
1

Learning Intrinsic Dimension and Entropy of

High-Dimensional Shape Spaces
Jose A. Costa, Alfred O. Hero, III

Abstract

Given a finite set of random samples from a smooth Riemannian manifold embedded in R
d two

important questions are: what is the intrinsic dimension of the manifold and what is the entropy of the

underlying sampling distribution on the manifold? These questions naturally arise in the study of shape

spaces generated by images or signals for the purposes of shape classification, shape compression, and

shape reconstruction. This chapter is concerned with two simple estimators of dimension and entropy

based on the lengths of the geodesic minimal spanning tree (GMST) and the k-nearest neighbor graph

(k-NNG). We provide proofs of strong consistency of these estimators under weak assumptions of

compactness of the manifold and boundedness of the Lebesgue sampling density supported on the

manifold. We illustrate these estimators on the MNIST database of handwritten digits.

Index Terms

Intrinsic dimension, entropy, manifold learning, Riemannian manifold, nearest neighbor graph, min-

imal spanning tree, geodesics.

I. INTRODUCTION

Continuing technological advances in both sensing and media storage capabilities are enabling the

development of systems that generate massive amounts of new types of data and information. However,

the high dimensional nature of data sets produced by today’s medical information systems or video

surveillance applications, for example, poses challenging problems to the application of current signal and

image processing tools. It is well known that both computational complexity and statistical performance
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of most algorithms quickly degrades as dimension increases. This phenomenon, usually known as the

curse of dimensionality, makes it impracticable to process such high dimensional data sets. Nevertheless,

high dimensional data often contain fundamental features that are concentrated on lower dimensional

subsets – curves, surfaces or, more generally, lower-dimensional manifolds – thus permitting substantial

dimension reduction with little or no loss of content information.

The study of the geometry of smooth two or three dimensional objects is one of the areas where high

dimensional manifolds naturally arise. The shape of a single object is characterized by mathematical

shape invariants such as dimension, curvature and geodesic distance. A more challenging problem is the

characterization of a smooth class of objects, e.g., imagine the set of all possible handwritten digits or all

possible human faces under various poses and illumination. Having an accurate estimate of the dimension

of such shape spaces is of great importance for shape modeling, compression, and classification as it

provides an indication of the number of model parameters required for indexing or reconstruction of the

space.

In a practical setting, the complexity of representing such manifolds or shape spaces in closed form

is unmanageable and all that is available is a finite number of (possibly random) samples obtained from

these shape spaces. It is thus important to be able to determine fundamental properties of shape spaces

directly from this finite representation, without resorting to cumbersome algorithms that first perform

shape reconstruction. In this paper we address the problem of estimating the intrinsic dimension of

a manifold and the intrinsic entropy of the measured manifold random samples. These two quantities

measure the geometric and statistical complexity of the underlying shape spaces and play a central role

in many applications, ranging from computational biology [1] to image processing [2].

Informally, the intrinsic dimension of a manifold describes how many “degrees of freedom” are

necessary to generate the observed data. The classical way to estimate such quantity is based on linear

projection techniques [3]: a linear map is explicitly constructed and dimension is estimated by applying

principal component analysis (PCA), factor analysis, or multidimensional scaling (MDS) to analyze

the eigenstructure of the data. These methods estimate dimension by looking at the magnitude of

the eigenvalues of the data covariance and determining in some ad-hoc fashion the numeber of such

eigenvalues necessary to describe most of the data. As they do not account for non-linearities, linear

methods tend to overestimate intrinsic dimension. Both nonlinear PCA [4] methods and the ISOMAP

[5] try to circumvent this problem but they still rely on unreliable and costly eigenstructure estimates.

Other methods have been proposed, ranging from fractal dimension [6], estimating packing numbers [7]

to a maximum likelihood approach [8].
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The intrinsic entropy of random samples obtained from a manifold is an information theoretic measure

of the complexity of the distribution of the samples supported on the manifold. When the distribution is

absolutely continuous with respect to the Lebesgue measure restricted to the lower dimensional manifold,

this intrinsic entropy can be useful for exploring data compression over the manifold, registering medical

images or geographical information [9] or, as suggested in [2], clustering of multiple sub-populations on

the manifold.

This chapter is a follow-up to recent work by the authors on deriving intrinsic dimension and entropy

estimators based on random graphs [10], [11], providing the proofs of statistical consistency of the

proposed estimators for general Riemann manifolds. We note that, except for [8], our work is the only

one analyzing the statistical properties of intrinsic dimension estimators. The algorithms described here

are based on constructing Euclidean k-nearest neighbor (k-NN) graphs or geodesic minimal spanning

trees (GMST) over all the sample points and using their growth rate to estimate the intrinsic dimension

and entropy by simple linear least squares and method of moments procedure. This approach allows for

the estimation of the desired quantities using algorithms with low computational complexity that avoid

reconstructing the manifold or estimating multivariate distributions.

