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ABSTRACT

Accurate, distributed localization algorithms are needed for a wide
variety of wireless sensor network applications. This paper intro-
duces a scalable, distributed weighted-multidimensional scaling
(dwMDS) algorithm that adaptively emphasizes the most accu-
rate range measurements available and naturally accounts for com-
munication constraints within the sensor network. For received
signal-strength (RSS) based range measurements, we demonstrate
via simulation that location estimates are nearly unbiased with
variance close to the Cramér-Rao lower bound (CRB). Further,
RSS and time-of-arrival (TOA) channel measurements are used
to demonstrate performance as good as the centralized maximum-
likelihood estimator (MLE) in a real-world sensor network.

1. INTRODUCTION

For monitoring and control applications using wireless sensor net-
works, automatic localization of every sensor will be a key en-
abling technology. Sensor data must be registered to its physical
location to permit deployment of energy-efficient routing schemes,
source localization algorithms, and distributed compression tech-
niques. Moreover, for applications such as inventory management
and manufacturing logistics, localization and tracking of sensors
are the primary purposes of the wireless network. For large-scale
networks of inexpensive, energy-efficient devices, it is not feasible
to include GPS capability on every device or to require a system
administrator to manually enter all device coordinates. In this pa-
per, we consider the location estimation problem for which only a
small fraction of sensors have a priori coordinate knowledge, and
range measurements between many pairs of neighboring sensors
permit the estimation of all sensor coordinates [1].

Two major difficulties hinder accurate sensor location estima-
tion: first, accurate range measurements are expensive; and sec-
ond, centralized estimation becomes impossible as the scale of the
network increases. This paper proposes a distributed localization
algorithm, based on a weighted version of multidimensional scal-
ing (MDS), in which sensors need to exchange data only within a
small set of neighbors. Its key features are: (1) a weighted cost
function that allows range measurements that are believed to be
more accurate to be weighted more heavily; (2) an adaptive neigh-
bor selection method that avoids the biasing effects of selecting
neighbors based on noisy range measurements; (3) a majorization
method which has the property that each iteration is guaranteed to
improve the value of the cost function.
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2. PROBLEM STATEMENT

Consider a network of �������
	 devices, living in a � di-
mensional space ( ���� or � ). Let �������������� , �����! #" , be the
actual vector coordinates of sensors, or, equivalently, define the
matrix of coordinates $%�'& �#�)(+*+*,*+(-� �#. . The last 	 sensors
( /����0�213(,*)*+*+(-� ), called anchor nodes, have perfect a priori
knowledge of their coordinates. The first � sensors ( /4�513(+*+*)*,(6� )
have either no knowledge or some imperfect a priori coordinate
knowledge and are called unknown-location nodes. Imperfect a
priori knowledge about sensor /879� is encoded by parameters: � and ��� , where, with accuracy : � , ��� is believed to lie around� � . If no such knowledge is available, : � �<; . Summarizing,
three distinct sets of sensors can be considered in this formulation
based on their a priori information: perfect ( />=?� ), imperfect
( /@7A��( : � =B; ), or zero coordinate knowledge ( /C7D��( : � �E; ).
Note that one or two of these sets might be empty, e.g., no anchor
nodes available and/or no prior information on sensors locations.

The localization problem considered in this paper consists in
the estimation of the coordinates �����F��G����� given the coordinates
of the anchor nodes, �����F� ���� GIH � , imperfect a priori knowledge,�KJ : �6( ���FL-��G����� and many pairwise range measurements, �NMPORQTS� U � , ta-
ken over time V>�W1�*+*)*-X . The available range measurements
indexes JT/6(ZY[L are in some subset of �I13(,*+*+*)(-�\��] . We assume that
this subset of measurements results in a connected network; other-
wise, each connected subset should be considered individually.

3. DISTRIBUTED WEIGHTED MULTIDIMENSIONAL
SCALING

3.1. The dwMDS Cost Function

We define MDS as the solution to the minimization of the follow-
ing global cost function (a.k.a. STRESS function [2]):

^ �@`_�6ab�ca G
_�TdKU,a G3Hfe

_�6a Q ahg8i
ORQTS� U2j M OkQTS� U
lnm � UKJT$oL�p ]

�q_�6ah�Ta G
: �sr � � l � �tr ] ( (1)

where m � UKJT$�L8� r ��� l �fU r ��u Jc��� l �fU�LwvxJc��� l �yU3L is the
Euclidean distance, and we assume that for each pair JT/6(FY[L , up
to X dissimilarity measurements are available. The weight i ORQTS� U( Vx�A1�(,*+*+*+(6X ) can be selected to quantify the predicted accuracy
of measurement MPORQTS� U . If no such measurement is available between/ and Y , or if / and Y do not consider themselves neighbors (see



subection 3.4), then i ORQTS� U � ; . We assume that i ORQTS� U
� ; , i ORQTS� � � ;and i ORQTS� U � i ORQTSUt� , i.e., the weights are symmetric. Note that (1) dif-

fers from the standard MDS cost function in that we have added a
penalty term to account for prior knowledge about node locations.

