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ABSTRACT

In this paper, we propose a nonlinear dimensionality reduc-
tion method aimed at extracting lower-dimensional features
relevant for classification tasks. This is obtained by modi-
fying the Laplacian approach to manifold learning through
the introduction of class dependent constraints. Using syn-
thetic data sets, we show that the proposed algorithm can
greatly improve both supervised and semi-supervised lear-
ning problems.

1. INTRODUCTION

Continuing technological advances in both sensing and me-
dia storage capabilities are enabling the development of sys-
tems that generate massive amounts of new types of data
and information. However, the high dimensional nature of
data sets produced by today’s medical information systems
or video surveillance applications, for example, poses chal-
lenging problems in the application of current signal pro-
cessing tools. Nevertheless, such signals often contain fun-
damental features that are concentrated on lower dimensio-
nal subsets – curves, surfaces or, more generally, lower-
dimensional manifolds – thus permitting substantial dimen-
sion reduction with little or no loss of content information.
In the recent past, this subject has received substantial atten-
tion from researchers in machine learning, computer vision
and statistics, leading to the introduction of several mani-
fold learning algorithms (see webpage [1] for an extensive
list of references).

Although dimensionality reduction is usually invoked as
a tool to improve classification, regression, denoising or vi-
sualization tasks, among other applications, current algo-
rithms do not use this information to find a particular lower
dimensional representation of the data. For example, in the
classification problem, the lower dimensional embeddings
found by many popular algorithms generally induce a non-
linear mixing of the classes, resulting in an harder problem
in the embedded domain than in the original high dimensio-
nal space. However, incorporating classification informa-
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tion in the specification of the data embedding can lead to
improvements in classification performance. In particular,
by designing a classifier based on a “good” lower dimensio-
nal embedding of the data, instead of the high dimensional
space, one might break the well known curse of dimensio-
nality.

The goal of this paper is to introduce a dimensionality
reduction method where the class labels of data points ha-
ving a manifold structure are incorporated in the construc-
tion of a lower dimensional data embedding. It seems in-
tuitive that such class dependent manifold embedding algo-
rithm can improve the performance of supervised and semi-
supervised learning tasks.

Currently, the only other applications to classification
that take advantage of the manifold structure of the data are
from semi-supervised learning problems [2–4], although the
perspective of these papers is one of regularization, instead
of the dimensionality reduction approach followed here.

2. GRAPH LAPLACIANS AND MANIFOLD
EMBEDDINGS

Let Xn = {x1, . . . ,xn} ⊂ Rd be a set of n points con-
strained to lie on an m-dimensional submanifoldM of Rd.
The manifold learning problem consists in finding an em-
bedding of Xn into a subset Yn = {y1, . . . ,yn} of a lower
m-dimensional space Rm (usually m ¿ d), without any
prior knowledge aboutM besides its finite sampling Xn.

A common framework used to represent the geometric
information aboutM carried by its sampling Xn is through
the use of adjacency graphs. Let G = (V,E) be an undi-
rected weighted graph, whose vertex set V is given by the
data points, i.e., V = Xn, and E contains edges connec-
ting adjacent vertices. The edge set E is associated with an
n × n weight matrix W specifying adjacency relations be-
tween vertices, such that wij is a function of the similarity
between points i and j. The weights are assumed nonne-
gative and symmetric. Although there are many choices for
G, throughout this paper we consider nearest neighbor (NN)
graphs with a weight matrix derived from the heat kernel
[2]. The construction of this graph proceeds as follows:



1. For a fixed neighborhood parameter k ∈ N, con-
struct a k-NN graph onXn, i.e., put and edge between
points i and j if i is one of the k-NN’s of j or j is one
of the k-NN’s of i.

2. For a fixed scale parameter ε > 0, assign weight

wij = exp

{

−
‖xi − xj‖

2

ε

}

,

if vertices i and j are connected and wij = 0 other-
wise.

Following the Laplacian eigenmaps approach [5], we
formulate manifold learning as the problem of minimizing
the cost function

E(Yn) =
∑

ij

wij ‖yi − yj‖
2 (1)

in the embedding points Yn ⊂ Rd. This cost function na-
turally accounts for the geometry of Xn, as mapping close
points xi and xj in the manifold to faraway points yi and
yj in Rm results in a large penalization. Equation (1) can
be rewritten as

E(Yn) = 2 tr
(

Y LY
T
)

, (2)

where Y = [y1 . . .yn] and L = D −W , with D a diagonal
matrix with entries Dii =

∑

j wji. L is known as the graph
Laplacian of G. After imposing appropriate constraints to
remove arbitrary translations and scalings in the embedding,
finding a lower dimensional embedding of Xn reduces to
solving the following optimization problem:

arg min
Y D 1 = 0

Y D Y
T

= I

tr
(

Y LY
T
)

, (3)

where I is the n×n identity matrix and 1 is a column vector
of ones.