We remark that the work presented here is intimately related with recent developments on nonlinear

dimensionality reduction and manifold learning [5], [12]–[16].

The remainder of this chapter is organized as follows. In Section II we introduce entropic graphs

and some of the properties that make them interesting for dimension and entropy estimation. Section

III describes the asymptotic behavior of such graphs in Euclidean spaces and Section IV extends these

results to Riemann manifolds. The proposed algorithms are described in Section V. Experimental results

are reported in Section VI. The technical proofs of the main results presented here are complied in the

Appendix.

II. ENTROPIC GRAPHS AND THEIR PROPERTIES

Let Xn = {X1, . . . , Xn} be n independent identically distributed (i.i.d.) random vectors in a compact

subset of R
d, with multivariate Lebesgue density f . Xn will also be called the set of random vertices.

By solving certain optimization problems on the set Xn, one can obtain special graph constructions.

One such example is the k-NN graph. Start by defining the (1-)nearest neighbor of Xi in Xn as

arg min
X∈Xn\{Xi}

d(X, Xi) ,

where distances between points are measured in terms of some suitable distance function d(·, ·). For

general integer k ≥ 1, the k-nearest neighbor of a point is defined in a similar way. The k-NN graph
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puts an edge between each point in Xn and its k-nearest neighbors. Let Nk,i(Xn) be the set of k-nearest

neighbors of X i in Xn. The total edge length of the k-NN graph is defined as:

Lk-NN
γ (Xn) =

n
∑

i=1

∑

X∈Nk,i(Xn)

dγ(X, Xi) , (1)

where γ is a power weighting constant.

Another example is the MST problem, where the goal is to find a graph of minimum total edge length

among the graphs T which span the sample Xn. The minimum total edge length is defined as:

LMST
γ (Xn) = min

T∈T

∑

e∈T

wγ(e) , (2)

where e is an edge in the graph and w(e) is its weight. If edge e connects points X i and Xj in Xn,

then its weight is w(e) = d(X i, Xj).

The k-NN graph or the MST are part of a larger class of graphs that were called entropic graphs in

[2] or continuous quasi-additive functionals in [17]. Other graphs in this class are the minimal Euclidean

matching graph, the traveling salesman tour, the Steiner tree and minimal triangulation among others.

Intuitively, a graph is in this class if its total edge length functional, Lγ(Xn), can be closely approximated

by the sum of the edge length functionals of the graphs constructed on a dense partition of the compact

set that contains the support of X i. The following properties, which are commonly satisfied by all the

graph constructions mentioned above, play a key role in formalizing (and proving) such type of results.

Without loss of generality, assume that the random vectors X i’s take values on [0, 1]d. Let F be any

finite subset of [0, 1]d and Lγ be a functional on F .

1) Lγ has an Euclidean structure if it satisfies:

a) Translation invariance: ∀y ∈ R
d , Lγ(F ) = Lγ(F + y).

b) Homogeneity of order γ: ∀α > 0 , Lγ(α F ) = αγLγ(F ).

2) Lγ is subadditive if, given a partition of a subset R ∈ [0, 1]d into subsets R1 and R2, it satisfies

Lγ(F ∩ R) ≤ Lγ(F ∩ R1) + Lγ(F ∩ R2) + C1(diam R)γ ,

for some constant C1 > 0 independent of R, R1 and R2, where diam R is the diameter of R.

3) Lγ is superadditive if, for the same partition defined above, it satisfies

Lγ(F ∩ R) ≥ Lγ(F ∩ R1) + Lγ(F ∩ R2) .

4) Lγ is continuous if there exists a constant C2 > 0 such that for all finite subsets F and G of [0, 1]d,

|Lγ(F ∪ G) − Lγ(F )| ≤ C2 (card(G))(d−γ)/d ,
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where card(G) is the cardinality of set G. Note that continuity implies

|Lγ(F ) − Lγ(G)| ≤ 2 C2 (card(F 4 G))(d−γ)/d ,

where F 4 G = (F ∪ G) \ (F ∩ G) denotes the symmetric difference of sets F and G.

III. ENTROPIC GRAPHS ON EUCLIDEAN SPACES

If X, Y ∈ R
d and d(X, Y ) = |X − Y |, i.e., the Euclidean distance between X and Y , then both

the MST graph and the k-NN graph fall under the framework of continuous quasi-additive Euclidean

functionals [17]. By showing that they satisfy subadditive, superadditive and continuous properties, their

almost sure (a.s.) asymptotic behavior (also convergence in the mean) follows easily from the umbrella

theorems for such graphs:

Theorem 1 ( [17], [18]): Let X1, . . . , Xn be i.i.d. random vectors with values in [0, 1]d and Lebesgue

density f . Let d ≥ 2, 1 ≤ γ < d and define α = (d − γ)/d. Then

lim
n→∞

Lγ(Xn)

nα
= βd,Lγ

∫

[0,1]d
fα(x) dx a.s. ,

where Lγ(Xn) is given by equation (1) or (2) with Euclidean distance, and, βd,Lγ
is a constant independent

of f . Furthermore, the mean length E [Lγ(Xn)] /nα converges to the same limit.

