constructed and dimen-

sion is estimated by applying principal component analysis (PCA), factor analysis,

or multidimensional scaling (MDS) to analyze the eigenstructure of the data. These

methods estimate dimension by looking at the magnitude of the eigenvalues of the

data covariance and determining in some ad-hoc fashion the number of such eigenval-

ues necessary to describe most of the data. As they do not account for non-linearities,

linear methods tend to overestimate intrinsic dimension. Both nonlinear PCA [52]
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methods and the ISOMAP [103] try to circumvent this problem but they still rely on

unreliable and costly eigenstructure estimates. Other methods have been proposed,

ranging from fractal dimension [12], estimating packing numbers [49] to a maximum

likelihood approach [62].

When the samples are drawn from a large population of signals one can interpret

them as realizations from a multivariate distribution supported on the manifold.

The intrinsic entropy of random samples obtained from a manifold is an information

theoretic measure of the complexity of this distribution. As this distribution is

singular in the higher dimensional embedding space it has zero entropy as defined by

the standard Lebesgue integral over the embedding space. However, when defined

as a Lebesgue integral restricted to the lower dimensional manifold the entropy can

be finite. This finite intrinsic entropy can be useful for exploring data compression

over the manifold, registering medical images or geographical information [70] or, as

suggested in [40], clustering of multiple sub-populations on the manifold.

The goal of this chapter is to develop an algorithm that jointly estimates both

the intrinsic dimension and intrinsic entropy on the manifold, without knowing the

manifold description, given only a set of random sample points. Our approach is

based on minimal Euclidean graph methods. Specifically: construct a Euclidean k-

nearest neighbors (k-NN) graph or a geodesic minimal spanning tree (GMST) over

all the sample points and use its growth rate to estimate the intrinsic dimension

and entropy by simple linear least squares and method of moments procedure. This

approach allows for the estimation of the desired quantities using algorithms with

low computational complexity that avoid reconstructing the manifold or estimating

multivariate distributions.

The remainder of this chapter is organized as follows. In Section 3.2 we discuss

the k-NN graph and GMST together with asymptotic results for Euclidean spaces.
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Section 3.3 extends these results to Riemann manifolds. The proposed algorithms

are described in Section 3.4. Experimental results are reported in Section 3.5. The

technical proofs of the main results presented here are complied in Sections ?? to .

3.2 Minimal Graphs on Euclidean Spaces

Let Xn = {X1, . . . ,Xn} be n independent identically distributed (i.i.d.) random

vectors in a compact subset of Rd, with multivariate Lebesgue density f . Xn will

also be called the set of random vertices.

As discussed in Chapter 2, by solving certain optimization problems on the set

Xn, one can obtain special graph constructions. One such example is the k-NN graph.

Start by defining the (1-)nearest neighbor of X i in Xn as

arg min
X∈Xn\{Xi}

d(X,X i) ,

where distances between points are measured in terms of some suitable distance

function d(·, ·). For general integer k ≥ 1, the k-nearest neighbor of a point is

defined in a similar way. The k-NN graph puts an edge between each point in Xn
and its k-nearest neighbors. Let Nk,i(Xn) be the set of k-nearest neighbors of X i in

Xn. The total edge length of the k-NN graph is defined as:

Lk-NNγ (Xn) =
n
∑

i=1

∑

X∈Nk,i(Xn)
dγ(X,X i) , (3.1)

where γ is a power weighting constant.

Another example is the MST problem, where the goal is to find a graph of mini-

mum total edge length among the graphs T which span the sample Xn. The minimum
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total edge length is defined as:

LMSTγ (Xn) = min
T∈T

∑

e∈T
wγ(e) , (3.2)

where e is an edge in the graph and w(e) is its weight. If edge e connects points X i

and Xj in Xn, then its weight is w(e) = d(X i,Xj).

If X,Y ∈ Rd and d(X,Y ) = |X − Y |, i.e., the Euclidean distance between X

and Y , then both the MST graph and the k-NN graph fall under the framework of

continuous quasi-additive Euclidean functionals discussed in Chapter 2. By showing

that they satisfy subadditive, superadditive and continuous properties, their almost

sure (a.s.) asymptotic behavior (also convergence in the mean) follows easily from

the umbrella theorems for such graphs (cf. Chapter 2):

Theorem 1 ( [81, 109]). Let X1, . . . ,Xn be i.i.d. random vectors with values in

[0, 1]d and Lebesgue density f . Let d ≥ 2, 1 ≤ γ < d and define α = (d−γ)/d. Then

lim
n→∞

Lγ(Xn)
nα

= βd,Lγ

∫

[0,1]d
fα(x) dx a.s. ,

where Lγ(Xn) is given by equation (3.1) or (3.2) with Euclidean distance, and, βd,Lγ is

a constant independent of f . Furthermore, the mean length E [Lγ(Xn)] /nα converges

to the same limit.

Theorem 1 indicates that the limiting behavior of the graph length functional is

determined by the extrinsic Rényi α-entropy of the multivariate Lebesgue density f :

HRd

α (f) =
1

1− α
log

∫

Rd

fα(x) dx . (3.3)

In the limit, when α → 1 the usual Shannon entropy, −
∫

Rd f(x) log f(x) dx, is

obtained. This remarkable asymptotic behavior motivates the name entropic graphs
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given in [40].

Assume now that the random set Yn = {Y 1, . . . ,Y n} is constrained to lie on

a compact smooth m-dimensional manifold M. The distribution of Y i becomes

singular with respect to Lebesgue measure and an application of Theorem 1 results in

a zero limit for the length functional of the particular graph. However, this behavior

can be modified by changing the way distances between points are measured. For

this purpose, we use the framework of Riemann manifolds.

3.3 Entropic Graphs on Riemann Manifolds

Given a smooth manifoldM, a Riemann metric g is a mapping which associates

to each point y ∈M an inner product gy(·, ·) between vectors tangent toM at y [13].

A Riemann manifold (M, g) is just a smooth manifold M with a given Riemann

metric g. As an example, when M is a submanifold of the Euclidean space Rd,

the naturally induced Riemann metric onM is just the usual dot product between

vectors.

A Riemann metric g endowsM with a distance dg(·, ·) via geodesics and a mea-

sure µg via the volume element [13]. Given the geodesic distance, one can define

nearest neighbor relations or edge weights in terms of dg instead of the usual Eu-

clidean distance | · | and, consequently, define the total edge length Lγ(Yn) as in (3.1)

or (3.2), with the correspondence d→ dg.

We can now extend Theorem 1 to general compact Riemann manifolds. This

extension, Theorem 2, states that the asymptotic behavior of Lγ(Yn) is no longer

determined by the density of Y i relative to the Lebesgue measure of Rd, but depends

instead on the the density of Y i relative to µg.

Theorem 2. Let (M, g) be a compact smooth Riemann m-dimensional manifold.
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Suppose Y 1, . . . ,Y n are i.i.d. random elements ofM with bounded density f relative

to µg. Let Lγ be the total edge length of the MST graph or the k-NN graph with

lengths computed using the geodesic distance dg. Assume m ≥ 2, 1 ≤ γ < m and

define α = (m− γ)/m. Then,

lim
n→∞

Lγ(Yn)
nα

= βm,Lγ

∫

M
fα(y)µg(dy) a.s. , (3.4)

where βm,Lγ is a constant independent of f and M. Furthermore, the mean length

E [Lγ(Yn)] /nα converges to the same limit.

Now, the limiting behavior of Lγ(Yn) is related to the intrinsic Rényi α-entropy

of the multivariate density f onM:

H(M,g)
α (f) =

1

1− α
log

∫

M
fα(y)µg(dy) . (3.5)

An immediate consequence of Theorem 2 is that, for known m,

Ĥ(M,g)
α (Yn) =

m

γ

[

log
Lγ(Yn)
n(m−γ)/m

− log βm,Lγ

]

(3.6)

is an asymptotically unbiased and strongly consistent estimator of the intrinsic α-

entropy H
(M,g)
α (f).

The proof of Theorem 2 is given in Appendix 3.7. The intuition behind it comes

from the fact that a Riemann manifold M, with associated distance and measure,

looks locally like Rm with Euclidean distance | · | and Lebesgue measure λ. This

implies that on small neighborhoods of the manifold, the total edge length Lγ(Yn)

behaves like a Euclidean length functional. As M is assumed compact, it can be

covered by a finite number of such neighborhoods. This fact, together with subad-

ditive and superadditive properties [109] of Lγ, allows for repeated applications of

64



Theorem 1 resulting in (3.4).

3.3.1 Approximating Geodesic Distances on Submanifolds

of Rd

Although Theorem 2 provides a characterization of the asymptotic behavior of

entropic graphs over random points supported on a manifold, one further step is

missing in order to make it applicable to a wide class of practical problems. This

extra step comes from the computation of the length functionals which depends on

finding geodesic distances between sample points, which in turn require knowing

the manifold M. However, in the general manifold learning problem, M (or any

representation of it) is not known in advance. Consequently, the geodesic distances

between points onM cannot be computed exactly and have to be estimated solely

from the data samples.

In [18], the geodesic minimal spanning tree (GMST) algorithm was proposed,

where the pairwise geodesic distances between sample points are estimated by run-

ning Dijkstra’s shortest path algorithm over a global graph G of “neighborhood

relations” among all sample points of the manifold. Two methods, called the ε-rule

and the k-rule [103], are available for constructing G. The first method connects

each point to all points within some fixed radius ε and the other connects each point

to all its k-nearest neighbors. The graph G defining the connectivity of these lo-

cal neighborhoods is then used to approximate the geodesic distance between any

pair of points as the shortest path through G that connects them. Finally, this re-

sults in a distance matrix whose (i, j) entry is the geodesic distance estimate for the

(i, j)-th pair of points. If d̂(Y i,Y j) is the estimate of the geodesic length of edge

eij = (Y i,Y j) obtained by this algorithm, then the GMST is defined as the minimal
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graph over Yn whose length is:

L̂GMST
γ (Yn) = min

T∈T

∑

e∈T
d̂γ(e) . (3.7)

By using geodesic information, the GMST length functional encodes global structure

about the nonlinear manifold. The geodesic distances between sample points on the

manifold are uniformly well approximated by d̂ in the following sense:

Theorem 3. Let (M, g) be a compact Riemann submanifold of Rd. Suppose Y 1, . . . ,Y n

are i.i.d. random vectors of M, with density bounded away from zero. Then, with

probability 1,

max
1≤i,j≤n

i6=j

∣

∣

∣

∣

∣

d̂(Y i,Y j)

dg(Y i,Y j)
− 1

∣

∣

∣

∣

∣

→ 0 as n→∞ . (3.8)

This theorem is proven in Appendix 3.8. We remark that there exist alternative

algorithms for computing geodesic distances that can also provide guarantees similar

to Theorem 3. Of particular interest for future work is the method proposed in [65]

for estimating geodesic distances that accounts for noisy samplings of the manifold.

Unlike the MST, the k-NN graph is only influenced by local distances. For fixed

k, the maximum nearest neighbor distance of all points in Yn goes to zero as the

number n of samples increases. For n sufficiently large, this implies that the k-NN

of each point will fall in a neighborhood of the manifold where geodesic curves are

well approximated by the corresponding straight lines between end points. This

suggests using simple Euclidean k-NN distances (|Y i − Y j|) as surrogates for the

corresponding true nearest neighbor geodesic distances (d(Y i,Y j)). In fact, we prove

in Appendix 3.9 that the geodesic k-NN distances are uniformly well approximated

by the corresponding Euclidean k-NN distances in the following sense:

Theorem 4. Let (M, g) be a compact Riemann submanifold of Rd. Suppose Y 1, . . . ,Y n
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are i.i.d. random vectors ofM. Then, with probability 1,

max
1≤i≤n

Y ∈Nk,i(Yn)

∣

∣

∣

∣

|Y − Y i|
dg(Y ,Y i)

− 1

∣

∣

∣

∣

→ 0 as n→∞ . (3.9)

Finally, the asymptotic behavior of the GMST or the Euclidean k-NN graph is a

simple consequence of Theorem 2 and Theorems 3 and 4:

Corollary 5. Let (M, g) be a compact smooth Riemann m-dimensional manifold.

Suppose Y 1, . . . ,Y n are i.i.d. random elements ofM with bounded density f relative

to µg. Let L̂γ be the total edge length of the GMST graph or the Euclidean k-NN

graph defined over Yn. Then,

lim
n→∞

L̂γ(Yn)
nα

= βm,Lγ

∫

M
fα(y)µg(dy) a.s. , (3.10)

where βm,Lγ is a constant independent of f and M. Furthermore, the mean length

E [Lγ(Yn)] /nα converges to the same limit.

Proof. For example, for the k-NN case,

L̂γ(Yn) =
n
∑

i=1

∑

Y ∈Nk,i

( |Y − Y i|
dg(Y ,Y i)

)γ

dγg(Y ,Y i) .

The uniform convergence expressed by Theorem 4 implies that

L̂γ(Yn) = (1 + o(1))γLγ(Yn) .

Corollary 5 now follows from an application of Theorem 2. The GMST case is

similar.

We remark that Corollary 5 differs from Corollary 1 presented in [18], in that

the latter discusses the asymptotic behavior of the total edge length of the MST
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as a function of the samples embedded on the m-dimensional Euclidean space that

parameterizes the manifold (assuming a global conformal mapping), as opposed to

the samples supported on the manifold itself considered here.

With regards to computational complexity, the geodesic free property of the k-

NN algorithm makes it computationally inexpensive as compared with other manifold

learning algorithms. In this case, complexity is dominated by determining nearest

neighbors, which can be done in O(n log n) time for n sample points. This contrasts

with the GMST, which, as forISOMAP, requires a costly O(n2 log n) implementation

of the geodesic pairwise distance estimation step.

3.4 Joint Intrinsic Dimension/Entropy Estimation

The asymptotic characterization of the GMST or k-NN length functional stated

in Corollary 5 provides the framework for developing consistent estimators of both

intrinsic dimension and entropy. The key observation is to notice that the growth

rate of the length functional is strongly dependent on m while the constant in the

convergent limit is equal to the intrinsic α-entropy. We use this strong growth depen-

dence as a motivation for a simple estimator ofm. Define ln = log L̂γ(Yn). According

to Corollary 5, ln has the following approximation

ln = a log n+ b+ εn , (3.11)

where

a = (m− γ)/m ,

b = log βm,Lγ + γ/m H(M,g)
α (f) ,

(3.12)

68



α = (m− γ)/m and εn is an error residual that goes to zero a.s. as n→∞.

Using the additive model (3.11), we propose a simple non-parametric least squares

strategy based on resampling from the population Yn of points inM. Specifically, let

p1, . . . , pQ, 1 ≤ p1 < . . . , < pQ ≤ n, be Q integers and let N be an integer that satis-

fies N/n = ρ for some fixed ρ ∈ (0, 1]. For each value of p ∈ {p1, . . . , pQ} randomly

draw N bootstrap datasets Y jp , j = 1, . . . , N , with replacement, where the p data

points within each Y jp are chosen from the entire data set Yn independently. From

these samples compute the empirical mean of the functionals L̄p = N−1∑N
j=1 L̂γ(Yjp).