As L is positive semidefinite, the solution to problem (3)
is given by the m generalized eigenvectors associated with
the m smallest positive generalized eigenvalues that solve

Lv = λD v . (4)

This is equivalent to solving a regular eigenvalue problem
for matrix L̃ = D−1/2 LD−1/2, the so-called normalized
graph Laplacian. If V = [v1 . . .vm] is the collection of
such eigenvectors, then the embedded points are given by
yi = (vi1, . . . , vim)T , 1 ≤ i ≤ n.

3. CONSTRAINING THE MANIFOLD
EMBEDDING

Assume now that each point of Xn ∈ M (or a subset of
them) is associated with a class label, i.e., xi has label ci ∈

{−1, 1}. For simplicity, we only consider the problem of
two classes, although the extension of the method proposed
here to a multi-class scenario is straightforward.

We are interested in finding a lower dimensional em-
bedding for Xn that, unlike common manifold learning al-
gorithms, takes into account the class structure of the data.
The goal is to obtain an embedding that tries to separate
classes in order to improve training and generalization ca-
pabilities of a classifier fitted to the lower dimensional em-
bedded data.

Although we also use graph Laplacians, we do not fol-
low the approach advocated in [2], where dimensionality re-
duction and classification are seen as a function fitting pro-
blem, since the the eigenvectors of the Laplacian provide a
natural basis to represent functions on the graph sampling
of the manifold.

The method developed here is based on the idea of ma-
ximum alignment [6] between classes and data points. This
idea proceeds as follows. Start by associating with each
class a new node on the graph, called class centers, inserting
an edge of unit weight between this node and all data points
with the same class label. Now, if we view the graph edges
as springs that pull together nodes in the graph, determin-
ing an embedding corresponds to finding data coordinates
in an m-dimensional space that minimize the stresses in the
system of springs. This will lead to points with the same
class label trying to cluster together around the class center,
while attempting to preserve the geometric neighborhood
structure of the manifold. In this way, the class centers are
maximally aligned with the data points.

We now formalize this idea. Let zk ∈ Rm be the class
center associated with class k and C be the class member-
ship matrix, i.e., cki = 1 if xi has label k and cki = 0
otherwise. As before, we find the embedding by minimiz-
ing the cost function

E(Zn) =
∑

ki

cki ‖zk−yi‖
2 +β

∑

ij

wij ‖yi−yj‖
2 , (5)

where Zn = {z1, z2,y1, . . . ,yn} and β ≥ 0 is a regular-
ization parameter. Large values of β will produce embed-
dings that ignore class labels, while small values will pro-
duce embeddings that ignore the manifold structure of the
data. Of course, in the latter case, points will tend to col-
lapse into the class centers, producing lower dimensional
data with little value to train a classifier with good generali-
zation performance.

By defining Z = [z1 z2 y1 . . .yn], determining the lo-
wer dimensional embedding of Xn can be once again made
equivalent to the following optimization problem:

arg min
Z D 1 = 0

Z D Z
T

= I

tr
(

Z LZ
T
)

, (6)
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Fig. 1. Swiss roll manifold with 400 points from each of 2
classes, marked as ’O’ (red) and ’•’ (blue).

where L is the (n+2)× (n+2) graph Laplacian associated
with weight matrix

W
′ =

[

I C

CT βW

]

.

The solution of problem (6) is again given by the matrix
of the generalized eigenvectors associated with the m smal-
lest positive generalized eigenvalues of L, where the first
rows correspond to the coordinates of the class centers and
the following rows determine the embedding of the original
data points.

We remark that the method proposed here extends natu-
rally to the semi-supervised setting, where only partial la-
beling is available. In this case, the points xi for which
there are no label information will have the corresponding
columns of matrix C set to zero, thus imposing no additional
constraints.

4. EXAMPLES

We now show through simple examples how the proposed
classification constrained dimensionality reduction (CCDR)
algorithm works. All the simulations presented here have
β = 1, neighborhood parameter k = 12 and the scale pa-
rameter ε of the heat kernel is set automatically according
to [7]:

ε =
10

n

n
∑

i=1

min
j: xj 6=xi

‖xj − xi‖
2
.