After simple manipulations,
^

can be rewritten as follows:

^ � G_ � �4�
^ � ��� ( (2)

where functions
^ � are defined for each unknown-location node

(i.e. 1@7!/�7 � ),

^ � � G_U ���U���y� i � U�� M � U l m � U JT$�L	�
]

� GIHye_U)� GIH �
 i � U � M�� U l�m � U[JT$�L	� ] � : � r ��� l ��� r ] (

(3)

and � is a constant independent of the nodes locations $ . In (3),
the X weights and range measurements between / and Y are sum-
marized by a single weight i � U ��
 gQ �4� i ORQTS� U and measurementM�� U � 
 gQ ��� i ORQTS� U MKORQTS� U� i � U . As

^ � only depends on the measure-
ments available at node / and the positions of neighboring nodes,
i.e., nodes for which i OkQTS� U = ; (for some V ), it can be viewed as
the local cost function at node / . This is the key enabling factor for
implementing a distributed localization procedure.

3.2. Minimizing the dwMDS Cost Function

Motivated by the additive structure of the global cost (2), we pro-
pose an iterative distributed algorithm in which each sensor up-
dates its position estimate by minimizing the corresponding local
cost function

^ � , after taking measurements and receiving position
estimates from its neighboring nodes.

However, unlike classical MDS, no closed form expression ex-
ists for the minimum of the cost function

^ � (or
^

). We address this
problem by minimizing

^ � � ^ �-Jc���ZL iteratively using quadratic
majorizing functions as in SMACOF (Scaling by MAjorizing a
COmplicated Function [3]). This method has the attractive prop-
erty of generating a sequence of non-increasing STRESS values.
Due to space limitations, we omit the derivation of the majoriza-
tion function and its minimization and present only the final update
equations for the nodes positions. The corresponding details can
be found in [4]. If $ O��+S is the matrix whose columns contain the
position estimates for all points at iteration � , quadratic majoriza-
tion of

^ � results in the following update equation for the position
estimate of node / :

� O�� H � S� ��� � j : � � � � $ O��+S�� O��+S� p ( (4)

where ��� �� � G_U)�4�U���y� i � U �
G3Hfe_U)� GIH �

 i � U � : � ( (5)

and � O��+S� � & ���+(,*+*+*)(�� G3Hfe . v is a vector whose entries are given
by:

�6U � i � U��c1 l M3� U �Nm � UKJT$ O��+S L�� Y 7 � (yY��� /� � � 
 GU ���U���y� i � U M � U ��m � U JT$ O��+S L � 
 GIHyeU)� GIH �  i � U M � U ��m � U JT$ O��+S L�6U �
 i � U�c1 l M�� U �Nm � UKJT$ O��+S L�� Y = �
*

Inputs: �NM ORQTS� U � , � i ORQ S� U � , 	 , � : �F� , � ����� , � , initial condition $ O� -S ;
Initialize: � � ; , ^ O! -S , compute � � from equation (5);
repeat��"#�@� 1 ;

for / �21 to �
compute � O�� � � S� from equation (3.2);� O��+S� ��� � j : � � � � $ O�� � � S � O�� � � S� p ;

compute
^ O��+S� ;^ O��+S " ^ O��+S l ^ O�� � � S� � ^ O��+S� ;

communicate � O��+S� to neighbors of node /
(i.e., nodes for which i � U =!; );communicate

^ O��+S to node /h� 1 J mod � L ;
end for

until
^ O�� � � S l ^ O��)S%$ �

Fig. 1. dwMDS algorithm.

As the weights i ORQTS� U can be made zero except for a relative neigh-
borhood of node / , only the corresponding entries of vector � will
be nonzero, and the update rule for � � will depend only on this
neighborhood (as opposed to the whole matrix $ O��+S ).
3.3. Algorithm

The proposed algorithm is summarized in Figure 1. We make the
following comments:

1. The choice of weighting function i � U should reflect the ac-
curacy of the range measurements, such that less accurate
measurements are down-weighted in the overall cost func-
tion. Adopting a model-independent adaptive weighting
scheme, we propose the following weight assignment:

i � UC�'&)(+*-,/. l M3]� U �10 ]�32 , if M,� U is measured; , otherwise
( (6)

where 0 � ��465 * U M,� U . This choice of i � U , which equalizes
the (nonzero) weight distribution in all sensors, has robust
performance as shown in the experiments reported in Sec-
tion 4.