Defining l̄ = [log L̄p1 , . . . , log L̄p1 ]
T we write down the linear vector model

l̄ = A







a

b






+ ε (3.13)

where

A =







log p1 . . . log pQ

1 . . . 1







T

.

We now take a method-of-moments (MOM) approach in which we use (3.13) to solve

for the linear least squares (LLS) estimates â, b̂ of a, b followed by inversion of the

relations (3.12). After making a simple large n approximation, this approach yields

the following estimates:

m̂ = round{γ/(1− â)}

Ĥ(M,g)
α =

m̂

γ

(

b̂− log βm̂,Lγ

)

.
(3.14)

By running the algorithm M times independently over the population Yn, one

obtains M estimates, {m̂i, Ĥi}Mi=1, that can be averaged to obtain final regularized

dimension and entropy estimators, m̂ =
∑

m̂i/M and Ĥ =
∑

Ĥi/M . The role of
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Figure 3.1: Computing the dimension estimators by averaging over the length func-
tional values, i.e., (M,N) = (1, N) (dashed line), or by averaging over the dimension
estimates, i.e., (M,N) = (M, 1) (solid lines).

parameter M , together with parameter N , is to provide a tradeoff between the bias

and variance performance of the estimators for finite n. The two cases of interest

(considered in the next section) are (M,N) = (1, N) and (M,N) = (M, 1). In the

first case, the smoothing is performed on the graph length functional values before

dimension and entropy are estimated, resulting in low variance but possibly high

bias. In the second case, the smoothing is performed directly on the dimension and

entropy estimates, resulting in higher variance but less bias.

Fig. 3.1 shows a graphical illustration of the smoothing step of the algorithm.

Left panel shows N = 2 resampled graph lengths, labeled “+” and “o”, along with

their average labeled “x”, for graphs built on p1 < p2 < p3 randomly chosen vertices.

For (M,N) = (1, N), a linear least squares fit to the average graph trajectory,

C = (A + B)/2, is used to compute the dimension estimate m̂C . For (M,N) =

(M, 1), dimension estimates m̂A and m̂B are computed from sub-trajectories A and

B, forming a histogram from which a final estimate can be computed. The proposed

algorithm is summarized in Table 3.1.

The constants βm,Lγ in the above estimators depend only on m, γ and the par-

ticular entropic graph construction algorithm, e.g., GMST or k-NN. Due to the slow

growth of {βm,Lγ}m>0 in the large n regime for which the above estimates were de-
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Table 3.1: Graph resampling algorithm for estimating intrinsic dimension m and
intrinsic entropy H

(M,g)
α .

Initialize: Using entire database of signals Yn construct NN graph

(and geodesic distance matrix for GMST)

Select parameters: M > 0, N > 0, Q > 0 and p1 < . . . < pQ ≤ n

m = 0, H = 0;

for M ′ = 1, . . . ,M

for p = p1, . . . , pQ

L = 0;

for N ′ = 1, . . . , N

Randomly select a subset of p signals Yp from Yn;
Compute graph total edge length Lp over Yp;
L = L+ Lp;

end for

Compute sample average graph length;

Ê[L̂(Yp)] = L/N;

end for

Estimate dimension m̂M ′ and α-entropy ĤM ′ from {Ê[L̂(Yp)]}pQp=p1
via LLS/NLLS;

m = m+ m̂M ′, H = H + ĤM ′;

end for

m̂ = m/M, Ĥ = H/M
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rived, βm,γ is not required for the dimension estimator. On the other hand, the

value of βm,Lγ is required to obtain unbiased estimates of entropy. βm,Lγ is the limit

of the normalized length functional of the corresponding Euclidean entropic graph

for a uniform distribution on the unit cube [0, 1]m. As, closed form expressions are

not available, it can be determined by performing Monte Carlo simulations of the

entropic graph length on the unit cube [0, 1]m for uniform random samples. Another

approach, applicable to the GMST, is to use analytical approximations and bounds

for the MST over [0, 1]d, e.g. available in [109].

3.5 Experimental Results

We illustrate the performance of the entropic graph algorithm on manifolds of

known dimension as well as on real high dimensional data ses of faces images and

handwritten digits. In all the simulations we fixed the parameters γ = 1 and p1 =

n−Q, . . . , pQ = n− 1. With regards to intrinsic dimension estimation, we compare

our algorithms to ISOMAP. In ISOMAP, similarly to PCA, intrinsic dimension is

usually estimated by detecting a knee in the residual fitting error curve as a function

of subspace dimension.

3.5.1 S-Shaped Surface

The first manifold considered is the standard 2-dimensional S-shaped surface [94]

embedded in R3 (Figure 3.2). Figure 3.3 shows the evolution of the average GMST

length L̄n as a function of the number of samples, for a random set of i.i.d. points

uniformly distributed on the surface.

To compare the dimension estimation performance of the GMST method to ISO-

MAP we ran a Monte Carlo simulation. For each of several sample sizes, 30 in-
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Figure 3.2: The S-shaped surface manifold and corresponding GMST (k = 7) graph
on 400 sample points.

dependent sets of i.i.d. random vectors uniformly distributed on the surface were

generated. We then counted the number of times that the intrinsic dimension was

correctly estimated. To automatically estimate dimension with ISOMAP, we fol-

low a standard PCA order estimation procedure. Specifically, we graph the residual

variance of the MDS fit as a function of the PCA dimension and try to detect the

“elbow” at which residuals cease to decrease “significantly” as estimated dimen-

sion increases [103]. The elbow detector is implemented by a simple minimum angle

threshold rule. Table 3.2 shows the results of this experiment. As it can be observed,

the GMST algorithm outperforms ISOMAP in terms of dimension estimation error

rates for small sample sizes. Figure 3.4 shows the histogram of the entropy estimates

for the same experiment.

Table 3.2: Number of correct ISOMAP and GMST dimension estimates over 30 trials
as a function of the number of samples for the S-shaped manifold (k = 7).

n 200 400 600

ISOMAP 23 29 30

GMST (M = 1, N = 5, Q = 10) 29 30 30
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(a) (b) (c)

Figure 3.3: Illustration of GMST dimension estimation for (M,N) = (1, N): (a)
plot of the average GMST length L̄n for the S-shaped manifold as a function of the
number of samples; (b) log-log plot of (a); (c) blowup of the last ten points in (b) and
its linear least squares fit. The estimated slope is â = 0.4976 which implies m̂ = 2.
(k = 7, M = 1, N = 5).

Table 3.3: Number of correct dimension estimates over 30 trials as a function of the
number of samples for the torus (M = 1, N = 5, Q = 10).

n 200 400 600
GMST 29 30 30
5-NN 29 30 30

3.5.2 Torus

Next, we consider the case of the 2-dimensional torus embedded in R3 (Figure

3.5). This manifold presents some challenges as it does not satisfy any of the usual

isometric or conformal embedding constraints required by ISOMAP or Hessian eigen-

maps [26], among others. We tested the algorithms over 30 generations of uniform

random samples over the torus for different sample sizes n, and counted the number

of correct dimension estimates. We note that in all the simulations ISOMAP always

overestimated the intrinsic dimension as 3. The results for the GMST and k-NN

are shown in Table 3.3. Table 3.4 shows the entropy estimates obtained by both

methods on uniform samples supported on the torus. The true (α = 1/2) entropy is
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Figure 3.4: Histogram of GMST entropy estimates over 30 trials of 600 samples
uniformly distributed on the S-shaped manifold (k = 7,M = 1, N = 5, Q = 10).
True entropy (”true”) was computed analytically from the area of S curve supporting
the uniform distribution of manifold samples.

Table 3.4: Entropy estimates for the torus (n = 600, M = 1, N = 5, Q = 10).

emp. mean std. deviation
GMST 10.0 0.55
5-NN 9.6 0.93

H1/2 = log(120π2) ≈ 10.21.

3.5.3 Hyper-Planes

We also investigated linear m-dimensional hyper-planes in Rm+1 for which PCA

methods are designed. We consider hyper-planes of the form x1 + . . . + xm+1 = 0.

Table 3.5 shows the results of running a Monte Carlo simulation under the same

conditions as in the previous subsection. When M = 1 (i.e., least squares applied

to the average length functional values), the GMST method showed a tendency to

underestimate the correct dimension at smaller sample sizes. However, by taking

N = 1 instead (i.e., averaging of least squares dimension estimates), this negative

bias was eliminated and the GMST performed as well as the ISOMAP, which was
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Figure 3.5: The 2D-torus and the 4-NN graph on 500 points sampled uniformly from
the torus.

observed to correctly predict the dimension for all sample sizes investigated.

Of course, as expected, the number of samples required to achieve the same

level of accuracy increases with the manifold dimension. This is the usual curse of

dimensionality phenomenon: as the dimension increases, more samples are needed

for the asymptotic regime in (3.10) to settle in and validate the limit in Corollary 5.

3.5.4 Yale Face Database B

We applied the GMST method to a real data set, and, consequently, of unknown

manifold structure, intrinsic dimension and intrinsic entropy. We chose the set of 256

gray levels images of several individuals taken from the Yale Face Database B [29].

This is a publicly available database1 containing a number of portfolios of face images

under 585 different viewing conditions for each subject (Figure 3.6). Each portfolio

consists of 9 poses and 65 illumination conditions (including ambient lighting) for

each subject. The images were taken against a fixed background which we did

not bother to segment out. This is justified since any fixed structures throughout

1http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

76



Table 3.5: Number of correct GMST dimension estimates over 30 trials as a function
of the number of samples for hyper-planes (k = 5).

Hyper-plane n

dimension
Q M N

600 800 1000

1 5 30 30 30
2 10

5 1 30 30 30

1 5 24 24 27
10

5 1 25 26 27

1 10 30 30 30
3

15
10 1 30 30 30

1 10 24 25 26
15

10 1 27 28 28

1 10 25 28 29
4

20
10 1 29 29 30

Face 1

Face 2

Face 3

Face 4

Figure 3.6: Samples from Yale face database B [29].
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Figure 3.7: GMST real valued intrinsic dimension estimates and histogram for face
2 in the Yale face database B (k = 7, M = 1 N = 10, Q = 20).

the images would not change the intrinsic dimension or the intrinsic entropy of the

dataset. We randomly selected 4 individuals from this data base and subsampled

each person’s face images down to a 64× 64 pixels image. We normalized the pixel

values between 0 and 1.

Figure 3.7 displays the results of running 30 trials of the algorithm using face

2. The first panel shows the real valued estimates of the intrinsic dimension, i.e.,

estimates obtained before the rounding operation in (3.14). Any value that falls in

between the dashed lines will then be rounded to the integer at the midpoint. The

second panel of Figure 3.7 shows the histogram for these rounded estimates over the

30 generated trials. The intrinsic dimension estimate is between 5 and 6. Figure 3.8

shows the corresponding residual variance plots used by ISOMAP to estimate intrin-

sic dimension. From these plots it is not obvious how to determine the “elbow” at

which the residuals cease to decrease “significantly” with added dimensions. This il-

lustrates one of the major drawbacks of ISOMAP (and other spectral based methods

like PCA) as an intrinsic dimension estimator, as it relies on a specific eigenstruc-
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Figure 3.8: ISOMAP (k = 7) residual variance for face 2 in the Yale face database
B.

Table 3.6: GMST dimension estimates m̂ and entropy estimates Ĥ for four faces in
the Yale Face Database B.

Face1 Face2 Face3 Face 4

m̂ 6 6 7 7

Ĥ (bits) 24.9 26.4 25.8 28.0

ture that may not exist in real data. The simple minimum angle threshold rule on

ISOMAP produced estimates between 3 and 6. Table 3.6 summarizes the results of

the GMST method for the four faces. The intrinsic entropy estimates expressed in

log base 2 were between 24.9 and 28 bits. As α is close to one, these values suggest

that the portfolio of a person’s face image could be accurately compressed using at

most 28/(64× 64) ≈ 0.007 bits/pixel.

3.5.5 MNIST Database of Handwritten Digits

The MNIST database2 consists of 256 gray levels images of handwritten digits ob-

tained by optical character recognition. This publicly available database has became

2http://yann.lecun.com/exdb/mnist/
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Figure 3.9: Samples from digits 0 to 9 in the MNIST database.

one of the benchmarks for testing new digit recognition algorithms [60], containing

extensive test and training sets of all digits. Each digit in the database consists of

a 28 × 28 pixel image that was size normalized and translated so that its center of

mass lies in the center of the image. For the purpose of dimensionality estimation,

we chose the first 1000 samples of digits 0 to 9 (Figure 3.9) in the training set.

Figure 3.10 shows the histogram of the dimension estimates for 30 simulations

of the 5-NN algorithm applied to the samples of digits 0 to 9 (separately). Figure

3.11 shows the boxplot of the entropy estimates for the same scenario. Although

the histograms show high variability, most of the estimates are between 9 and 15. It

is interesting to notice that digit 1 exhibits the lowest dimension estimate, between

9 and 10, while all the other digits exhibit dimensions between 12 and 14. The

lower complexity of digit 1 can also be seen from Figure 3.11, where its entropy

estimate is much lower that all other digits. Also of interest is the bimodal behavior

of the histogram of digit 7, with one mode concentrated at 10, 11 and the other

at 13. After looking at the images selected in the realizations that resulted in the

lower dimensional mode estimates, we realized that these images, although classified

as a 7, are also very close to digit 1, thus contributing to lowering the dimension
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estimates. This effect can also be observed in the boxplot of entropy estimates of

Figure 3.11, where the high variance of the entropy estimate of digit 7 and consequent

overlap of confidence intervals with digit 1 suggest the presence of images with a lower

complexity.

For comparison purposes, we show in Figure 3.12 the eigenvalue plots for digits

2 and 3 used by ISOMAP to estimate intrinsic dimension. Even though it is not

obvious how to assign a single dimension estimate from this plot - one of the main

disadvantages of using spectral methods to estimate dimension - it is clear that the

dataset should be at most 10-dimensional, as the residual variance ceases to decrease

significantly after that value. The difference between the estimates predicted by en-

tropic graphs and ISOMAP might be justified by the isometric assumption required

by ISOMAP. The digits database contains nonlinear transformations, such as width

distortions of each digit, that are not described by isometries. As consequence, ISO-

MAP underestimated these extra degrees of freedom, resulting in a lower dimension

estimate than the entropic graphs, that are valid for a broader class of manifolds.