Theorem 1 states that the limiting behavior of the graph length functional is determined by the extrinsic

Rényi α-entropy of the multivariate Lebesgue density f :

HR
d

α (f) =
1

1 − α
log

∫

Rd

fα(x) dx . (3)

In the limit, when α → 1 the usual Shannon entropy, −
∫

Rd f(x) log f(x) dx, is obtained. This remarkable

asymptotic behavior motivates the name entropic graphs given in [2].

Assume now that the random set Yn = {Y 1, . . . , Y n} is constrained to lie on a compact smooth

m-dimensional manifold M. The distribution of Y i becomes singular with respect to Lebesgue measure

and an application of Theorem 1 results in a zero limit for the length functional of the particular graph.

However, this behavior can be modified by changing the way distances between points are measured.

For this purpose, we use the framework of Riemann manifolds.

IV. ENTROPIC GRAPHS ON RIEMANN MANIFOLDS

Given a smooth manifold M, a Riemann metric g is a mapping which associates to each point y ∈ M

an inner product gy(·, ·) between vectors tangent to M at y [19]. A Riemann manifold (M, g) is just a
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smooth manifold M with a given Riemann metric g. As an example, when M is a submanifold of the

Euclidean space R
d, the naturally induced Riemann metric on M is just the usual dot product between

vectors.

A Riemann metric g endows M with a distance dg(·, ·) via geodesics and a measure µg via the volume

element [19]. Given the geodesic distance, one can define nearest neighbor relations or edge weights in

terms of dg instead of the usual Euclidean distance | · | and, consequently, define the total edge length

Lγ(Yn) as in (1) or (2), with the correspondence d → dg.

We can now extend Theorem 1 to general compact Riemann manifolds. This extension, Theorem 2,

states that the asymptotic behavior of Lγ(Yn) is no longer determined by the density of Y i relative to

the Lebesgue measure of R
d, but depends instead on the the density of Y i relative to µg.

Theorem 2: Let (M, g) be a compact smooth Riemann m-dimensional manifold. Suppose Y 1, . . . , Y n

are i.i.d. random elements of M with bounded density f relative to µg. Let Lγ be the total edge length

of the MST graph or the k-NN graph with lengths computed using the geodesic distance dg. Assume

m ≥ 2, 1 ≤ γ < m and define α = (m − γ)/m. Then,

lim
n→∞

Lγ(Yn)

nα
= βm,Lγ

∫

M
fα(y) µg(dy) a.s. , (4)

where βm,Lγ
is a constant independent of f and M. Furthermore, the mean length E [Lγ(Yn)] /nα

converges to the same limit.

Now, the limiting behavior of Lγ(Yn) is related to the intrinsic Rényi α-entropy of the multivariate

density f on M:

H(M,g)
α (f) =

1

1 − α
log

∫

M
fα(y) µg(dy) . (5)

An immediate consequence of Theorem 2 is that, for known m,

Ĥ(M,g)
α (Yn) =

m

γ

[

log
Lγ(Yn)

n(m−γ)/m
− log βm,Lγ

]

(6)

is an asymptotically unbiased and strongly consistent estimator of the intrinsic α-entropy H
(M,g)
α (f).

The proof of Theorem 2 is given in Appendix A. The intuition behind it comes from the fact that

a Riemann manifold M, with associated distance and measure, looks locally like R
m with Euclidean

distance | · | and Lebesgue measure λ. This implies that on small neighborhoods of the manifold, the total

edge length Lγ(Yn) behaves like a Euclidean length functional. As M is assumed compact, it can be

covered by a finite number of such neighborhoods. This fact, together with subadditive and superadditive

properties [17] of Lγ , allows for repeated applications of Theorem 1 resulting in (4).
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A. Approximating Geodesic Distances on Submanifolds of R
d

Although Theorem 2 provides a characterization of the asymptotic behavior of entropic graphs over

random points supported on a manifold, one further step is missing in order to make it applicable to a

wide class of practical problems. This extra step comes from the computation of the length functionals

which depends on finding geodesic distances between sample points, which in turn require knowing the

manifold M. However, in the general manifold learning problem, M (or any representation of it) is

not known in advance. Consequently, the geodesic distances between points on M cannot be computed

exactly and have to be estimated solely from the data samples.