2. The question of how to adaptively choose the neighbors of
each node (i.e., which weights are made positive) in order
to decrease communication costs or improve localization
performance is addressed in Section 3.4.

3. Regarding the initialization of the algorithm, every node re-
quires an initial estimate of its position. This can be done
using, for example, the algorithms proposed in [5] or [6],
which compute a “rough” initialization of the position esti-
mates in a distributed fashion.

4. In the description of the algorithm, it was assumed for no-
tational convenience, that the algorithm cycles through the
network in an ordered fashion (i.e., messages are passed be-
tween nodes in the order 13(t[(,*+*+*+(6� ). However, many other
non-cyclic update rules are possible, e.g., parallel updates
or inner iterations within local clusters of sensors.

3.4. Adaptive Neighborhood Selection

Most methods, in order to limit communication costs and com-
putational complexity, select neighbors by choosing those devices
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(c) adaptive neighborhood selection

Fig. 2. Estimator mean ( � ) and 1- � uncertainty ellipse (—) for each blindfolded sensor compared to the true location ( � ) and CRB on the

1- � uncertainty ellipse (- - -).

which are closer than a threshold distance m�� . However, when
ranges are measured with noise, this selection process will tend
to choose devices whose measured distances are shorter than the
true distances, creating a negative bias phenomenon. Motivated by
this phenomenon, we propose a two-stage neighborhood selection
process, based on the predicted distances between sensors.

In the first stage, the dwMDS algorithm from Fig. 1 is run
with a neighborhood structure based on the available range mea-
surements, i.e., set i � U �A; if M,� U = m � . After convergence, this
stage provides an interim estimate � �� � � of the sensors locations,
that, with high probability, will have negatively biased predicted
distances.

In the second stage, these interim estimated sensor locations
are used to compute a new neighborhood structure, by assigning

i � U ��; if r �� � l �� UPr = m�� . Some neighbors with low range
measurements will be dropped, while others with possibly longer
range measurements will be added. Then, using � ����w� as an initial
condition and the new neighborhood structure, the dwMDS algo-
rithm is re-run, resulting in the final location estimates. Note that
the predicted distances r ���� l ��fU r are used only to select neigh-
bors (i.e., which weights are positive) – the measured ranges M � U
are still used to determine the weight values.

We remark that this 2-stage algorithm does not imply twice
the computation. The dwMDS algorithm is based on majorization,
and each iteration brings it closer to convergence. Since the first
stage only needs to provide coarse localization information, the
dwMDS algorithm can be stopped quickly with a large � . Next, the
second stage begins with very good (although biased) coordinate
estimates, so the second run of the dwMDS algorithm will likely
require fewer iterations to converge.

4. EXPERIMENTAL RESULTS

4.1. Simulations

In this subsection, all the simulated data were generated according
to the log-normal model for RSS range measurements (see [7] for
details). If the received power in mW at sensor / transmitted by
sensor Y , � � U J mW L , is log-normal, then received power in decibels,

� � U � 1+;	��
� �  � � U J mW L , is Gaussian. Typically
� � U is modeled

as
� � U�� � J��� � U (�� ]��� L
�� � U � �  l 1+;�������
�� �  J m � U �Nm  L�(

where �� � U is the mean power in decibel milliwatts at distance m � U ,
� ]��� is the variance of the shadowing and

�  J dBm L is the received
power at a reference distance m  . Typically m  � 1 m, and

�  is
calculated from the free space path loss formula. The path loss
exponent ��� is a parameter determined by the environment. This
leads to the following expression for the range measurements:

M � U � m  1,; O���� � ����� S! +O �  G#" S * (7)

In all the simulations presented in this subsection, � ��� � ��� �513* $ .
We first demonstrate the performance of the proposed algo-

rithms on a network of $&%'$ sensors arranged on a uniform grid
of unit area, in which the ( corner devices are anchor nodes and
the remaining (*) are unknown location devices. For all experi-
ments on this configuration, we use m � � ;K* ( m (yielding an av-
erage of 14 neighbors per device). We ran �;3; Monte Carlo sim-
ulation trials to determine confidence ellipses, root-mean-square
error (RMSE) and bias performance (per sensor) of the location
estimates. The results are displayed in Figure 2, where we plot the
mean and 1- � uncertainty ellipse of the estimator, and compare it
to the actual device location and the CRB lower bound on the un-
certainty ellipses [7]. We remark that the CRB shown is calculated
assuming full connectivity (all devices measure range to all other
devices), and as such provides only a loose lower bound on the
best performance achievable by any unbiased estimator.