Finally, we present in Figure 3.13 the results of applying the proposed algorithm

to the merged samples of digits 2 and 3. As it can be seen, the histogram of the

dimension estimates shows an increase of its mode by one, being dominated by the

dimensionality of the most complex digit (3). The entropy boxplot shows an increase

of the median entropy estimate by roughly one bit. This should be expected, as

compressing the augmented data set requires only one extra bit to identify which

digit is being coded and then the individual codes for each digit can be used.
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Figure 3.10: Histograms of intrinsic dimensionality estimates for digits 0 to 9 in the
MNIST database using a 5-NN graph (M = 1, N = 10, Q = 15).
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Figure 3.11: Boxplot of entropy estimates for digits 0 to 9 in the MNIST database
using a 5-NN graph (M = 1, N = 10, Q = 15).

Figure 3.12: ISOMAP (k = 6) residual variance for digits 2 and 3 in the MNIST
database.
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Figure 3.13: Histogram of intrinsic dimensionality estimates and boxplot of entropy
estimates for digits 2+3 in the MNIST database using a 5-NN graph (M = 1, N = 10,
Q = 15).

3.6 Conclusion

We have discussed the use of computational geometry graph constructions and

geometric probability tools for the estimation of intrinsic dimension and entropy of

shape spaces based solely on a finite random sampling of the underlying shapes. In

particular, we have shown the strong statistical consistency of estimators based on k-

nearest neighbor graphs or minimal spanning trees under the very general assumption

of high dimensional data supported on a compact Riemann manifold. These results

provide a departure from usually strong assumptions of linear, isometric or conformal

embeddings expressed in the previous literature on the subject.

We are currently working on extending the proposed methods to data sets that

exhibit a varying complexity across the data, characterized by a changing intrinsic

dimension. This will allow the analysis of interesting datasets, like images composed

of textures of different complexity or computational biology models of protein in-

teraction [27]. Future work also includes developing bias correction mechanisms to

improve the bootstrapping resampling step of the algorithm and account for depen-
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dencies in the sampling process.

3.7 Appendix: Proof of Theorem 2

In this section, Theorem 2 is proven. We first introduce two auxiliary lemmas and

take a small detour to discuss Euclidean boundary functionals, which are a key tool in

proving asymptotic results for continuous quasi-additive Euclidean functionals [109].

The first lemma formalizes the intuition that a a Riemann manifold M, with

associated distance dg and measure µg, looks locally like Rm with Euclidean distance

| · | and Lebesgue measure λ:

Lemma 6 ( [80, Lemma 5.1]). Let (M, g) be a smooth Riemann m-dimensional

manifold. For any x ∈M and ε > 0, there exists a chart (U, φ) forM, with x ∈ U ,

such that

(1 + ε)−1 |φ(y)− φ(z)| ≤ dg(y, z) ≤ (1 + ε) |φ(y)− φ(z)| ∀ y, z ∈ U (3.15)

and for any measurable subset B ⊂ U

(1− ε) λ(φ(B)) < µg(B) < (1 + ε) λ(φ(B)) . (3.16)

Recall that a chart (U, φ) consists of a neighborhood U such that φ :M∩U → Rm

determines a parametric representation of M∩ U in the Euclidean m-dimensional

space, i.e., for y ∈ M ∩ U , φ(y) represents y in an Euclidean m-dimensional coor-

dinate system.
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Boundary Functionals on Jordan Measurable Sets

We now informally introduce the notions of boundary functional. For formal

definitions and details, we refer the reader to [109].

By appropriate canonical modifications of an Euclidean subadditive functional

L(F ), it is possible to construct an associated boundary functional LB(F,R) on any

subset R of [0, 1]d [109]. Informally, in a boundary functional all the edges connecting

point on the boundary of R (∂R) have zero length, so that ∂R can be seen as single

point: all edges joined to the boundary are joined to one another, or, in other words,

joining edges using ∂R adds no additional cost to the functional.

The importance of boundary functionals resides in the fact that they are super-

additve, a property that many of the standard total edge functionals lack. If R is

partitioned into sets R1 and R2 then LB is superadditive if

LB(F,R) ≥ LB(F ∩R1, R1) + LB(F ∩R2, R2) .

When R,R1, R2 are rectangles, translation invariance and homegeneity properties of

any Euclidean functional, endow LB(·, R) with a self similarity property, in a way

that, for a uniform sample, the value of the functional on a set of the partition is

statistically similar to its value on any other partition set. However, when R is an

arbitrary set, this self similarity property is lost. We now show that if R is Jordan

measurable a superadditive functional has the same type of asymptotic behavior as

when R is a rectangle.

Lemma 7. Let X1, . . . ,Xn be i.i.d. random vectors with values in R ⊂ [0, 1]d and

bounded Lebesgue density f . Assume R is Jordan measurable. Let LB(·, R) be a
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continuous superadditive Euclidean boundary functional of order γ on Rd. Then

lim inf
n→∞

LB(Xn, R)
nα

≥ βd,L

∫

R

fα(x) dx a.s. (3.17)

Furthermore, the same result holds for the mean length E [LB(Xn, R)] /nα.

Proof. The proof of this result relies on the fact that a Jordan measurable set is “well

approximated” from below by an union of disjoint cubes. We then use the known

results about the behavior of Euclidean functionals over cubes.

Let ε > 0. As R is Jordan measurable, there exists a finite number of disjoint

cubes {Qi} (with faces parallel to the axis) such thatQ = ∪iQi ⊂ R and λ(R\Q) < ε.

By superadditivity,

LB(Xn, R) ≥
∑

i

LB(Xn ∩Qi, Qi) . (3.18)

Let pi =
∫

Qi
f dλ. By the strong law of large numbers, Xn∩Qi consists of n(pi+o(1))

i.i.d. points in Qi distributed with density p−1i f . By the usual umbrella theorem,

LB(Xn ∩Qi, Qi)

(pin)α
→ βd,L

∫

Qi

(p−1i f)α dλ a.s. (3.19)

We also have

∣

∣

∣

∣

∫

R

f dλ−
∫

Q

f dλ

∣

∣

∣

∣

≤ ‖f‖∞ λ(R \Q) < ε ‖f‖∞ , (3.20)

where ‖f‖∞ = sup{f(x) : x ∈ R} is finite by assumption. Combining (3.18), (3.19)

and (3.20) results in

lim inf
n→∞

LB(Xn, R)
nα

≥ βd,L
∑

i

∫

Qi

fα dλ ≥ βd,L

(∫

R

fα dλ− ε ‖f‖∞
)

.

Letting ε→ 0 produces the desired result.
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Remark 1. If LB is close in the mean (2.6) to the underlying smooth subadditive Eu-

clidean functional, then lim inf and the inequality in equation (3.17) can be replaced,

respectively, by lim and an equality.

Proof of Theorem 2

Before proving Theorem 2, we note that both the MST and the k-NN functional

and respective boundary functionals defined on a Riemann manifold satisfy strong

forms of subadditivity and superadditivity. Namely, if R1, R2 ∈M are arbitrary sets

that partitionM, then

LB(F ∩R1, R1)+LB(F ∩R2, R2) ≤ LB(F,M) = L(F ) ≤ L(F ∩R1)+L(F ∩R2)+C ,

(3.21)

where C is an error term independent of R1 and R2 (C is zero for the k-NN case).

Note that the usual subadditivity and superadditivity conditions needed to prove

umbrella theorems for Euclidean functionals only require that these conditions hold

for partitions made of rectangles.

Proof of Theorem 2. Let ε > 0. For x ∈ M let (Ux, φx) be the chart specified by

Lemma 6. Without loss of generality, Ux may be chosen such that φx(Ux) is an open

ball in Rm (this can be achieved by possibly shrinking the set Ux whose existence

is guaranteed by Lemma 6). By compactness of M, there exists a finite collection

of such sets, say {Ui}, that coverM. Define the set sequence {Vj} by V1 = U1 and

Vj = Uj \ ∪1≤i≤j−1Vi, for j ≥ 2. The sets Vj are disjoint, form a partition ofM, and

Vj ⊂ Uj, for all j.

Let pj =
∫

Vj
f dµg and Xn,j = φj(Yn ∩ Vj). By the strong law of large numbers,
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Xn,j consists of n(pj + o(1)) i.i.d. points in φj(Vj) distributed with density

gj(u) = p−1j hj(φ
−1
j (u))f(φ−1j (u)) , u ∈ φj(Vj) ,

where hj is the function defined in the proof of Lemma 6 in [80] (c.f. Lemma 5.1). hj

accounts for the differential changes in volume between Vj and φj(Vj), i.e., µg(B) =
∫

φ(B)
hj(φ

−1
j (u)) du, for B ⊂ Uj. Recall from [80] that 1 − ε < hj(x) < 1 + ε for

x ∈ Vj.

We are now ready to apply sub and superadditivity to the partition {Vj}. By

(3.21)

∑

j

LB(Yn ∩ Vj, Vj) ≤ LB(Yn,M) = L(Yn) ≤
∑

j

L(Yn ∩ Vj) + C ′ . (3.22)

As the sets Vj were chosen such that the geodesic lengths and Euclidean lengths are

ε-close, we have by (3.15)

L(Yn ∩ Vj) ≤ (1 + ε)L(Xn,j) . (3.23)

As L(Xn,j) satisfies the usual quasi-additive continuous Euclidean properties, it fol-

lows from the usual umbrella theorem that

L(Xn,j)
(pj n)α

→ βd,L

∫

φj(Vj)

gαj (u) du a.s. (3.24)
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Changing the integration back to µg and using the fact that hj is (1± ε)-valued,

pαj

∫

φj(Vj)

gαj (u) du =

∫

φj(Vj)

fα(φ−1j (u))hα−1j (φ−1j (u))hj(φ
−1
j (u)) du

=

∫

Vj

fα(y)hα−1j (y)µg(dy)

≤ (1− ε)α−1
∫

Vj

fα(y)µg(dy) (3.25)

Combining the upper bound in (3.22) with (3.23)-(3.25), we get:

lim sup
n→∞

L(Yn)
nα

≤ (1 + ε)(1− ε)α−1
∫

M
fα(y)µg(dy) . (3.26)

The lower bound implicit in equation (3.4) follows in a similar way. Start by

noticing that, due to (3.15),

LB(Yn ∩ Vj, Vj) ≥ (1 + ε)−1LB(Xn,j, φj(Vj)) .

Recall that Vj is a finite intersection of sets Ui with smooth boundary (Ui was con-

structed to be the inverse image of a ball trough the smooth transformation φj).

So, the set φj(Vj) will have smooth piecewise boundary and, consequently, will be

Jordan measurable. Lemma 7 can now be applied to conclude that:

lim inf
n→∞

LB(Xn,j, φj(Vj))
(pj n)α

≥ βd,L

∫

φj(Vj)

gαj (u) du a.s.

Repeating the same arguments used above, we have

lim inf
n→∞

L(Yn)
nα

≥ (1 + ε)−1(1 + ε)α−1
∫

M
fα(y)µg(dy) . (3.27)

Finally, combining equations (3.26) and (3.27) and letting ε → 0 establishes
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Theorem 2.

3.8 Appendix: Proof of Theorem 3

Here, we prove Theorem 3 for the case when geodesic distances are estimated

using the “ε-rule” [9]. This rule estimates geodesic distances by running Dijkstra’s

shortest path algorithm over the graph constructed by putting an edge between each

point and all points within a fixed radius ε. Of course, for the algorithm to be

consistent as the number of samples n grows, ε has to decrease to 0 as n → ∞. In

particular, our proof shows that εn = o
(

n−ξ/m
)

, for some 0 < ξ < 1, is sufficient to

guarantee consistency.

Proof of Theorem 3. According to [9], proving the consistency result expressed by

equation (3.8) reduces to showing that the “δ-sampling” condition holds with prob-

ability one. This condition states that for all x ∈ M there is a sample xi such that

dg(x,xi) ≤ δ.

In the following, we use the same notation as defined in the Sampling Lemma

of [9]. In particular, Bi(δ) is the metric ball in M of radius δ, centered at some

point pi; Vmin(δ) is the volume of the smallest metric ball in M of radius δ. For

Riemann submanifolds of Rd without boundary, Vmin(δ) ³ δm; V is the volume of

M; fmin = infy∈M f(y) > 0.

Begin by coveringM with a finite family of metric balls of radius δ/2, choosing

the centers p1,p2, . . . such that

pi+1 6∈ ∪ij=1Bi(δ/2)

and stopping when this is no longer possible. As no two centers pi are within dis-
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tance δ/2 of each other, the balls Bi(δ/4) are disjoint and, consequently, at most

V/Vmin(δ/4) points can be chosen before the process terminates.

The δ-sampling condition will be satisfied if each ball Bi contains at least one

sample, as the diameter of Bi is δ and every x ∈ M belongs to a ball Bi. The

probability of this event is:

P (δ-sampling condition holds) ≥ P (no ball Bi is empty) ≥ 1−
∑

i

P (Bi is empty) .

(3.28)

Under the i.i.d. assumption on the samples, the probability P (Bi is empty) can be

computed as:

P (Bi is empty) =

(

1−
∫

Bi

fdµg

)n

≤ (1− Vmin(δ/2) fmin)
n

≤ exp {−nVmin(δ/2) fmin} ,

(3.29)

where the last inequality follows from the inequality log(1− x) ≤ −x. Substituting

equation (3.29) in (3.28) and using the asymptotic value for Vmin(δ/2) results in:

P (δ-sampling condition holds) ≥ 1− V

Vmin(δ/4)
exp {−nVmin(δ/2) fmin}

= 1− C1 V δ
−m exp {−C2 fmin n δm} ,

(3.30)

where C1 and C2 are constants.

Now, choose δ = δn as a function of the number of samples such that δn → 0

and n δmn → ∞ as n → ∞. For example, δn = O
(

n−ξ/m
)

, for some 0 < ξ < 1, will

satisfy these conditions. Then choose a sequence εn such that εn → 0 and εn/δn → 0

as n → ∞. For example, εn = o
(

n−ξ/m
)

. Given λ > 0, there exists an integer n0

such that for all n > n0, εn is small enough to satisfy conditions 5, 6 and 7 of Main
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Theorem A of [9]. This theorem, together with equation (3.30), implies that

P

(

max
1≤i,j≤n

i6=j

∣

∣

∣

∣

∣

d̂(Y i,Y j)

dg(Y i,Y j)
− 1

∣

∣

∣

∣

∣

≥ λ

)

≤ C1 V δ
−m
n exp {−C2 fmin n δmn } ,

for n > n0. As the choice of δn implies that
∑

n>n0
δ−mn exp {−C2 fmin n δmn } < ∞,

the desired result follows by the Borel-Cantelli Lemma.

3.9 Appendix: Proof of Theorem 4

Proof of Theorem 4. Without loss of generality, assume that M ∈ [0, 1]d. We first

prove that Mn,k = Mn,k(Yn), the length of the longest k-NN link, converges to zero

with probability 1.