In [10], the geodesic minimal spanning tree (GMST) algorithm was proposed, where the pairwise

geodesic distances between sample points are estimated by running Dijkstra’s shortest path algorithm

over a global graph of “neighborhood relations” among all sample points of the manifold. If d̂(eij) is

the estimate of the geodesic length of edge eij = (Y i, Y j) obtained by this algorithm, then the GMST

is defined as the minimal graph over Yn whose length is:

L̂GMST
γ (Yn) = min

T∈T

∑

e∈T

d̂γ(e) . (7)

By using geodesic information, the GMST length functional encodes global structure about the nonlinear

manifold. The geodesic distances between sample points on the manifold are uniformly well approximated

by d̂ in the following sense:

Theorem 3: Let (M, g) be a compact Riemann submanifold of R
d. Suppose Y 1, . . . , Y n are i.i.d.

random vectors of M, with density bounded away from zero. Then, with probability 1,

max
1≤i,j≤n

i6=j

∣

∣

∣

∣

∣

d̂(Y i, Y j)

dg(Y i, Y j)
− 1

∣

∣

∣

∣

∣

→ 0 as n → ∞ . (8)

This theorem is proven in Appendix B. We remark that there exist alternative algorithms for computing

geodesic distances that can also provide guarantees similar to theorem 3. Of particular interest for future

work is the method proposed in [20] for estimating geodesics that accounts for noisy samplings of the

manifold.

Unlike the MST, the k-NN graph is only influenced by local distances. For fixed k, the maximum

nearest neighbor distance of all points in Yn goes to zero as the number n of samples increases. For n

sufficiently large, this implies that the k-NN of each point will fall in a neighborhood of the manifold

where geodesic curves are well approximated by the corresponding straight lines between end points.

This suggests using simple Euclidean k-NN distances (|Y i − Y j |) as surrogates for the corresponding
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true nearest neighbor geodesic distances (d(Y i, Y j)). In fact, we prove in Appendix C that the geodesic

k-NN distances are uniformly well approximated by the corresponding Euclidean k-NN distances in the

following sense:

Theorem 4: Let (M, g) be a compact Riemann submanifold of R
d. Suppose Y 1, . . . , Y n are i.i.d.

random vectors of M. Then, with probability 1,

max
1≤i≤n

Y ∈Nk,i(Yn)

∣

∣

∣

∣

|Y − Y i|

dg(Y , Y i)
− 1

∣

∣

∣

∣

→ 0 as n → ∞ . (9)

Finally, the asymptotic behavior of the GMST or the Euclidean k-NN graph is a simple consequence

of Theorem 2 and Theorems 3 and 4:

Corollary 5: Let (M, g) be a compact smooth Riemann m-dimensional manifold. Suppose Y 1, . . . , Y n

are i.i.d. random elements of M with bounded density f relative to µg. Let L̂γ be the total edge length

of the GMST graph or the Euclidean k-NN graph defined over Yn. Then,

lim
n→∞

L̂γ(Yn)

nα
= βm,Lγ

∫

M
fα(y) µg(dy) a.s. , (10)

where βm,Lγ
is a constant independent of f and M. Furthermore, the mean length E [Lγ(Yn)] /nα

converges to the same limit.

Proof: For example, for the k-NN case,

L̂γ(Yn) =
n
∑

i=1

∑

Y ∈Nk,i

(

|Y − Y i|

dg(Y , Y i)

)γ

dγ
g (Y , Y i) .

The uniform convergence expressed by Theorem 4 implies that

L̂γ(Yn) = (1 + o(1))γLγ(Yn) .

Corollary 5 now follows from an application of Theorem 2. The GMST case is similar.

We remark that corollary 5 differs from corollary 1 presented in [10], in that the latter discusses the

asymptotic behavior of the total edge length of the MST as a function of the samples embedded on the

m-dimensional Euclidean space that parameterizes the manifold (assuming a global conformal mapping),

as opposed to the samples supported on the manifold itself considered here.

With regards to computational complexity, the geodesic free property of the k-NN algorithm makes it

computationally inexpensive as compared with other manifold learning algorithms. In this case, complex-

ity is dominated by determining nearest neighbors, which can be done in O(n log n) time for n sample

points. This contrasts with the GMST, which, as ISOMAP, requires a costly O(n2 log n) implementation

of the geodesic pairwise distance estimation step.
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V. JOINT INTRINSIC DIMENSION/ENTROPY ESTIMATION

The asymptotic characterization of the GMST or k-NN length functional stated in Corollary 5 provides

the framework for developing consistent estimators of both intrinsic dimension and entropy. The key

observation is to notice that the growth rate of the length functional is strongly dependent on m while the

constant in the convergent limit is equal to the intrinsic α-entropy. We use this strong growth dependence

as a motivation for a simple estimator of m. Define ln = log L̂γ(Yn). According to Corollary 5, ln has

the following approximation

ln = a log n + b + εn , (11)

where

a = (m − γ)/m ,

b = log βm,Lγ
+ γ/m H(M,g)

α (f) ,

(12)

α = (m − γ)/m and εn is an error residual that goes to zero a.s. as n → ∞.