In the first experiment, we provide a baseline best-case sce-
nario by using noise-free distance measurements to select neigh-
borhoods, i.e., we have an oracle to tell us when the true distance
between / and Y is less than a threshold, r ��� l �fU r $ m � (note
that measurements M,� U are still noisy – the oracle only tells us how
to select neighbors). The simulation shown in Figure 2(a) has a
RMSE of the location estimates of ;K* ;+3; m and a bias of ;K* ;P1,+ m.

For the second experiment, the (noisy) RSS measurements are
used to select neighbors, i.e., devices / and Y are neighbors if M � U 7



Table 1. RMSE of location estimates in experimental network

Classical MDS MLE [7] dwMDS

RSS ( * �3; m [*R1�� m K* (�� m

TOA 13* +�� m 13* �� m 13*R1, m

m � . This corresponds to applying only the first stage of the neigh-
borhood selection method from subsection 3.4. The results are
shown in Figure 2(b). The estimates are strongly pulled towards
the center, due to the negative bias of the range estimates which
are ‘selected’ by the connectivity condition. Now, the RMSE is;K* 1��I m and the bias is ;P*R1,��; m.

A third experiment uses the adaptive neighborhood selection
method proposed in Section 3.4. The results are displayed in Fig-
ure 2(c), where it can be seen that this method succeeds in re-
moving the negative bias effect. The bias has gone back down to;K* ;K1N m, while the RMSE is ;K* ;�+I m, just slightly higher than the
baseline experiment using the oracle.

4.2. Localization in an Experimental Sensor Network

To test the performance of the proposed algorithm on real-world
channel measurements, we used the RSS and TOA measurements
presented in [7]. This data set includes the RSS and TOA range
measurements from a network of 44 devices ( ( of which are an-
chor nodes) using a wideband direct-sequence spread-spectrum
transmitter and receiver pair operating at a center frequency of [* (
GHz. The measurements were made in an open plan office build-
ing, within a 1�( m square area.

We compare the performance of the dwMDS algorithm with
adaptive neighborhood selection to classical MDS and the MLE
based solutions from [7]. Table 1 summarizes the RMSE of the
location estimates.

Figures 3(a) and 3(b) show the location estimates using clas-
sical MDS (which used all the pairwise range measurements be-
tween sensors) and the dwMDS algorithm, for the RSS measure-
ment data set. The true and estimated sensor positions are marked
by ’o’ and ’ � ’, respectively, where the lines represent the estima-
tion errors. It can be observed that the dwMDS algorithm does
much better than classical MDS. On the other hand, the RMSE
of the dwMDS algorithm is slightly higher than the RMSE of the
centralized MLE reported in [7]. However, that method, unlike
the dwMDS, not only uses all pairwise range measurements, but
also relies on previously estimating the channel parameters. If we
allow m�� to increase at the expense of increasing communication
costs, the dwMDS algorithm can reach an RMSE as low as K* �$ m
for m�� ���P* ) m.

Figure 3(c) and 3(d) show the same location estimates for the
TOA measurement data set. From Table 1, it can be seen that the
dwMDS algorithm outperforms all other location estimators.

5. CONCLUSION

The proposed distributed weighted-MDS algorithm is well-suited
for sensor localization, because it is both nonparametric, thus ap-
plicable to a variety of distance measurements (eg. TOA, RSS)
without the need to manually adjust parameters; and communication-
constrained such that sensors need information only from a small
set of neighbors. This paper has demonstrated the accuracy of
dwMDS via simulation and experimental measurements.
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Fig. 3. Experimental sensor network location estimates from RSS

and TOA measurements via MDS method and dwMDS method

(using adaptive neighborhood selection w/ m�� ��� m). Anchor

nodes ’x’, true sensor locations ’o’ and location estimates ’ � ’ are

shown.
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[6] S. Čapkun, M. Hamdi, and J. P. Hubaux, “GPS-free position-
ing in mobile ad-hoc networks,” in �( Q 	 IEEE Hawaii Int.
Conf. on System Sciences, Jan. 2001.

[7] N. Patwari, A. O. Hero III, M. Perkins, N. Correal, and R. J.
O’Dea, “Relative location estimation in wireless sensor net-
works,” IEEE Trans. Sig. Proc., vol. 51, no. 8, pp. 2137–2148,
2003.