Given ε > 0, partition [0, 1]d into a finite number of cubes, {Qj}, with edge

length at most ε. Let pj =
∫

Qj∩M f(y)µg(dy). By the strong law of large numbers,

there will be n (pj + o(1)) points in Qj with probability 1. This implies, for pj > 0,

that there exists an integer Nj such that for all n > Nj, n (pj + o(1)) ≥ k. Let

N = maxj Nj. Ignoring the cubes with pj = 0 (with probability 1 they will have no

points), each cube has at least k points for n > N . This implies that for all n > N ,

Mn,k < O(ε), i.e, Mn,k → 0 as n→∞. With this result in hand, Theorem 4 follows

directly by an application of Corollary 4 from [9].
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CHAPTER 4

Classification Constrained Dimensionality

Reduction

4.1 Introduction

Following the approach of chapter 3, we continue the study of high dimensional

complex data sets. Overlapping with the problem of inferring geometrical or statis-

tical quantities from high dimensional data sets, as intrinsic dimension or entropy, is

the problem of finding appropriate “compact” representations of the complex data.

In this chapter, we address the problem of extracting lower-dimensional features

relevant for classification tasks. By taking into account not only the geometric con-

straints resulting from a low dimensional manifold embedding of the data in a high

dimensional space, but also the constraints resulting from labeled samples, we de-

velop a general nonlinear dimensionality reduction algorithm, aimed at constructing

a lower dimensional representation of the original data set.

Although part of a long and rich history, past approaches to the general pro-

blem of dimensionality reduction did not explicitly consider the manifold structure

possibly present in many high dimensional data sets. It was only after the semi-
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nal papers of Tenenbaum et al [103] and Roweis and Saul [94] that the usefulness

of this approach captured the eye of researchers, resulting in a renewed interest

in the area from the machine learning, computer science and statistics communi-

ties. Classical approaches to dimensionality reduction include Principal Component

Analysis (PCA) [44] and Multidimensional Scaling (MDS) [21]. They are based on

solving a global optimization problem, namely finding eigenvectors of a data simi-

larity matrix, but can be reliably applied only when the data is linearly embedded

in the high-dimensional spaces. Recent approaches of kernel PCA [97] allow for ex-

tra nonlinear relationships among the data, but still ignore any explicit manifold

structure. Within the class of manifold learning algorithms, many methods have

been proposed in the past five years. They range from methods aimed at preserving

local manifold structure to global methods. Local methods include Locally Linear

Embedding (LLE) [94], Laplacian Eigenmaps [6], Hessian Eigenmaps (HLLE) [26]

and Local Space Tangent Analysis [111]. They are based on local approximation of

the geometry of the manifold, still preserving the global optimization formulation.

Global methods include ISOMAP [103] and Semidefinite Embedding (SDE) [107].

These methods preserve global manifold properties, like geodesic distances, but are

restricted to strong isometric or locally isometric data embeddings.

Although dimensionality reduction is usually invoked as a tool to improve clas-

sification, regression, denoising or visualization tasks, among other applications, cur-

rent algorithms do not use this information to find a particular lower dimensional

representation of the data. For example, in the classification problem, the lower

dimensional embeddings found by many popular algorithms generally induce a non-

linear mixing of the classes, resulting in an harder problem in the embedded domain

than in the original high dimensional space. However, incorporating classification

information in the specification of the data embedding can lead to improvements in
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classification performance. In particular, by designing a classifier based on a “good”

lower dimensional embedding of the data, instead of the high dimensional space, one

might break the well known curse of dimensionality.

The goal of this chapter is to introduce a dimensionality reduction method where

the class labels of data points having a manifold structure are incorporated in the

construction of a lower dimensional data embedding. It seems intuitive that such

class dependent manifold embedding algorithm can improve the performance of su-

pervised and semi-supervised learning tasks. This is accomplished by modifying the

Laplacian approach to manifold learning through the introduction of class dependent

constraints.

Currently, the only other approaches to classification that take advantage of the

manifold structure of the data are from the semi-supervised learning perspective

[7, 101, 113]. However, the perspective of these approaches is one of regularization,

instead of the dimensionality reduction perspective followed here.

The outline of this chapter is as follows. In Section 4.2 we formulate the problem

of dimensionality reduction as a global optimization program and discuss Lapla-

cian eigenmaps. Section 4.3 described the embedding method proposed by adding

class label constraints to the optimization program. Some illustrative examples are

presented in Section 4.4 and Section 4.5 describes the application of the proposed

method to semi-supervised learning.

4.2 Graph Laplacians and Manifold Embeddings

Let Xn = {x1, . . . ,xn} ⊂ Rd be a set of n points constrained to lie on an m-

dimensional submanifoldM of Rd. The manifold learning problem consists in finding

an embedding of Xn into a subset Yn = {y1, . . . ,yn} of a lower m-dimensional
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space Rm (usually m¿ d), without any prior knowledge aboutM besides its finite

sampling Xn.

A common framework used to represent the geometric information about M

carried by its sampling Xn is through the use of adjacency graphs. Let G = (V,E)

be an undirected weighted graph, whose vertex set V is given by the data points, i.e.,

V = Xn, and E is the set of edges in the graph. The edge set E is associated with

an n×n weight matrix W specifying adjacency relations between vertices, such that

wij is a function of the similarity between points i and j. The weights are assumed

nonnegative and symmetric. Although there are many choices for G, throughout this

paper we consider nearest neighbor (NN) graphs with a weight matrix derived from

the heat kernel [7]. The construction of this graph proceeds as follows:

1. For a fixed neighborhood parameter k ∈ N, construct a k-NN graph on Xn,

i.e., put and edge between points i and j if i is one of the k-NN’s of j or j is

one of the k-NN’s of i.

2. For a fixed scale parameter ε > 0, assign weight

wij = exp

{

−‖xi − xj‖
2

ε

}

,

if vertices i and j are connected and wij = 0 otherwise.

Following the Laplacian eigenmaps approach [6], we formulate manifold learning

as the problem of minimizing the cost function

E(Yn) =
∑

ij

wij ‖yi − yj‖2 (4.1)

in the embedding points Yn ⊂ Rd. This cost function naturally accounts for the

geometry of Xn, as mapping close points xi and xj in the manifold to faraway points
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yi and yj in Rm results in a large penalization, whereas there is no penalty for far

away points in the manifold. Equation (4.1) can be rewritten as

E(Yn) = 2 tr
(

Y L Y T
)

, (4.2)

where Y = [y1 . . .yn] and L = D − W , with D a diagonal matrix with entries

Dii =
∑

j wji. L is known as the graph Laplacian of G. After imposing appropriate

constraints to remove arbitrary translations and scalings in the embedding, finding

a lower dimensional embedding of Xn reduces to solving the following optimization

problem:

arg min

Y D 1 = 0

Y D Y T = I

tr
(

Y L Y T
)

, (4.3)

where I is the n× n identity matrix and 1 is a column vector of ones.

As L is positive semidefinite, the solution to problem (4.3) is given by the m gen-

eralized eigenvectors associated with the m smallest positive generalized eigenvalues

that solve

Lv = λD v . (4.4)

This is equivalent to solving a regular eigenvalue problem for matrix L̃ = D−1/2 L D−1/2,

the so-called normalized graph Laplacian. If V = [v1 . . .vm] is the collection of such

eigenvectors, then the embedded points are given by yi = (vi1, . . . , vim)
T , 1 ≤ i ≤ n.

4.3 Constraining the Manifold Embedding

Assume now that each point of Xn ∈M (or a subset of them) is associated with

a class label, i.e., xi has label ci ∈ {−1, 1}. For simplicity, we only consider the

problem of two classes, although the extension of the method proposed here to a
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multi-class scenario is straightforward.

We are interested in finding a lower dimensional embedding for Xn that, unlike

common manifold learning algorithms, takes into account the class structure of the

data. The goal is to obtain an embedding that tries to separate classes in order

to improve training and generalization capabilities of a classifier fitted to the lower

dimensional embedded data.

Although we also use graph Laplacians, we do not follow the approach advocated

in [7]. In [7], dimensionality reduction and classification are treated as a function

fitting problem, relying on the the eigenvectors of the Laplacian as a natural basis

to represent functions on the graph sampling of the manifold.

The method developed here is based on the idea of maximum alignment [112]

between classes and data points. This idea proceeds as follows. Start by associating

with each class a new node on the adjacency graph, called class center, inserting

an edge of unit weight between this node and all data points with the same class

label. Now, if we view the graph edges as springs that pull together nodes in the

graph, determining an embedding corresponds to finding data coordinates in an m-

dimensional space that minimize the stresses in the system of springs. This will lead

to points with the same class label trying to cluster together around the class center,

while attempting to preserve the geometric neighborhood structure of the manifold.

In this way, the class centers are maximally aligned with the data points.

We now formalize this idea. Let zk ∈ Rm be the class center associated with class

k and C be the class membership matrix, i.e., cki = 1 if xi has label k and cki = 0

otherwise. As before, we find the embedding by minimizing the cost function

E(Zn) =
∑

ki

cki ‖zk − yi‖2 + β
∑

ij

wij ‖yi − yj‖2 , (4.5)
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where Zn = {z1, z2,y1, . . . ,yn} and β ≥ 0 is a regularization parameter. Large

values of β will produce embeddings that ignore class labels, while small values will

produce embeddings that ignore the manifold structure of the data. Of course, in

the latter case, points will tend to collapse into the class centers, producing lower

dimensional data with little value to train a classifier with good generalization per-

formance.

By defining Z = [z1 z2 y1 . . .yn], determining the lower dimensional embedding

of Xn can be once again made equivalent to the following optimization problem:

arg min

Z D 1 = 0

Z D ZT = I

tr
(

Z L ZT
)

, (4.6)

where L is the (n+ 2)× (n+ 2) graph Laplacian associated with weight matrix

W ′ =







I C

CT βW






.

The solution of problem (4.6) is again given by the matrix of the generalized eigen-

vectors associated with the m smallest positive generalized eigenvalues of L, where

the first rows correspond to the coordinates of the class centers and the following

rows determine the embedding of the original data points.

We remark that the method proposed here extends naturally to the semi-supervised

setting, where only partial labeling is available. In this case, the points xi for which

there are no label information will have the corresponding columns of matrix C set

to zero, thus imposing no additional constraints.
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Figure 4.1: Swiss roll manifold with 400 points from each of 2 classes, marked as ’O’
(red) and ’•’ (blue).

4.4 Examples

We now show through simple examples how the proposed classification con-

strained dimensionality reduction (CCDR) algorithm works. All the simulations

presented here have β = 1, neighborhood parameter k = 12 and the scale parameter

ε of the heat kernel is set automatically according to [56]:

ε =
10

n

n
∑

i=1

min
j:xj 6=xi

‖xj − xi‖2 .

Consider the standard 2-dimensional swiss roll manifold in R3. We sample 400

points uniformly on the manifold from each of two classes, as shown in figure 4.1.

As it can be deduced, there is no linear projection of the data into a 2-dimensional

subspace that separates the classes.

Figure 4.2 shows the results of applying standard manifold learning methods,

ISOMAP [103] and Laplacian Eigenmaps, together with the proposed CCDR al-

gorithm to the data set of Figure 4.1. Recall that both ISOMAP and Laplacian

Eigenmaps do not account for label information when computing the embedding. As

a result, although ISOMAP (Figure 4.2(a)) is able to recover an isometric embedding
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Figure 4.2: Applying dimensionality reduction algorithms to the Swiss roll data set

of Figure 4.1. ISOMAP was computed using 8-NN, while both Laplacian Eigenmaps

and CCDR used 12-NN.

of the data into the plane, it fails at finding a simple separation of the classes. The

Laplacian eigenmaps method (Figure 4.2(b)) gives similar results, albeit finding an

arc-length type parameterization of the data. On the contrary, the CCDR algorithm

(Figure 4.2(c)) computes an embedding where classes are almost linearly separable.

To quantify this behavior, we designed a very simple classifier. To classify a new

sample, add it to the graph formed by the training set, with unknown label (add a

zero column to matrix C ), compute the constrained (or simple Laplacian) embedding.

and then classify the sample using a simple NN-classifier on the embedded points.

We compare this to a baseline NN-classifier on the full dimensional data set. In all

the experiments a 3-NN classifier was used. We tested 50 sample points per training

set and repeated for 20 random training sets. Table 4.1 shows the average error

rates as a function of the number of training samples. As it can be seen, the CCDR

algorithm outperforms the other methods. Supporting the claim that dimensionality

reduction without guidance can harm classification performance, it can be observed

that the full dimensional NN-classifier does better than a NN-classifier based on the

Laplacian embedding.
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Table 4.1: Error rates for classification using pre-processing dimensionality reduction
versus full dimensional data

no. of train.
samples CCDR Laplacian 3-NN

300 4.4 % 6.4 % 5.0 %
400 3.6 % 5.0 % 4.4 %
500 2.6 % 3.6 % 3.4 %
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Figure 4.3: Swiss roll manifold with 50 samples labeled out of a total of 400 training
samples. Labeled and unlabeled samples are marked as ’♦’ (red and blue) and ’◦’
(black), respectively.

4.5 Semi-supervised Learning of Manifold Data

In many applications, although it might be easy to collect a large database of

unlabeled training examples, the operation of labeling examples can be too expen-

sive as it can depend on time consuming or costly experiments. These include object

and speech recognition or text and genetic databases classification, among others.

In these cases, one has to resort to using only a few labeled samples within a large

database of unlabeled training points. See Figure 4.3. However, the geometric struc-

ture of the overall data set can be combined with this information to improve labeling

of the remaining unlabeled examples.

The framework presented in this chapter, combining geometric structure preser-
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vation and class discrimination, can be used to improve semi-supervised learning

machines. Adopting the method proposed in [7], we have the following algorithm.

Firstly, compute the constrained embedding of the entire data set, inserting a zero

column in C for each unlabeled sample. Secondly, fit a classifier to the labeled em-

bedded points. For example, fit a linear classifier by minimizing the quadratic error

loss:

`(a) =
∑

i : xi is

labeled

(

ci − aTyi
)2

.

Thirdly and finally, for an unlabeled point xj, label it using the fitted (linear) clas-

sifier:

cj =











1 if aTyj ≥ 0

−1 if aTyj < 0
.

We compare this algorithm to the simple Laplacian equivalent, where the em-

bedding is found using Laplacian eigenmaps, and to a baseline NN-classifier, where

points are labeled according to the nearest labeled neighbors in the full dimensional

space. We chose the best k-NN classifier for k = 1, 2, 3. Figure 4.4 shows the error

rates as a function of the number of labeled points, for a total of 1000 points on the

Swiss roll. For each fixed number of labeled points, we drew 20 independent data

sets and randomly assigned labels, although guaranteeing balanced classes. As it

can be seen, for a small number of labeled points, CCDR performs almost as bad as

the Laplacian algorithm, as label information is not enough to produce an embed-

ding substantially different from the original Laplacian eigenmaps, where classes are

highly mixed (see Fig. 4.2(b)). However, as the number of samples increases beyond

100, the class constraints start to take effect, driving an embedding that can achieve

almost linear separation of classes and thus outperforming all other methods.
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Figure 4.4: Percentage of errors for labeling unlabeled samples as a function of the
number of labeled points, out of a total of 1000 points on the Swiss roll.