Using the additive model (11), we propose a simple non-parametric least squares strategy based on

resampling from the population Yn of points in M. Specifically, let p1, . . . , pQ, 1 ≤ p1 < . . . , < pQ ≤ n,

be Q integers and let N be an integer that satisfies N/n = ρ for some fixed ρ ∈ (0, 1]. For each

value of p ∈ {p1, . . . , pQ} randomly draw N bootstrap datasets Y j
p , j = 1, . . . , N , with replacement,

where the p data points within each Yj
p are chosen from the entire data set Yn independently. From

these samples compute the empirical mean of the functionals L̄p = N−1
∑N

j=1 L̂γ(Yj
p). Defining l̄ =

[log L̄p1
, . . . , log L̄p1

]T we write down the linear vector model

l̄ = A





a

b



+ ε (13)

where

A =





log p1 . . . log pQ

1 . . . 1





T

.

We now take a method-of-moments (MOM) approach in which we use (13) to solve for the linear least

squares (LLS) estimates â, b̂ of a, b followed by inversion of the relations (12). After making a simple

large n approximation, this approach yields the following estimates:

m̂ = round{γ/(1 − â)}

Ĥ(M,g)
α =

m̂

γ

(

b̂ − log βm̂,Lγ

)

.
(14)
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Fig. 1. The 2D-torus and the 4-NN graph on 500 points sampled uniformly from the torus.

The constants βm,Lγ
in the above estimators depend only on m, γ and the particular entropic graph

construction algorithm, e.g., GMST or k-NN. Due to the slow growth of {βm,Lγ
}m>0 in the large n

regime for which the above estimates were derived, βm,γ is not required for the dimension estimator.

On the other hand, the value of βm,Lγ
is required to obtain unbiased estimates of entropy. βm,Lγ

is the

limit of the normalized length functional of the corresponding Euclidean entropic graph for a uniform

distribution on the unit cube [0, 1]m. As, closed form expressions are not available, it can be determined

by performing Monte Carlo simulations of the entropic graph length on the unit cube [0, 1]m for uniform

random samples. Another approach is to use analytical approximations and bounds for the GMST case,

e.g. available in [17].

VI. EXPERIMENTAL RESULTS

We illustrate the performance of the entropic graph algorithm on manifolds of known dimension as

well as on a real high dimensional data set consisting of handwritten digits. In all the simulations we fixed

the parameters γ = 1 and p1 = n − Q, . . . , pQ = n − 1. With regards to intrinsic dimension estimation,

we compare our algorithms to ISOMAP. In ISOMAP, similarly to PCA, intrinsic dimension is usually

estimated by detecting a knee in the residual fitting error curve as a function of subspace dimension.

A. Torus

First, we consider the case of the 2-dimensional torus embedded in R
3 (Figure 1). This manifold

presents some challenges as it does not satisfy any of the usual isometric or conformal embedding
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TABLE I

NUMBER OF CORRECT DIMENSION ESTIMATES OVER 30 TRIALS AS A FUNCTION OF THE NUMBER OF SAMPLES FOR THE

TORUS (N = 5, Q=10).

n 200 400 600

GMST 29 30 30

5-NN 29 30 30

TABLE II

ENTROPY ESTIMATES FOR THE TORUS (n = 600, N = 5, Q=10).

emp. mean std. deviation

GMST 10.0 0.55

5-NN 9.6 0.93

constraints required by ISOMAP or Hessian eigenmaps [14], among others. We tested the algorithms

over 30 generations of uniform random samples over the torus for different sample sizes n, and counted the

number of correct dimension estimates. We note that in all the simulations ISOMAP always overestimated

the intrinsic dimension as 3. The results for the GMST and k-NN are shown in Table I. Table II shows

the entropy estimates obtained by both methods on uniform samples supported on the torus. The true

(α = 1/2) entropy is H1/2 = log(120π2) ≈ 10.21.

B. MNIST Database of Handwritten Digits

The MNIST database1 consists of 256 gray levels images of handwritten digits obtained by optical

character recognition. This publicly available database has became one of the benchmarks for testing new

digit recognition algorithms [21], containing extensive test and training sets of all digits. Each digit in

the database consists of a 28× 28 pixel image that was size normalized and translated so that its center

of mass lies in the center of the image. For the purpose of dimensionality estimation, we chose the first

1000 samples of digits 0 to 9 (Figure 2) in the training set.

Figure 3 shows the histogram of the dimension estimates for 30 simulations of the 5-NN algorithm

applied to the samples of digits 0 to 9. Figure 4 shows the boxplot of the entropy estimates for the same

scenario. Although the histograms show high variability, most of the estimates are between 9 and 15.