Consider the standard 2-dimensional swiss roll manifold
in R3. We sample 400 points uniformly on the manifold
from each of two classes, as shown in figure 1. As it can
be deduced, there is no linear projection of the data into a
2-dimensional subspace that separates the classes.

Figure 2 shows the results of applying standard mani-
fold learning methods, ISOMAP [8] and Laplacian Eigen-
maps, together with the proposed CCDR algorithm to the
data set of Figure 1. Recall that both ISOMAP and Lapla-
cian Eigenmaps do not take into account label information

Table 1. Error rates for classification using pre-processing
dimensionality reduction versus full dimensional data

no. of train.
samples CCDR Laplacian 3-NN

300 4.4 % 6.4 % 5.0 %
400 3.6 % 5.0 % 4.4 %
500 2.6 % 3.6 % 3.4 %

when computing the embedding. As a result, although ISO-
MAP (Figure 2(a)) is able to recover an isometric embed-
ding of the data into the plane, it fails at finding a simple
separation of the classes. The Laplacian eigenmaps method
(Figure 2(b)) gives similar results, albeit finding an arc-
length type parameterization of the data. On the contrary,
the CCDR algorithm (Figure 2(c)) computes an embedding
where classes are almost linearly separable.

To quantify this behavior, we designed a very simple
classifier. To classify a new sample, add it to the graph
formed by the training set, with unknown label (add a zero
column to matrix C ), compute the constrained (or simple
Laplacian) embedding. and then classify the sample using a
simple NN-classifier on the embedded points. We compare
this to a baseline NN-classifier on the full dimensional data
set. In all the experiments a 3-NN classifier was used. We
tested 50 sample points per training set and repeated for 20
random training sets. Table 1 shows the average error rates
as a function of the number of training samples. As it can be
seen, the CCDR algorithm outperforms the other methods.
Supporting the claim that dimensionality reduction without
guidance can harm classification performance, it can be ob-
served that the full dimensional NN-classifier does better
than a NN-classifier based on the Laplacian embedding.

The algorithm proposed here can also be used to im-
prove semi-supervised learning machines. Adopting the me-
thod proposed in [2], we have the following algorithm. firstly,
compute the constrained embedding of the entire data set,
inserting a zero column in C for each unlabeled sample.
Secondly, fit a linear classifier to the labeled embedded points
by minimizing the quadratic error loss:

`(a) =
∑

i : xi is
labeled

(

ci − aT yi

)2

.

Thirdly and finally, for an unlabeled point xj , label it using
the fitted linear classifier:

cj =

{

1 if aT yj ≥ 0
−1 if aT yj < 0

.

Once again, we compare this algorithm to the simple
Laplacian equivalent, where the embedding is found us-
ing Laplacian eigenmaps, and to a baseline NN-classifier,
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(a) ISOMAP
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Fig. 2. Applying dimensionality reduction algorithms to the Swiss roll data set of Figure 1. ISOMAP was computed using

8-NN, while both Laplacian Eigenmaps and CCDR used 12-NN.
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Fig. 3. Percentage of errors for labeling unlabeled samples
as a function of the number of labeled points, out of a total
of 1000 points on the Swiss roll.

where points are labeled according to the nearest labeled
neighbors in the full dimensional space. We chose the best
k-NN classifier for k = 1, 2, 3. Figure 3 shows the error
rates as a function of the number of labeled points, for a
total of 1000 points on the Swiss roll. For each fixed num-
ber of labeled points, we drew 20 independent data sets and
randomly assigned labels, although guaranteeing balanced
classes. As it can be seen, for a small number of labeled
points, CCDR performs almost as bad as the Laplacian al-
gorithm, as label information is not enough to produce an
embedding substantially different from the original Lapla-
cian eigenmaps, where classes are highly mixed (see Fig.
2(b)). However, as the number of samples increases beyond
100, the class constraints start to take effect, driving an em-
bedding that can achieve almost linear separation of classes
and thus outperforming all other methods.

5. FUTURE WORK

Several issues should be addressed in order to make the me-
thod proposed widely applicable to real life problems. Of

prime importance is the development of out-of-sample ex-
tensions of the embeddings to new points. Also of interest,
is the study of the in¤uence of the regularization parameter
β in the classification performance. We are currently apply-
ing this method to high-dimensional databases, such as the
MNIST database of handwritten digits.
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