4.6 Conclusion

Several issues should be addressed in order to make the method proposed widely

applicable to real life problems. Of prime importance is the development of out-of-

sample extensions of the embeddings to new points. After these issues are solved,

it would be important to see the effect of the proposed algorithm when used with

state of the art classifiers, like support vector machines (SVM). This will contribute

to understanding the tradeoff between feature extraction and classification and di-

mensionality reduction and dimensionality expansion via kernel machines. Also of

interest, is the study of the influence of the regularization parameter β in the clas-

sification performance.

We are currently applying this method to high-dimensional databases, such as

the MNIST database of handwritten digits.
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CHAPTER 5

Distributed Weighted-Multidimensional Scaling

for Node Localization in Sensor Networks

5.1 Introduction

In this chapter, we shift the focus from using random graphs to extract properties

of the sample distribution to using random graphs to extract spatial information.

If data is collected by sensors distributed over different locations, the adjacency

graphs introduced in Chapter 4 can be used to encode the spatial dependencies, as

opposed to geometrical and statistical dependencies. Dense networks, like modern

and future sensor networks or the Internet, collect massive amounts of measurements

that fit the profile of high-dimensional data sets discussed in this thesis. In particu-

lar, the spatial distribution of the sensors introduces statistical dependencies in the

collected data. As such, implementing dimensionality reduction methods on such

data sets to extract relevant information can not only greatly reduce storage needs

but also dramatically decrease communication costs within the network.

Part of the research presented in this chapter was joint work with Neal Patwari.
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This chapter addresses the problem of localization in a sensor network using

these tools, together with the multidimensional scaling principle to dimensionality

reduction.

5.1.1 Localization in Sensor Networks

For monitoring and control applications using wireless sensor networks, automatic

localization of every sensor in the network will be a key enabling technology. Sensor

data must be registered to its physical location to permit deployment of energy-

efficient routing schemes, source localization algorithms, and distributed compression

techniques. Moreover, for applications such as inventory management and manufac-

turing logistics, localization and tracking of sensors are the primary purposes of the

wireless network. For large-scale networks of inexpensive, energy-efficient devices, it

is not feasible to include GPS capability on every device or to require a system ad-

ministrator to manually enter all device coordinates. In this chapter, we consider the

location estimation problem for which only a small fraction of sensors have a priori

coordinate knowledge, and range measurements between many pairs of neighboring

sensors permit the estimation of all sensor coordinates. While angle measurements

have also been used for sensor localization, in this chapter, we limit the discussion

to localization based on range measurements.

Two major difficulties hinder accurate sensor location estimation: first, accu-

rate range measurements are expensive; and second, centralized estimation becomes

impossible as the scale of the network increases. This chapter proposes a distribu-

ted localization algorithm, based on a weighted version of multidimensional scaling

(MDS), which naturally incorporates local communication constraints within the

sensor network. Its key features are:

1. A weighted cost function that allows range measurements that are believed to
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be more accurate to be weighted more heavily.

2. An adaptive neighbor selection method that avoids the biasing effects of select-

ing neighbors based on noisy range measurements.

3. A majorization method which has the property that each iteration is guaranteed

to improve the value of the cost function.

Simulation results and experimental channel measurements show that even when

using only a small number of range measurements between neighbors and relying on

fading-prone received signal-strength (RSS), the proposed algorithm can be nearly

unbiased with performance close to the Cramér-Rao lower bound.

5.1.2 Sensor Localization Requirements

For a network of thousands or even millions of sensors, the large scale precludes

centralized location estimation. Sending pair-wise range measurements from each

sensor to a single point and then sending back estimated device coordinates would

overwhelm the capacity of low-bandwidth sensor networks and waste energy. De-

centralized algorithms are vital for limiting communication costs (which are usually

much higher than computation costs) as well as for balancing the communication and

computational load evenly across the sensors in the network. Furthermore, when a

sensor moves, the ability to recalculate location locally rather than globally will re-

sult in energy savings which, over time, may dramatically extend the lifetime of the

sensor network.

Sensor energy is also conserved by limiting transmission power. For a given

channel between a pair of wireless sensors, the SNR of the received signal can be

improved by increasing the transmit power. Range measurement accuracy improves

at higher SNR [11, 51], thus imposing a tradeoff between energy cost and accuracy.
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There is also a tradeoff between device cost and range accuracy: using ultrawideband

(UWB) [17, 28] or hybrid ultrasound/RF techniques [32] can achieve accuracies on

the order of centimeters, but at the expense of high device and energy costs. Alter-

natively, very inexpensive wireless devices can measure RF RSS just by listening to

network packet traffic, but range estimates from RSS incur significant errors due to

channel fading. All range measurements tend to degrade in accuracy with increas-

ing distance. In particular, RSS-based range measurements experience errors whose

variance is proportional to the actual range. Accurate localization algorithms must

take into account the range dependence of the ranging variance.

Finally, measurement of ranges between every pair of devices would require O(n2)

measurements for n sensors. The distributed weighted-multidimensional scaling

(dwMDS) algorithm reduces measurement costs by requiring range measurements

only between a small number of neighboring sensors.

5.1.3 Multidimensional Scaling

The goal of multidimensional scaling is to find a low dimensional representation

of a group of objects (e.g., sensor positions), such that the distances between ob-

jects fit as well as possible a given set of measured pairwise “dissimilarities” that

indicate how dissimilar objects are (e.g., inter-sensor RSS). MDS has found many

applications in chemical modeling, economics, sociology, political science and, espe-

cially, mathematical psychology and behavioral sciences [21]. More recently, MDS

has been used by the machine learning community for manifold learning [103]. In the

sensor localization context, MDS can be applied to find a map of sensor positions (in

2-D or 3-D) when dissimilarities are measurements of range obtained, for example,

via RSS or Time of Arrival (TOA).

For the last 70 years many approaches to solving the MDS problem have been
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formulated (see [8, 21, 23, 35] and references therein). On the one hand, when

the measured dissimilarities are equal to the true distances between sensors, clas-

sical MDS provides a closed formed solution by singular value decomposition of

the centered squared dissimilarity matrix (see Section 5.3). On the other hand,

when dissimilarities are measured in noise, other techniques should be used, usually

based on iteratively minimizing a loss function between dissimilarities and distances.

This framework encompasses techniques such as alternating nonlinear least squares

(ALSCAL) [102], nonlinear least squares via majorizing functions (SMACOF) [36],

nonmetric scaling [54,55] or maximum likelihood formulations [86,115]. Common to

all these methods is the need for a central processing unit to gather all the available

dissimilarities and perform the function minimization.

In contrast, we present a distributed MDS algorithm, which operates by mini-

mizing multiple local loss functions. The local nonlinear least squares problem is

solved using quadratic majorizing functions as in SMACOF. Since each local cost

distributes additively over the network, each sensor contributes to the minimization

of the global MDS loss function. In this way, our algorithm produces a sequence of

position estimates with corresponding non-increasing global cost and limited com-

munication between sensors.

5.1.4 Related Work

Many aspects of the sensor localization problem have been addressed in recent

literature. Notably, bounds on estimation performance have been derived for the

cases when pair-wise measurements are RSS, TOA, Angle Of Arrival (AOA), or a

combination [14, 67, 68, 74, 79]. Furthermore, centralized algorithms based on multi-

dimensional scaling [98], convex optimization [25], and maximum-likelihood [67] have

demonstrated good estimation performance.
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Research has also demonstrated the feasibility of distributed localization algo-

rithms, which are required for scalability and balancing computational costs across

large sensor networks. Distributed localization algorithms presented in the litera-

ture can be grouped into two types: adapted trilateration algorithms, and successive

refinement algorithms. In the first type, devices estimate the distance to multiple

known-location devices, using either a direct measurement, or if none exists, an es-

timate based on the shortest path to the known-location devices [69, 73, 96]. Then,

using these range estimates to the anchors, the device uses trilateration to estimate

its location. In the successive refinement approaches to localization, each device lo-

cally estimates its location from measured ranges to its neighbors. Each device begins

with its own local coordinate system, and later merges it with neighboring coordi-

nate systems [106]. The devices successively refine their location estimates [1, 95],

effectively finding a solution to a global optimization problem that uses all ranges

measured between neighbors.

The distributed algorithm presented here falls in the successive refinement cat-

egory, which finds a minimum of a global cost function. In the dwMDS approach,

however, the special cost function structure avoids the complicated step of merging

local maps and a majorization algorithm is used to ensure that each iteration de-

creases the global cost function. This global improvement is guaranteed even though

sensors operate individual updates based only on information received from their few

closest neighbors.

Although using a different formulation then the one proposed here, the following

papers also apply MDS-type techniques to sensor localization:

– Plain MDS: In [98], devices have connectivity information (whether or not two

devices are in range). The distance between two connected nodes is defined to

be 1, while the distance between two nodes not in range is set to the number
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of hops in the shortest path between them (similar to Isomap [103]). The

matrix of distances between each pair of devices is used by an MDS algorithm

to estimate the coordinates of the devices. Compared to the present chapter,

this centralized MDS method weights each distance equally. Unlike [98], the

method proposed here avoids the (usually inaccurate) estimation of distances

between out-of-range sensors.

– Local MDS: In [45], a local version of MDS is used to compute maps of many

local arrangements of nodes. These local maps are pieced together to obtain

global maps. This method tends to perform better than the global MDS me-

thod when node density is non-uniform, or “holes” in coverage exist. The local

calculations allow a distributed implementation, but weights are restricted to

be either 0 or 1. The formulation introduced in the present chapter removes

that restriction, by allowing arbitrary non-negative weights, and naturally by-

passes the complex step of fusing the local maps into a global map.

– Manifold Learning: Centralized manifold learning techniques are used in [78]

to estimate sensor locations, without explicit range estimation, in cases where

sensor data has correlation structure that is monotone in inter-sensor distance.

Classical MDS is used to estimate physical location coordinates from the high-

dimensional sensor data. The present chapter uses direct measurements of

range between pairs of neighboring devices to estimate locations.

Common to most sensor localization methods is the process of selecting sensor

neighborhoods for range measurements. Most methods propose using only ranges

measured between nearby neighbors, in order to limit communication costs and com-

putational complexity. However, when ranges are measured with noise, the act of

choosing neighbors based on these measurements will tend to select devices whose
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measured distances are shorter than the true distances. This chapter addresses this

biasing effect and proposes a two-stage neighbor selection process that can be used to

unbias location estimates even in high-noise environments. We remark that, to our

knowledge, this problem has not been previously considered in the sensor localization

literature.

5.1.5 Outline

The remainder of this chapter is organized as follows. Section 5.2 provides a

formal statement of the sensor localization problem considered here. In Section 5.3

we describe the solution to the classical MDS formulation and discuss its shortcom-

ings in a distributed and sensor network environment. The proposed algorithm is

introduced in Section 5.4. In Section 5.5 we discuss statistical models for TOA and

RSS measurements to show why a weighted MDS solution is important. Section 5.6

discusses the bias effect associated with using these noisy range measurements to

select neighboring devices and proposes a solution. In Section 5.7 we show results

on both simulated measurement data and on measured range data recorded for a 44-

node sensor network in an indoor office environment. Finally, Section 5.8 concludes

the chapter with a discussion about the proposed method, improvements and future

work.

5.2 Problem Statement

To be specific about sensor localization, we now formally state the estimation

problem addressed in this chapter.

Consider a network of N = n+m devices, living in a D-dimensional space (D = 2

or 3, although the proposed formulation can handle arbitrary D-dimensional local-

113



ization, as long as D < N). Let {xi}Ni=1, xi ∈ RD, be the actual vector coordinates of

sensors, or, equivalently, define the matrix of coordinates X = [x1, . . . ,xn,xn+1, . . . ,xN ].

The last m sensors (i = n+ 1, . . . , N) have perfect a priori knowledge of their coor-

dinates and are called anchor nodes. The first n sensors (i = 1, . . . , n) have either no

knowledge or some imperfect a priori coordinate knowledge and are called unknown-

location nodes. Imperfect a priori knowledge about sensor i ≤ n is encoded by

parameters ri and xi, where, with accuracy ri, xi is believed to lie around xi (see

Section 5.4 for a precise definition of these parameters). If no such knowledge is

available, ri = 0. Summarizing, three distinct sets of sensors can be considered

in this formulation based on their a priori information: perfect (i > n), imperfect

(i ≤ n, ri > 0), or zero coordinate knowledge (i ≤ n, ri = 0). Note that one or

two of these sets might be empty, e.g., no anchor nodes available and/or no prior

information on sensors locations. These and other notation used throughout this

chapter is gathered in Table 5.1.

The localization problem we consider is the estimation of the coordinates {xi}ni=1
given the coordinates of the anchor nodes, {xi}Ni=n+1, imperfect a priori knowledge,

{(ri,xi)}ni=1 and many pairwise range measurements, {δ(t)ij }, taken over time t =

1 . . . K. We use the terms ’dissimilarity’ and ’range measurement’ interchangeably,

in order to seamlessly merge terms common to MDS and localization literature. The

available range measurements (i, j) are some subset of {1 . . . N}2. We assume that

this subset of range measurements results in a connected network; otherwise, each

connected subset should be considered individually.

The method developed is general enough to adapt to any range measurement

method, such as TOA, RSS, or proximity. We focus in particular on RSS-based

range measurements, due to its desirability as a low-device cost method, but we also

test the method using TOA range measurements in Section 5.7.
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Notation Description
D Dimensions of location estimates (D = 2 unless noted)

N = n+m Total number of sensors
n Sensors with imperfect or no a priori coordinate information
m Sensors with perfect a priori coordinate knowledge (‘anchor’ nodes)
Pij Power received (dB) at sensor i transmitted by sensor j
Pthr Minimum received power for successful reception
dthr Distance at which mean received power = Pthr
dR Threshold distance for neighborhood selection
xi Actual coordinate vector of sensor i, i = 1 . . . n+m
X Actual coordinate matrix, [x1, . . . ,xn+m]

dij, dij(X ) Actual distance between sensors i and j in matrix X

δ
(t)
ij Range measured at time t between sensors i and j

w
(t)
ij Weight given to the range measured at time t between sensors i and j

δij Weighted average measured range between sensors i and j
wij Weight given to the average measured range between sensors i and j
S Global objective function to be minimized
Si Local objective function to be minimized at sensor i = 1 . . . n

x
(k)
i Estimated coordinates of sensor i at iteration k

X (k) Estimated coordinate matrix at iteration k

Table 5.1: Symbols used in text and derivations
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5.3 Classical Metric Scaling

If we assume that we measure all the pairwise dissimilarities {δij}Ni,j=1 between

points, and that these correspond to the true Euclidean distances, then

δij = dij = d(xi,xj) = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj) . (5.1)

By writing the squared distances as d2ij = xTi xi − 2xTi xj + x
T
j xj, one can recover

the matrix of inner products between points in the following way. Defining ψ =

[xT1 x1, . . . ,x
T
NxN ]

T , the squared distance matrix, D = [d2ij]
N
i,j=1, can now be written

as

D = ψeT − 2X TX + eψT ,

where e is the N -dimensional vector of all ones. Defining H to be the centering

operator, I − eeT/N , it follows that

B = −H D H = H X TX H .