It is interesting to notice that digit 1 exhibits the lowest dimension estimate, between 9 and 10, while

1http://yann.lecun.com/exdb/mnist/
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Fig. 2. Samples from digits 0 to 9 in the MNIST database.

all the other digits exhibit dimensions between 12 and 14. The lower complexity of digit 1 can also be

seen from Figure 4, where its entropy estimate is much lower that all other digits. Also of interest is

the bimodal behavior of the histogram of digit 7, with one mode concentrated at 10, 11 and the other at

13. After looking at the images selected in the realizations that resulted in the lower dimensional mode

estimates, we realized that these images, although classified as a 7, are also very close to digit 1, thus

contributing to lowering the dimension estimates. This effect can also be observed in the boxplot of

entropy estimates of Figure 4, where the high variance of the entropy estimate of digit 7 and consequent

overlap of confidence intervals with digit 1 suggest the presence of images with a lower complexity.

For comparison purposes, we show in Figure 5 the eigenvalue plots for digits 2 and 3 used by ISOMAP

to estimate intrinsic dimension. Even though it is not obvious how to assign a single dimension estimate

from this plot - one of the main disadvantages of using spectral methods to estimate dimension - it

is clear that the dataset should be at most 10-dimensional, as the residual variance ceases to decrease

significantly after that value. The difference between the estimates predicted by entropic graphs and

ISOMAP might be justified by the isometric assumption required by ISOMAP. The digits database

contains nonlinear transformations, such as width distortions of each digit, that are not described by

isometries. As consequence, ISOMAP underestimated these extra degrees of freedom, resulting in a

lower dimension estimate than the entropic graphs, that are valid for a broader class of manifolds.

Finally, we present in Figure 6 the results of applying the proposed algorithm to the merged samples

of digits 2 and 3. As it can be seen, the histogram of the dimension estimates shows an increase of

its mode by one, being dominated by the dimensionality of the most complex digit (3). The entropy
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Fig. 3. Histograms of intrinsic dimensionality estimates for digits 0 to 9 in the MNIST database using a 5-NN graph (N = 10,

Q = 15).
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Fig. 4. Boxplot of entropy estimates for digits 0 to 9 in the MNIST database using a 5-NN graph (N = 10, Q = 15).

Fig. 5. ISOMAP (k = 6) residual variance for digits 2 and 3 in the MNIST database.

boxplot shows an increase of the median entropy estimate by roughly one bit. This should be expected,

as compressing the augmented data set requires only one extra bit to identify which digit is being coded

and then the individual codes for each digit can be used.

VII. CONCLUSIONS

We have discussed the use of computational geometry graph constructions and geometric probability

tools for the estimation of intrinsic dimension and entropy of shape spaces based solely on a finite

random sampling of the underlying shapes. In particular, we have shown the strong statistical consistency

of estimators based on k-nearest neighbor graphs or minimal spanning trees under the very general
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Fig. 6. Histogram of intrinsic dimensionality estimates and boxplot of entropy estimates for digits 2+3 in the MNIST database

using a 5-NN graph (N = 10, Q = 15).

assumption of high dimensional data supported on a compact Riemann manifold. These results provide

a departure from usually strong assumptions of linear, isometric or conformal embeddings expressed in

the previous literature on the subject.

We are currently working on extending the proposed methods to data sets that exhibit a varying

complexity across the data, characterized by a changing intrinsic dimension. This will allow the analysis

of interesting datasets, like images composed of textures of different complexity or computational biology

models of protein interaction [1]. Future work also includes developing bias correction mechanisms to

improve the bootstrapping resampling step of the algorithm and account for dependencies in the sampling

process.

APPENDIX

A. Proof of Theorem 2

In this appendix, Theorem 2 is proven. We first introduce two auxiliary lemmas and take a small

detour to discuss Euclidean boundary functionals, which are a key tool in proving asymptotic results for

continuous quasi-additive Euclidean functionals [17].

The first lemma formalizes the intuition that a a Riemann manifold M, with associated distance dg

and measure µg, looks locally like R
m with Euclidean distance | · | and Lebesgue measure λ:
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Lemma 1 ( [22, Lemma 5.1]): Let (M, g) be a smooth Riemann m-dimensional manifold. For any

x ∈ M and ε > 0, there exists a chart (U, φ) for M, with x ∈ U , such that

(1 + ε)−1 |φ(y) − φ(z)| ≤ dg(y, z) ≤ (1 + ε) |φ(y) − φ(z)| ∀ y, z ∈ U (15)

and for any measurable subset B ⊂ U

(1 − ε) λ(φ(B)) < µg(B) < (1 + ε) λ(φ(B)) . (16)

Recall that a chart (U, φ) consists of a neighborhood U such that φ : M ∩ U → R
m determines a

parametric representation of M∩ U in the Euclidean m-dimensional space, i.e., for y ∈ M∩ U , φ(y)

represents y in an Euclidean m-dimensional coordinate system.

1) Boundary Functionals on Jordan Measurable Sets: We now informally introduce the notions of

boundary functional. For formal definitions and details, we refer the reader to [17].

By appropriate canonical modifications of an Euclidean subadditive functional L(F ), it is possible to

construct an associated boundary functional LB(F, R) on any subset R of [0, 1]d [17]. Informally, in a

boundary functional all the edges connecting point on the boundary of R (∂R) have zero length, so that

∂R can be seen as single point: all edges joined to the boundary are joined to one another, or, in other

words, joining edges using ∂R adds no additional cost to the functional.

The importance of boundary functionals resides in the fact that they are superadditve, a property that

many of the standard total edge functionals lack. If R is partitioned into sets R1 and R2 then LB is

superadditive if

LB(F, R) ≥ LB(F ∩ R1, R1) + LB(F ∩ R2, R2) .

When R, R1, R2 are rectangles, translation invariance and homegeneity properties of any Euclidean

functional, endow LB(·, R) with a self similarity property, in a way that, for a uniform sample, the

value of the functional on a set of the partition is statistically similar to its value on any other partition

set. However, when R is an arbitrary set, this self similarity property is lost. We now show that if R is

Jordan measurable a superadditive functional has the same type of asymptotic behavior as when R is a

rectangle.

Lemma 2: Let X1, . . . , Xn be i.i.d. random vectors with values in R ⊂ [0, 1]d and bounded Lebesgue

density f . Assume R is Jordan measurable. Let LB(·, R) be a continuous superadditive Euclidean

boundary functional of order γ on R
d. Then

lim inf
n→∞

LB(Xn, R)

nα
≥ βd,L

∫

R
fα(x) dx a.s. (17)



17

Furthermore, the same result holds for the mean length E [LB(Xn, R)] /nα.

Proof: The proof of this result relies on the fact that a Jordan measurable set is “well approximated”

from below by an union of disjoint cubes. We then use the known results about the behavior of Euclidean

functionals over cubes.

Let ε > 0. As R is Jordan measurable, there exists a finite number of disjoint cubes {Qi} (with faces

parallel to the axis) such that Q = ∪iQi ⊂ R and λ(R \ Q) < ε. By superadditivity,

LB(Xn, R) ≥
∑

i

LB(Xn ∩ Qi, Qi) . (18)

Let pi =
∫

Qi
f dλ. By the strong law of large numbers, Xn ∩Qi consists of n(pi + o(1)) i.i.d. points in

Qi distributed with density p−1
i f . By the usual umbrella theorem,

LB(Xn ∩ Qi, Qi)

(pin)α
→ βd,L

∫

Qi

(p−1
i f)α dλ a.s. (19)

We also have
∣

∣

∣

∣

∫

R
f dλ −

∫

Q
f dλ

∣

∣

∣

∣

≤ ‖f‖∞ λ(R \ Q) < ε ‖f‖∞ , (20)

where ‖f‖∞ = sup{f(x) : x ∈ R} is finite by assumption. Combining (18), (19) and (20) results in

lim inf
n→∞

LB(Xn, R)

nα
≥ βd,L

∑

i

∫

Qi

fα dλ ≥ βd,L

(
∫

R
fα dλ − ε ‖f‖∞

)

.

Letting ε → 0 produces the desired result.

Remark 1: If LB is close in mean [17, c.f. Definition 3.9] to the underlying smooth subadditive

Euclidean functional, then lim inf and the inequality in equation (17) can be replaced, respectively, by

lim and an equality.

2) Proof of Theorem 2: Before proving Theorem 2, we note that both the MST and the k-NN functional

and respective boundary functionals defined on a Riemann manifold satisfy strong forms of subadditivity

and superadditivity. Namely, if R1, R2 ∈ M are arbitrary sets that partition M, then

LB(F ∩ R1, R1) + LB(F ∩ R2, R2) ≤ LB(F,M) = L(F ) ≤ L(F ∩ R1) + L(F ∩ R2) + C , (21)

where C is an error term independent of R1 and R2 (C is zero for the k-NN case). Note that the usual

subadditivity and superadditivity conditions needed to prove umbrella theorems for Euclidean functionals

only require that these conditions hold for partitions made of rectangles.

Proof: [Proof of Theorem 2] Let ε > 0. For x ∈ M let (Ux, φx) be the chart specified by Lemma

1. Without loss of generality, Ux may be chosen such that φx(Ux) is an open ball in R
m (this can be
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achieved by possibly shrinking the set Ux whose existence is guaranteed by Lemma 1). By compactness

of M, there exists a finite collection of such sets, say {Ui}, that cover M. Define the set sequence {Vj}

by V1 = U1 and Vj = Uj \ ∪1≤i≤j−1Vi, for j ≥ 2. The sets Vj are disjoint, form a partition of M, and

Vj ⊂ Uj , for all j.