After multiplication with H , the columns of X TX have zero mean. Now, given B ,

one can recover matrix X , up to a translation and orthogonal transformation, as the

solution to the following variational problem:

min
Y

‖B − Y TY ‖2F , (5.2)

where ‖.‖F is the Frobenius norm and the minimum is taken over all D×N rank-D

matrices. The solution of (5.2) is given by

X = diag(λ
1/2
1 , . . . , λ

1/2
D )UT , (5.3)
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where

B = U diag(λ1, . . . , λD)UT

is the (rank-D) singular vale decomposition (SVD) of matrix B .

The above derivation exposes the shortcomings of classical MDS. First, obtaining

matrix B requires the knowledge of all the pairwise dissimilarities, a scenario highly

unlikely in a dense sensor network due to power and/or bandwidth constraints. Sec-

ond, due to a lack of any special sparse structure, computing matrix B and its SVD

requires that all the dissimilarities be communicated and processed by a central pro-

cessing unit, a communication-intensive operation in most sensor networks. Finally,

(5.3) assumes that the true distances between points are available. For the realistic

case in which range measurements are corrupted by multiplicative type noise (see

Section 5.5), classical metric scaling minimizes the squared error between the squared

distances d2ij and δ2ij (rather than the distances themselves) which tends to amplify

the measurement errors, resulting in poor noise performance.

5.4 Distributed Weighted Multidimensional Sca-

ling

We propose a distributed weighted MDS algorithm (dwMDS) that fits the sensor

networks framework of distributed computations and restricted communications and

also accounts for measurement errors. In particular, each sensor will only need to

communicate relevant information with its neighbors (one hop away) in order to

achieve a localization solution, as opposed to a multi-hop communication protocol

or higher power transmissions necessary to reach a fusion center in a centralized

algorithm.
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5.4.1 The dwMDS Cost Function

Motivated by the variational formulation of classical metric scaling (cf. (5.2)), we

seek to estimate sensor positions by minimizing the following global cost function

(a.k.a. STRESS function [21]):

S = 2
∑

1≤i≤n

∑

i<j≤n+m

∑

1≤t≤K
w
(t)
ij

(

δ
(t)
ij − dij(X )

)2

+
∑

1≤i≤n
ri ‖xi − xi‖2 . (5.4)

where the actual Euclidean distance dij(X ) is given by (5.1), and we assume that

for each pair (i, j), up to K dissimilarity measurements are available. The arbitrary

weight w
(t)
ij (t = 1, . . . , K) can be selected to quantify the predicted accuracy of mea-

surement δ
(t)
ij . If no such measurement is available between i and j, or its accuracy

is zero, then w
(t)
ij = 0. We assume that w

(t)
ij ≥ 0, w

(t)
ii = 0 and w

(t)
ij = w

(t)
ji , i.e., the

weights are symmetric. Vector xi contains prior information about the location of

node i (1 ≤ i ≤ n), while ri determines the influence of such information on the

overall cost, by quantifying how accurate this prior location is. If there is no prior

information, then ri = 0. Note, function (5.4) differs from the standard MDS objec-

tive function in that we have added a penalty term to account for prior knowledge

about node locations.

We stress that the variational formulation of (5.4) implies a nonparametric view

of the location problem – the sensor positions are estimated by minimizing S (w.r.t.

{xi}), where no model assumptions are made about the statistical behavior of the ob-

served dissimilarities. This permits the use of data-dependent weighting schemes (see

Section 5.4.3), resulting in a cost function that can automatically adapt to different

measurement models. Nevertheless, we remark that equation (5.4) can also be seen

from a statistical viewpoint. Under a Bayesian perspective, (5.4) can be interpreted

as the log posterior density of the nodes locations given the observed dissimilarities,
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log f({xi}|{δij}), if we assume that the dissimilarities {δ(t)ij } are i.i.d. Gaussian with

mean dij and variance (2w
(t)
ij )

−1 and points {xi} have a Gaussian prior with mean

xi and variance (2 ri)
−1.

After simple manipulations, S can be rewritten as follows:

S =
n
∑

i=1

Si + c , (5.5)

where local cost functions Si are defined for each unknown-location node (ie. 1 ≤

i ≤ n),

Si =
n
∑

j=1
j 6=i

wij

(

δij − dij(X )
)2

+
n+m
∑

j=n+1

2wij

(

δij − dij(X )
)2

+ ri‖xi − xi‖2 , (5.6)

and c is a constant independent of the nodes locations X . In (5.6), the K weights

and range measurements between i and j are summarized by a single weight wij =
∑K

t=1 w
(t)
ij and measurement δij =

∑K
t=1 w

(t)
ij δ

(t)
ij /wij. As Si only depends on the

measurements available at node i and the positions of neighboring nodes, i.e., nodes

for which w
(t)
ij > 0 (for some t), it can be viewed as the local cost function at node i.

We note that if m = 0 (i.e., no anchor nodes are available) and ri = 0, for all i (i.e.,

no prior information on the nodes locations), then ∂S/∂xi = 2 ∂Si/∂xi. This implies

that the influence of xi on the local cost Si determines its influence on the global

cost S. Motivated by this cost structure, we propose an iterative scheme in which

each sensor updates its position estimate by minimizing the corresponding local cost

function Si, after observing dissimilarities and receiving position estimates from its

neighboring nodes.
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5.4.2 Minimizing the dwMDS Cost Function

Unlike classical MDS, no closed form expression exists for the minimum of the cost

function S or Si. By assuming that each node has received position estimates from

neighboring nodes, we minimize Si = Si(xi) iteratively using quadratic majorizing

functions as in SMACOF (Scaling by MAjorizing a COmplicated Function [36]).

This method has the attractive property of generating a sequence of non-increasing

STRESS values.

A majorizing function Ti(x,y) of Si(x) is a function Ti : RD × RD → R that

satisfies: (i) Si(x) ≤ Ti(x,y) for all y, and (ii) Si(x) = Ti(x,x). This function can

then be used to implement an iterative minimization scheme. Starting at an initial

condition x0, the function Ti(x,x0) is minimized as a function of x. The newly found

minimum, x1, can then be used to define a new majorizing function Ti(x,x1). This

process is then repeated until convergence (see [36] for details). The trick is to use

a simple majorizing function that can be minimized analytically, e.g., a quadratic

function. Following [36], we start by rewriting Si as:

Si(xi) = η2δ + η2(X )− 2 ρ(X ) ,

where

η2δ =
n
∑

j=1
j 6=i

wij δ
2

ij +
n+m
∑

j=n+1

2wij δ
2

ij , (5.7)

η2(X ) =
n
∑

j=1
j 6=i

wij d
2
ij(X ) +

n+m
∑

j=n+1

2wij d
2
ij(X ) + ri‖xi − xi‖2 , (5.8)

ρ(X ) =
n
∑

j=1
j 6=i

wij δij dij(X ) +
n+m
∑

j=n+1

2wij δij dij(X ) . (5.9)
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Term (5.7) does not depend on xi and term (5.8) is quadratic in xi. Only term (5.9)

depends on xi through a more complicated (sum of square roots) function. Define

Ti(x,y) as:

Ti(xi,yi) = η2δ + η2(X )− 2 ρ(X ,Y ) , (5.10)

where

ρ(X ,Y ) =
n
∑

j=1
j 6=i

wij
δij

dij(Y )
(xi−xj)T (yi−yj)+

n+m
∑

j=n+1

2wij
δij

dij(Y )
(xi−xj)T (yi−yj) .

(5.11)

Using the fact that, by Cauchy-Schwarz inequality,

dij(X ) =
dij(X ) dij(Y )

dij(Y )
≥ (xi − xj)T (yi − yj)

dij(Y )
,

it is easily seen that Ti majorizes Si. Minimizing Si through a majorizing algorithm

is now a simple task of finding the minimum of Ti:

∂Ti(xi,yi)

∂xi
= 0 . (5.12)

An expression for this gradient is given in Appendix 5.9. If X (k) is the matrix whose

columns contain the position estimates for all points at iteration k, one can derive

an update for the position estimate of node i using equation (5.12):

x
(k+1)
i = ai

(

ri xi + X (k)b
(k)
i

)

, (5.13)

where

a−1i =
n
∑

j=1
j 6=i

wij +
n+m
∑

j=n+1

2wij + ri , (5.14)
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and b
(k)
i = [b1, . . . , bn+m]

T is a vector whose entries are given by:

bj = wij

[

1− δij/dij(X
(k))
]

j ≤ n , j 6= i

bi =
∑n

j=1
j 6=i

wij δij/dij(X
(k)) +

∑n+m
j=n+1 2wij δij/dij(X

(k))

bj = 2wij

[

1− δij/dij(X
(k))
]

j > n

. (5.15)

As the weights w
(t)
ij are zero for nodes j not in the relative neighborhood of node i,

only the corresponding entries of vector b will be nonzero, and the update rule for

xi will depend only on this neighborhood (as opposed to the whole matrix X (k)).

This fact provides the structure necessary for a distributed implementation: each

node updates its location estimate according to equation (5.13); it then transmits

this update to its set of neighbors; after receiving the same information from its

neighbors, the node reiterates its location estimate.

We remark that, unlike the centralized SMACOF algorithm described in [36],

the computation of (5.13) does not require the evaluation of a n× n Moore-Penrose

matrix inverse.

We also point out that the minimization algorithm proposed can be seen as a

special case of optimization transfer methods through surrogate objective functions

[57], which also include the popular EM algorithm.

5.4.3 Algorithm

The proposed algorithm is summarized in Figure 5.1. We make the following

comments:

1. The choice of weighting function wij should reflect the accuracy of measured

dissimilarities, such that less accurate measurements are down-weighted in the

overall cost function. If a noise measurement model is available, wij can be tai-
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Inputs: {δ(t)ij }, {w(t)ij }, m, {ri}, {xi}, ε, initial condition X (0)

Initialize: k = 0, S(0), compute ai from equation (5.14)
repeat

k ← k + 1
for i = 1 to n

compute b
(k−1)
i from equation (5.15)

x
(k)
i = ai

(

ri xi + X (k−1)b(k−1)i

)

compute S
(k)
i

S(k) ← S(k) − S
(k−1)
i + S

(k)
i

communicate x
(k)
i to neighbors of node i (i.e., nodes for which wij > 0)

communicate S(k) to node i+ 1 (modn)
end for

until S(k−1) − S(k) < ε

Figure 5.1: Algorithm for decentralized weighted-multidimensional scaling

lored to the variance predictions of the model. For example, one might select

wij = 1/(c1δij + c2)
2 if the measurements are Gaussian distributed with stan-

dard deviation increasing linearly with the true distances, i.e., σ = c1dij + c2.

When a reliable model is not available, one can adopt a model-independent

adaptive weighting scheme. This is the approach adopted in this chapter. In-

spired by the weighting frequently used in locally weighted regression methods

(LOESS) [16], we propose the following weight assignment:

wij =











exp
{

−δ2ij/h2ij
}

, if δij is measured

0 , otherwise
, (5.16)

where hij = max {maxk δik,maxk δkj}. This choice of wij, which equalizes the

(nonzero) weight distribution in all sensors, has robust performance as shown

in the experiments reported in Section 5.7. Other weighting schemes are also

possible, ranging from alternative monotone functions to a naive choice of unit

weights for measured distances.
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2. The question of how to adaptively choose the neighbors of each node (i.e.,

which weights are made positive) in order to decrease communication costs or

improve localization performance is addressed in Section 5.6.

3. The values of ri should be chosen according to prior information. For example:

if prior information about node i was obtained using GPS, then ri should

reflect the accuracy of the GPS sensor used; or, if anchor nodes are subject to

small displacements, like vibrations, ri should quantify the mean squared error

between the node’s average position and the its expected movements. Under a

Bayesian perspective, the choice of ri is analogous to the problem of subjective

prior choice in a Bayesian model and thus can be guided by similar principles.

Also, as in Bayesian problems, as more measurements per sensor are collected,

the influence of the values of ri are discounted in the final solution. Section 5.7

includes a discussion on the influence of ri in experimental results.

4. Regarding the initialization of the algorithm, every node requires an initial es-

timate of its position. This can be done using the algorithms proposed in [95]

or [106]: each node builds its local coordinate system, which is then passed

along the network until a rough global map of the network is built. In the

experiments reported in Section 5.7, we use a naive random initialization and

found that the algorithm was robust with respect to these “rough” initial po-

sition estimates.

5. In the description of the algorithm, it was assumed for notational convenience,

that the algorithm cycles through the network in an ordered fashion (i.e., mes-

sages are passed between nodes in the order 1, 2, . . . , n). However, many other

non-cyclic update rules are possible. In particular, one possibility is for (spatial)

clusters of sensors to iterate among themselves until their position estimates

124



stabilize. These estimates can then be transmitted to the neighboring clusters,

before starting a new iteration step.

6. Although the majorization approach used guarantees a non-increasing sequence

of STRESS vales, it may converge to a local minimum of this cost function,

instead of the global one, like any gradient search method. This behavior can

be alleviated to some extent by using some of the advanced search techniques

proposed in [36].

Computational Complexity and Energy Consumption

Regarding computational complexity, it is easily seen that the algorithm in Figure

5.1 scales as O(nL), where L is the total number of iterations required until the

stopping rule is satisfied. This compares favorably to classical MDS, which requires

O(n2 T ) operations, where T is the number of steps required by the Lanczos method

to compute the necessary SVD.

However, in sensor network applications, far more important than computational

complexity, is the amount of communication required by the algorithm, as the energy

consumed by a single wireless transmission can far outweigh the energy necessary for

local computations. As we are interested in how communication complexity scales

with the size of the network, we adopt the model proposed in [85]. In this model,

the average total energy used by a general data processing algorithm, as function of

the number of nodes n, is given by

E(n) = b(n)× h(n)× e(n) ,

where b(n) is the average number of bits/packets transmitted, h(n) is the average

number of hops over which communication occurs, and e(n) is the average amount
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of energy required to transmit one bit/packet over one hop.

For simplicity, we assume, in the following analysis, that the sensors are uniformly

distributed over a square or cube of unit side length, for, respectively, aD = 2 orD =

3 dimensional network. The proposed algorithm requires that each node transmits

its position estimate to other nodes from which it obtained range measurements. If

we assume that a node is able to sense all other nodes within a threshold distance

dthr, then the average number of neighbors a node can communicate with is upper

bounded by c1(n− 1) dDthr, where c1 is the volume of the D-dimensional unit sphere

(nodes close to the border of the unit square or cube actually have fewer expected

neighbors). As this operation occurs for each iteration for every node, an upper

bound on the average number of transmitted bits is bdwMDS(n) ≤ O(n2 LdDthr). Each

communication to its neighbors can be made in one hop, so hdwMDS(n) = 1. Thus,

the average energy required for communication by the proposed algorithm is:

EdwMDS(n) ≤ O
(

n2 LdDthr edwMDS(n)
)

. (5.17)

Notice that edwMDS(n) depends on dthr (in a nonlinear way).

We remark that the same bound (5.17) on energy consumption is also valid for a

sensor network with nodes distributed over a uniform grid of side length O(n−1/D)

(see Fig. 5.3). This scenario makes it easier to compare the proposed method to a

centralized algorithm, assuming a multi-hop communication protocol. To simplify

the analysis, we consider the threshold distance dthr = O(n−1/D). In this case, each

node communicates only with its immediate neighbors in the uniform grid, making

the average hop distance the same in the centralized and distributed case. This

implies that the same energy is required to transmit a bit/packet over one hop, i.e.,

edwMDS(n) = ecentr(n). For dthr = O(n−1/D), each node will, on the average, receive
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range measurements from a fixed number of neighborhood nodes, no matter how big

the network is. The centralized algorithm must transmit them to a fusion center.

After a simple calculation, it can be shown that this results in bcebtr(n) = O(n) bits

transmitted. For the uniform grid geometry, a simple calculation shows that the

average number of hops from a node to the fusion center is hcentr(n) = O(n1/D).

Finally, we obtain the average energy required by a centralized algorithm,

Ecentr(n) = O
(

n1+1/Decentr(n)
)

. (5.18)

Substituting for the assumed dthr in expression (5.17), we obtain the ratio between

energies required by a centralized versus a distributed algorithm, in the uniform grid

case:

Ecentr(n)

EdwMDS(n)
= O

(

n1/D

L

)

. (5.19)

For dense networks of the same size n, and fixing a priori the maximum number of

iterations allowed, a centralized algorithm will require an order of n1/D more energy

than the proposed distributed algorithm. Note that the costs of the centralized algo-

rithm are not evenly distributed - nodes near the fusion center will disproportionately

bear the forwarding costs.

To conclude this section, we remark that, for D = 2 and dthr = O(n−1/D), the

proposed algorithm has a transport requirement of O(n2 LdDthr) × dthr = O(
√
n)

bit-meters/sec, which is the same as the transport capacity of a wireless network

on a unit area region [37]. This suggests that the implementation of the proposed

algorithm is pratically feasible, even with more resource aggressive update rules (e.g.,

parallel updates of all nodes), for a large sensor network.
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5.5 Range Measurement Models

For concreteness, we assume throughout the rest of this chapter that range mea-

surements between sensors are obtained either via RSS or TOA or a combination of

the two. Both RSS and TOA can be measured via RF or by acoustic media; both

media are subject to multipath and shadow fading phenomena which impair range

estimates.

5.5.1 Time-of-Arrival

For a TOA receiver, the objective is to identify the time-of-arrival (TOA) of the

direct line-of-sight (DLOS) path.1 The power in the DLOS path is attenuated by

any obstacles in between the transmitter and the receiver, and often, later-arriving

non-line-of-sight(NLOS) multipath components arrive at the receiver with equal or

greater power than the DLOS. As the distance between two devices increases, late-

arriving paths contribute an increasing proportion of the overall received power. This

increase has been observed in measured power-delay profiles - for example, excess de-

lay and RMS delay spread tend to increase with path length [20,38,87]. Specifically

motivated by radiolocation applications, researchers have used ns-synchronized mea-

surement equipment to accurately identify the DLOS signal and show that NLOS

signals’ proportion of the total received power increases with path length [75]. This

NLOS signal power serves as self-interference, in combination with other noise and

interference, which effectively decreases the SNR of the TOA measurements as the

range increases. Previous research has suggested using weighted least-squares algo-

rithms to improve localization performance [15].

1This is a different goal than for a communications receiver, which aims to synchronize to the
time which maximizes the SNR, regardless of whether the signal power comes from the DLOS path
or later arriving paths.
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5.5.2 Received Signal Strength

Similarly, range measurements based on RSS degrade with distance. Objects in

the environment between the transmitter and receiver have the effect of multiplying

the signal energy by attenuation factors. The cumulative effect of many such mul-

tiplications, by a central limit argument, results in a log-normal distribution of RSS

(or equivalently received power) at the receiver [19]. If Pij(mW), the received power

in mW at sensor i transmitted by sensor j, is log-normal, then received power in deci-

bels, Pij = 10 log10 Pij(mW), is Gaussian. Furthermore, RF channel measurements

have shown that the variance of Pij is largely constant over path length [87] [79].

Thus Pij is typically modeled as

Pij ∼ N (P̄ij, σ
2
dB) (5.20)

P̄ij = P0 − 10np log10(dij/d0)

where P̄ij is the mean power in decibel milliwatts at distance dij, σ
2
dB is the variance

of the shadowing, and P0(dBm) is the received power at a reference distance d0.

Typically d0 = 1 meter, and P0 is calculated from the free space path loss formula [87].

The path loss exponent np is a parameter determined by the environment.

From this model for received power as a function of distance dij, the maximum

likelihood estimator of distance is:

δij = d010
(P0−Pij)/(10np). (5.21)

If Pij = P̄ij, then δij = dij. When Pij 6= P̄ij, we can see why distance errors

increase proportionally with distance. Consider a constant dB error in the received

power measurement: ∆ = P̄ij − Pij. For this error, δij = dij10
∆/(10np), thus the
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actual distance is multiplied by a constant factor. In fact, the range estimation

error, δij − dij, is directly proportional to dij by the constant factor 10∆/(10np) − 1.

Assuming constant standard deviation σdB of received power with distance, the range

estimation error standard deviation will also increase proportionally with distance.

This characteristic of RSS-based range estimation leads to very high errors at

large path lengths, which have limited its application in traditional location systems.

However, in a dense sensor network, the distances between neighboring sensors is

small, and a weighted least-squares estimator can be designed to fully utilize the

accuracy of the range measurements made between the closest neighbors. A method

for achieving this is proposed in the next section.

5.6 Adaptive Neighborhood Selection

Typically, neighbors are selected by choosing those devices which are closer than

a threshold distance. But, since the exact distance is not known, we need to use

noisy measurements to select neighbors. Range measurements, whether made via

TOA, RSS, or proximity, are all subject to errors. In this section we discuss the

biasing effects of selecting neighbors via noisy distance measurements, and how we

can unbias the selection.

When distance is measured in noise, the act of thresholding neighbors based on

the measured distance will tend to select the devices with smaller measured distances.

For example, consider two devices separated by distance R, when R is also the

threshold distance. With some positive probability (due to noise), the measured

distance, δ, will be greater than R, and the two will not be considered neighbors.

Alternatively, if δ ≤ R, the two will be considered neighbors, and δ will be used in

the localization algorithm. The problem is that the expected value of δ, for devices
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separated by R which consider themselves neighbors, is less than R. Thus, the

measured distance is negatively biased because of the effect of thresholding. Note

that selecting the K-nearest-neighbors effectively has an adaptive threshold, and

thus does not avoid this biasing effect.

This bias has not been specifically addressed in the sensor localization litera-

ture, because its effects are not severe in certain systems. Some proposed sensor

localization systems measure very accurate distances, eg., using TOA in UWB or a

combination of RF and ultrasound media – for these systems, the effect of selecting

neighbors based on measured distances will be minimal. Alternatively, if neighbors

are selected based on independent means (eg., based on RSS or connectivity when

range estimates are based on TOA), then the biasing effect is avoided2. Finally, when

studies show results for the case in which all devices are connected to every other

device, the thresholding step (and its biasing effect) is eliminated. In this chapter, we

consider both noisy RSS measurements and small neighborhoods, so we cannot avoid

the biasing effect. We limit our discussion to RSS measurements in this section, since

low device costs and energy consumption are very attractive device characteristics

of RSS, but the discussion is also applicable to systems which use noisy TOA-based

range measurements for neighbor selection.

5.6.1 RSS-based Biasing Effect

When discussing thresholding based on RSS, we must make a distinction between

the physical limits of the receiver and the threshold which we use to select neighbors,

because generally, the two do not need to be the same. If a device has a large radio

range to be robust to low device densities, it may want a stricter threshold when

2Note, however, for the RSS/TOA example, that if both are available, we may wish to use a
combination of both; and if not, RSS and TOA for a link are correlated because objects in the
environment tend to degrade both measurements simultaneously.
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there are very many devices with which it can communicate. Denote Pthr to be the

received power level below which a receiver cannot demodulate packets. (For most

digital receivers with large frames and FEC, the frame error rate is very close to

zero or very close to one for the vast majority of SNR, and the transition region is

narrow. Thus, to a good approximation, for a constant noise level, we can state that

packets above Pthr are received and demodulated correctly, while those below are

not [77].) Denote PR to be the received power level below which we do not include

the transmitting device as a neighbor. Clearly, PR ≥ Pthr. Equivalently, we can

define distances dthr and dR from (5.20) to be the range at which the mean received

power is equal to Pthr and PR, respectively.

Whether or not we select neighbors based on connectivity (measured power is

greater than Pthr) or select them based on a power threshold (measured power is

greater than PR), the biasing effect will be the same. In following, we use PR and

dR to indicate the thresholds (which may be set equal to Pthr and dthr if desired).

Let E [δij|Pij > PR] be the expected value of the range estimate between devices

i and j given that the two are neighbors (i.e., the received power Pij is greater than

PR). Using the RSS measurement model (see Section 5.5.2), it can be shown that

E [δij|Pij > PR] = ‖xi − xj‖C
1− Φ

(√
β log

‖xi−xj‖
dR

+ 1√
β

)

1− Φ
(√

β log
‖xi−xj‖

dR

) , (5.22)

where Φ(.) is the cumulative distribution function of a standard Gaussian random

variable, β = 10np
σdB log 10

, C = exp
(

1
2β2

)

and σdB, np are channel parameters. Equation

(5.22) is plotted in Fig. 5.2 as a function of the ratio of the true distance to dR. Ideally,

the range estimator should have a mean value equal to the actual range. However,

as the range increases, the expected value of δij (given that i and j are neighbors)

deviates from linear and asymptotically becomes constant. There is a strong negative
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Figure 5.2: The expected value of the RSS-based estimate of range given that that

two devices are neighbors (- - -), and the ideal unbiased performance (—). The

channel has σdB/n = 1.7 and dR = 1 (or equivalently, distances are normalized by

dR).

bias for devices separated by dR or greater.

5.6.2 Two-Stage Selection Algorithm

Motivated by the negative bias phenomenon displayed in Fig. 5.2, we propose a

two stage neighborhood selection process, based on the predicted distances between

sensors.

In the first step, the dwMDS algorithm from Fig. 5.1 is run with a neighborhood

structure based on the available range measurements, i.e., set wij = 0 if δij > dR.

After convergence, this step provides an interim estimate {x̂i} of the sensors loca-

tions. With high probability, the predicted distances between the estimated sensor

locations will be negatively biased.

In the second step, these predicted distances from the estimated sensor locations

are used to compute a new neighborhood structure, by assigning wij = 0 if ‖x̂i −

x̂j‖ > dR. Some neighbors with low range measurements will be dropped, and some

neighbors with possibly longer range measurements will be added. Then, using {x̂i}
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as an initial condition and the new neighborhood structure, the dwMDS algorithm

is re-run, resulting in the final location estimates. Note that the predicted distances

‖x̂i − x̂j‖ are used only to select neighbors (i.e., which weights are positive) – the

measured ranges δij are still used to determine the weight values.

We remark that this 2-step algorithm does not imply twice the computation. The

dwMDS algorithm is based on majorization, and each iteration brings it closer to

convergence. Since the first step only needs to provide coarse localization informa-

tion, it does not need to be very accurate, and so the dwMDS algorithm can be

stopped quickly with a large ε. Next, the second step begins with very good (al-

though biased) coordinate estimates, so the second run of the dwMDS algorithm

will likely require fewer iterations to converge.

Note that for some of the devices which are considered neighbors in the 2nd run of

the algorithm, the measured range δij will actually be greater than dR. Thus, to use

this 2-step algorithm, dR must be sufficiently less than the physical communication

limit of the devices, dthr, so that other range measurements can be considered. If we

consider the non-circular (real-world) coverage area of a device, dthr can be considered

to be the mean radius of the coverage area, while dR should be set to the minimum

radius of the coverage area.

5.7 Experimental Localization Results

We apply the proposed MDS algorithm to the location problem in a network,

using both simulated data and real data collected on an experimental sensor network.
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5.7.1 Simulations

In this section, all the simulated data were generated from the RSS measurement

model presented in Section 5.5.2, with channel parameters σdB/np = 1.7.

We first demonstrate the performance of the proposed algorithms on a network

of 7 × 7 sensors arranged on a uniform grid of unit area, in which the four corner

devices are anchor nodes and the remaining 45 are unknown location devices. For

all experiments on this configuration, we use dR = 0.4m (yielding an average of 14

neighbors per device). We ran 200 Monte Carlo simulation trials to determine con-

fidence ellipses, root-mean-square error (RMSE) and bias performance (per sensor)

of the location estimates. The results are displayed in Figure 5.3, where we plot

the mean and 1-σ uncertainty ellipse of the estimator, and compare it to the actual

device location and the Cramér-Rao lower bound (CRB) on the uncertainty ellipses

which was presented for the case of RSS measurements in [79]. We remark that the

CRB shown is calculated assuming full connectivity (all devices measure range to

all other devices), and as such provides only a loose lower bound on the best per-

formance achievable by any unbiased estimator. In the first experiment, we provide

a baseline best-case scenario by using perfect (noise-free) distance measurements to

select neighborhoods. The baseline assumes that we have an oracle to tell us when

the true distance between i and j is less than a threshold, ie., ‖xi − xj‖ < dR. This

is shown in Figure 5.3(a), resulting in a RMSE of the location estimates of 0.090m

and an average bias of 0.019m.

For the second experiment, we remove the assumption of perfect connectivity

knowledge. Instead, we use RSS measurements to select neighbors, i.e., devices i

and j are neighbors if Pij ≥ PR, or, equivalently, if δij ≤ dR. The results are

shown in Figure 5.3(b). The estimates are strongly pulled towards the center of the

square, due to the negative bias of the range estimates which are ‘selected’ by the
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connectivity condition. Now, the RMSE is 0.162m and the bias is 0.130m.

A third experiment uses the adaptive neighborhood selection method proposed

in Section 5.6.2. The results are displayed in Figure 5.3(c), where it can be seen that

this method succeeds in removing the negative bias effect. The bias has gone back

down to 0.012m, while the RMSE is 0.092m, just slightly higher than the baseline

experiment using the oracle.

Comparing Figure 5.3(c) and 5.3(a), the localization errors of the two-step al-

gorithm are spread more evenly throughout the network compared to the first ex-

periment – the errors for edge devices are reduced, getting closer in magnitude to

those in the center. Based on the similarity of the RMSE in both experiments, we

believe that the 2-step process eliminates most of the neighbor selection bias. Ad-

ditionally, by changing the neighbor lists (and therefore the weights) and re-running

the dwMDS algorithm, the 2nd iteration also provides the opportunity to break out

local maxima, which are more likely to affect edge devices. Finally, the low variance

achieved by the 2-stage algorithm is very close to the CRB which no unbiased loca-

tion estimator can outperform, despite the fact that the CRB is an optimistic bound

for the scenario considered here.

We also studied the influence of the threshold distance on the RMSE performance

of the proposed algorithms. Figure 5.4 shows a plot of the RMSE vs. threshold dis-

tance (marked by ’•’), for the 7×7 uniform grid example using adaptive neighborhood

selection. It can be seen that there is an optimal threshold distance, dR = 0.5m,

beyond which, no performance increase occurs. As dR is increased beyond this op-

timal value, more distant sensors are included in the cost function. By the RSS

measurement model, the accuracy of range measurements degrades quickly with dis-

tance, thus adding these far way sensors will not bring any gain to the estimation

algorithm. Figure 5.4 also shows the behavior of the same quantities for the case
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Figure 5.4: RMSE versus threshold distance for the 7×7 uniform grid example using

adaptive neighborhood selection, for different weighting schemes.

of a naive weighting scheme: all measured distances have equal weights, while non

observed distances have weights set zero. The worse performance of this simple

scheme shows further evidence to support the claim that weights should be chosen

adaptively to reflect measurement accuracy and further justifies the LOESS type

weighting scheme (cf. (5.16)) adopted.

Finally, we show the influence of different choices of prior weighting ri in the

quality of the localization solution. Under the same scenario, we now consider the

four corner nodes to have imperfect information. In particular, the algorithm only

has access to a noisy version of the actual coordinates of these nodes, perturbed by

zero mean Gaussian noise with unknown variance σ2p. Figure 5.5 shows the resulting

RMSE, obtained by running 5000 Monte-Carlo Simulation trials for σp = 0.025,

0.050, 0.100 and setting ri = r for the corner nodes, where r is made to vary between

10−2 and 102.

From Figure 5.5, it can be observed that for small values of r, the RMSE levels

off to a value that is constant across different values of σ2p. Essentially, the prior

information is only being used to rotate and translate the final solution obtained by
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grid example using adaptive neighborhood selection.

the MDS algorithm to best fit the estimated position of the anchor nodes. On the

other hand, for high values of r, a similar phenomenon occurs, but this time due to

the fact that the MDS algorithm is focusing on placing sensors with prior information

at their a priori coordinates, to the detriment of fitting range measurements.

For intermediate values of r, there is an optimal r which best weights the rela-

tive information in the prior coordinates with respect to the weights chosen for the

measured ranges. As we would expect, the optimal r is inversely proportional to

σ2p, although the exact dependency is influenced by factors such as the prior coordi-

nates noise distribution, the weighting scheme chosen, and the number of neighbors

of each node. Further research should investigate these dependencies. However, the

RMSE near the optimal is a very shallow function of r – for all three curves, there

is nearly an order of magnitude range within which the RMSE is within 1% of its

minimum. So, although simulation might be necessary to find the optimal r, as long

as r is within the correct order of magnitude, the results will be nearly optimal. This

suggest that, for little or no knowledge about the perturbations to prior coordinates

used by the algorithm, choosing intermediate values of r would be a good rule. In

particular, this would result in a better RMSE than possibly using either:
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– a method that uses prior coordinate information only to find the best rotation

of a calculated relative map [98], which is analogous to low r in the dwMDS

method; or

– an MLE method which assumes that anchor coordinates are known perfectly

[79], which is analogous to high r.

5.7.2 Localization in a Measured Network

To test the performance of the proposed algorithm on real-world channel mea-

surements, we used the RSS and TOA measurements presented in [79]. This data

set includes the RSS and TOA range measurements from a network of 44 devices (4

of which are anchor nodes) using a wideband direct-sequence spread-spectrum (DS-

SS) transmitter and receiver pair operating at a center frequency of 2.4 GHz. The

measurements were made in an open plan office building, within a 14× 14m square

area. The RSS between each pair of devices was measured 10 times, from which the

average was calculated and labeled as Pij, for each pair (i, j).

We use the bias-corrected MLE to estimate range from the RSS, i.e.,

δij =
d0
C
10(P0−Pij)/(10np) . (5.23)

We choose to divide by C in (5.23) because this estimator, as opposed to the MLE

in (5.21), is unbiased, ie., E[δij] = dij. See [79] for details.

To give the reader a feeling of how challenging is to do sensor localization using

RSS range measurements in a real live scenario, we plot, in Figure 5.6, the error

between range measurements and real distances, i.e., δij−dij. Note that the standard

deviation of the RSS-based range estimator error increases steadily with distance.

But, most importantly, the error as a percentage of actual range is often high: there
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Classical MDS MLE [79] dwMDS
RSS 4.30m 2.18 m 2.48m
TOA 1.96m 1.23m 1.12 m

Table 5.2: RMSE of location estimates in experimental network

are several range errors larger than 100% of the actual range.

We compare the performance of the dwMDS algorithm with adaptive neighbor-

hood selection to classical MDS and the MLE based solutions from [79]. Table 5.2

summarizes the RMSE of the location estimates. Figures 5.7(a) and 5.7(b) show the

location estimates using classical MDS (which used all the pairwise range measure-

ments between sensors) and the dwMDS algorithm, for the RSS measurement data

set. The true and estimated sensor positions are marked by ’o’ and ’O’, respectively,

where the lines represent the estimation errors. The anchor nodes are marked with

an ’x’. It can be observed that the dwMDS algorithm does much better than classi-

cal MDS. On the other hand, the RMSE of the dwMDS algorithm is slightly higher

than the RMSE of the centralized MLE reported in [79]. However, that method not

only uses all pairwise range measurements, but also relies on previously estimating
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the channel parameters. If we allow dR to increase at the expense of increasing com-

munication costs, the dwMDS algorithm can reach an RMSE as low as 2.269m for

dR = 8.5m.

Figure 5.7(c) and 5.7(d) show again the location estimates using classical MDS

and the dwMDS algorithm, but this time for the TOA measurement data set. From

Table 5.2, it can be seen that the dwMDS algorithm outperforms all other location es-

timators. If we allow dR to increase at the expense of increasing communication costs,

the dwMDS algorithm can reach an RMSE as low as 0.940m for dR = 7.5m. Once

again, we stress that the dwMDS algorithm, unlike the MLE estimator from [79],

does not use all the pairwise range measurements and does not assume knowledge of

the distribution of the range measurements.

5.8 Conclusion

This chapter proposes a distributed weighted-MDS method specially suited for

node localization in a wireless sensor network. First, the method reflects the distri-

buted nature of the problem, incorporating network communication constraints in

its design. In this way, the need to transmit all range measurements to a central unit

is eliminated, resulting in energy savings for a dense sensor network. Second, the in-

homogeneous character of range measurements in a wireless network is accounted for

by introducing weights that adaptively emphasize measurements believed to be more

accurate. We stress that the dwMDS algorithm is nonparametric in its nature, i.e.,

it does not depend on any particular channel or range measurement models. This

makes it applicable to a broad range of distance measurements, e.g., RSS, TOA,

proximity, without the need to tweak any parameters. We have shown via simula-

tion that the algorithm has excellent bias and variance performance compared to
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the CRB, and that its performance in a real-world sensor network is similar to the

centralized MLE algorithm.

We remark that the dwMDS algorithm can be applied more generally to di-

mensionality reduction problems across a network of processors, such as Internet

monitoring [76] or distributed sensor data compression. To make it more general,

other distance metrics can be used, such as Lp (1 ≤ p ≤ 2) metrics. In this case,

a majorization technique can still be used which guarantees a non-increasing cost

function. For other general distances (without any convex structure), gradient de-

scent techniques can be used. In particular, incremental gradient methods fit well

the framework considered in this chapter and might provide faster convergence rates

at the cost of losing the monotonicity of the cost function. Other developments that

can improve the algorithm’s performance include extending the formulation to in-

clude non range measurements like AOA, or adding new terms to the cost function

that model the correlations between range measurements.

5.9 Appendix

In this appendix, we give an expression for the gradient of the majorizing function

Ti defined by equation (5.10).

1

2

∂Ti(xi,yi)

∂xi
=









n
∑

j=1
j 6=i

wij +
n+m
∑

j=n+1

2wij + ri









xi −
n
∑

j=1
j 6=i

wij xj −
n+m
∑

j=n+1

2wij xj−
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+
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(5.24)
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Figure 5.7: Location estimates using RSS and TOA range measurements from experi-

mental sensor network. True and estimated sensor locations are marked, respectively,

by ’o’ and ’O’, while anchor nodes are marked by ’x’. The dwMDS algorithm uses

adaptive neighbor selection, with dR = 6m.
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CHAPTER 6

Conclusion and Future Work

6.1 Summary

This thesis was motivated by the challenging problem of analyzing high-dimensional

data and information that must be transmitted, stored and processed accurately us-

ing manageable computational resources. The research presented here was guided

by the desire to accomplish two fundamental goals. First, we aimed at contributing

to a deeper understanding of such data sets by studying some of their fundamental

theoretical properties. Second, we aimed at developing practical algorithms that can

have an impact on the analysis of real data. We proposed to achieve such research

program by using random graphs as a general tool to analyze high-dimensional data

sets. On the one hand, they are associated with computational efficient and scalable

algorithms that can be used to model statistical and spatial constraints describing

high-dimensional data. On the other hand, their theoretical performance can be

predicted using tools from probability, statistics and differential geometry. Although

random graphs have been present in the fields of signal processing or pattern recog-

nition for several decades, it was not until recently that researchers have started

working towards bridging the gap between statistical pattern recognition and com-

146



putational geometry (e.g., [64]). We hope this thesis is a contribution towards that

goal.

We started this thesis by introducing minimal Euclidean graphs and discussing

the asymptotic behavior of power weighted functionals of such graphs as nonpara-

metric entropy estimators. We derived upper bounds on the convergence rates in

terms of the smoothness of the probability densities involved and lower bounds using

a minimax framework.

The core of this thesis dealt with detection, representation and processing of

data that spans a high-dimensional space but which contain fundamental features

that are concentrated on lower-dimensional subsets of this space – curves, surfaces

or, more generally, lower-dimensional manifolds. In particular, we have developed a

novel geometric probability approach to the problem of estimating intrinsic dimen-

sion and entropy of manifold data, based on asymptotic properties of computational

efficient graphs such as Minimal Spanning Trees or k-Nearest Neighbor graphs. Un-

like previous solutions to this problem, we were able to prove statistical consistency

of the obtained estimators for the wide class of Riemann submanifolds of an Eu-

clidean space. These algorithms were successfully applied to high-dimensional image

databases of faces and handwritten digits.

Complementary to the aforementioned problem, we designed a method to learn

low-dimensional features of high-dimensional data aimed at improving classification

tasks. Current methods are only concerned with finding a low-dimensional embed-

ding of the original data without satisfying any specific constraints. In particular, the

embedding found may result in a harder classification problem than in the original

space. We developed a spectral method based on graph Laplacians that produces

a low-dimensional embedding, where class separation constraints were taken into

account.
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Taking advantage of the neighborhood graphs introduced for the analysis of high-

dimensional data sets, we looked at signal processing problems arising in a sensor

network environment, where communication constraints exist and distributed opti-

mization is required. We realized that the graph structures developed before fit this

framework by using them to model spatial dependencies within the network. In par-

ticular, using some of the tools derived for the analysis of high-dimensional data, we

have developed a scalable distributed Multidimensional Scaling (MDS) algorithm for

node localization in a sensor network. This method was successfully applied to node

localization in an experimental sensor network, using both received signal strength

and time of arrival range measurements.

6.2 Future Work

The research presented in this thesis is part of a long term project that encom-

passes building a framework to address several pressing problems in data processing

today. Examples of such problems and methodologies considered include: develop-

ing dimensionality reduction algorithms to extract relevant features from a genetic

database, improve face recognition systems or handwritten digits classification; cre-

ating new nonparametric tools for robust high-dimensional pattern recognition or

information retrieval; developing visualization mechanisms for high-dimensional data

that helps analyzing gene expression data or detect anomalies in a computer network.

Current algorithms for classification and clustering do not scale well with data di-

mensionality. Following the same graph theoretic approach used in the development

of direct entropy estimators, which showed its wide applicability to high-dimensional

data, we are now working on nonparametric estimation of divergence measures and

nonlinear correlation coefficients. In particular, we are generalizing Friedman-Rafsky
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goodness of fit test to discriminate between samples from two populations, by looking

at edges in a MST connecting samples from different distributions. These estimators

are the first step towards developing new scalable and robust tools for detection,

clustering and information indexing and retrieval of high-dimensional signals. Also

of great interest is exploring the close connections between the asymptotic behavior

of the minimal graphs discussed in this thesis and asymptotic results for high-rate

vector quantization.

Regarding dimensionality estimation, many problems remain open. We list the

following:

– Analyzing the case of manifolds sampled with noise.

– Improving the resampling mechanism used by the proposed algorithm and tak-

ing into account the possible dependencies between successive subsamplings of

the data.

– Accessing the performance of the intrinsic dimension estimator.

In another direction, we are now actively working on developing a theory and algo-

rithms to estimate local intrinsic dimension of data points, as opposed to the global

intrinsic dimension of the data set. This involves studying the properties of local

neighborhood graphs that can guarantee adjacency relations only among data points

that share the same topological properties. This can have a deep impact on problems

where data dimensionality can be used to discriminate between patterns of differ-

ent complexity. For example, to segment different textures in an image. Another

application, for which we have encouraging preliminary results indicate, is to detect

anomalies in the traffic flow of an Internet backbone network. Such extensions will

require block bootstrap methods that account for dependency.
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Continuing ongoing efforts on designing classification constrained embedding al-

gorithms, the following are the next steps:

– Develop an out-of-sample extension for the non-linear mapping.

– Study the effect of the regularization parameter that trades off the preservation

of geometric structure with class label information.

In the long term, we plan to work on developing the tools needed to do a quantita-

tive analysis of performance gains in classification obtained by using dimensionality

reduction methods. The final goal is to understand the connections and tradeoff

between the effect of dimensionality reduction in classification and dimensionality

expansion and the performance of state-of-the art classifiers such as support vector

machines.

Finally, the dwMDS algorithm introduced in chapter 5 is more general than the

application to sensor localization that was used to motivate and illustrate the theory.

In particular, it has a natural application in dimensionality reduction for spatio-

temporal data visualization. This method can be applied to manifold learning with

prior information or to Internet traffic time series visualization, aimed at detecting

anomalies in the network [76]. Another problem closely related to sensor network

localization is the inference of molecular conformation. In this problem, one hopes to

determine the 3-dimensional structure of a protein from a subset of all possible inter-

atomic distances, obtained, for example, by nuclear magnetic resonance and/or prior

modeling of molecule interactions [105]. We are currently exploring the application

of the dwMDS algorithm to this scenario.
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