Let pj =
∫

Vj
f dµg and Xn,j = φj(Yn ∩ Vj). By the strong law of large numbers, Xn,j consists of

n(pj + o(1)) i.i.d. points in φj(Vj) distributed with density

gj(u) = p−1
j hj(φ

−1
j (u))f(φ−1

j (u)) , u ∈ φj(Vj) ,

where hj is the function defined in the proof of Lemma 1 in [22] (c.f. Lemma 5.1). hj accounts for the

differential changes in volume between Vj and φj(Vj), i.e., µg(B) =
∫

φ(B) hj(φ
−1
j (u)) du, for B ⊂ Uj .

Recall from [22] that 1 − ε < hj(x) < 1 + ε for x ∈ Vj .

We are now ready to apply sub and superadditivity to the partition {Vj}. By (21)

∑

j

LB(Yn ∩ Vj , Vj) ≤ LB(Yn,M) = L(Yn) ≤
∑

j

L(Yn ∩ Vj) + C ′ . (22)

As the sets Vj were chosen such that the geodesic lengths and Euclidean lengths are ε-close, we have

by (15)

L(Yn ∩ Vj) ≤ (1 + ε) L(Xn,j) . (23)

As L(Xn,j) satisfies the usual quasi-additive continuous Euclidean properties, it follows from the usual

umbrella theorem that
L(Xn,j)

(pj n)α
→ βd,L

∫

φj(Vj)
gα
j (u) du a.s. (24)

Changing the integration back to µg and using the fact that hj is (1 ± ε)-valued,

pα
j

∫

φj(Vj)
gα
j (u) du =

∫

φj(Vj)
fα(φ−1

j (u)) hα−1
j (φ−1

j (u)) hj(φ
−1
j (u)) du

=

∫

Vj

fα(y) hα−1
j (y) µg(dy) ≤ (1 − ε)α−1

∫

Vj

fα(y) µg(dy) (25)

Combining the upper bound in (22) with (23)-(25), we get:

lim sup
n→∞

L(Yn)

nα
≤ (1 + ε)(1 − ε)α−1

∫

M
fα(y) µg(dy) . (26)

The lower bound implicit in equation (4) follows in a similar way. Start by noticing that, due to (15),

LB(Yn ∩ Vj , Vj) ≥ (1 + ε)−1LB(Xn,j , φj(Vj)) .
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Recall that Vj is a finite intersection of sets Ui with smooth boundary (Ui was constructed to be the inverse

image of a ball trough the smooth transformation φj). So, the set φj(Vj) will have smooth piecewise

boundary and, consequently, will be Jordan measurable. Lemma 2 can now be applied to conclude that:

lim inf
n→∞

LB(Xn,j , φj(Vj))

(pj n)α
≥ βd,L

∫

φj(Vj)
gα
j (u) du a.s.

Repeating the same arguments used above, we have

lim inf
n→∞

L(Yn)

nα
≥ (1 + ε)−1(1 + ε)α−1

∫

M
fα(y) µg(dy) . (27)

Finally, combining equations (26) and (27) and letting ε → 0 establishes Theorem 2.

B. Proof of Theorem 3

Here, we prove Theorem 3 for the case when geodesic distances are estimated using the “ε-rule”

[23]. This rule estimates geodesic distances by running Dijkstra’s shortest path algorithm over the graph

constructed by putting an edge between each point and all points within a fixed radius ε. Of course, for

the algorithm to be consistent as the number of samples n grows, ε has to decrease to 0 as n → ∞.

In particular, our proof shows that εn = o
(

n−ξ/m
)

, for some 0 < ξ < 1, is sufficient to guarantee

consistency.

Proof: [Proof of Theorem 3] According to [23], proving the consistency result expressed by equation

(8) reduces to showing that the “δ-sampling” condition holds with probability one. This condition states

that for all x ∈ M there is a sample xi such that dg(x, xi) ≤ δ.

In the following, we use the same notation as defined in the Sampling Lemma of [23]. In particular,

Bi(δ) is the metric ball in M of radius δ, centered at some point pi; Vmin(δ) is the volume of the smallest

metric ball in M of radius δ. For Riemann submanifolds of R
d without boundary, Vmin(δ) ³ δm; V is

the volume of M; fmin = infy∈M f(y) > 0.

Begin by covering M with a finite family of metric balls of radius δ/2, choosing the centers p1, p2, . . .

such that

pi+1 6∈ ∪i
j=1Bi(δ/2)

and stopping when this is no longer possible. As no two centers pi are within distance δ/2 of each other,

the balls Bi(δ/4) are disjoint and, consequently, at most V/Vmin(δ/4) points can be chosen before the

process terminates.
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The δ-sampling condition will be satisfied if each ball Bi contains at least one sample, as the diameter

of Bi is δ and every x ∈ M belongs to a ball Bi. The probability of this event is:

P (δ-sampling condition holds) ≥ P (no ball Bi is empty) ≥ 1 −
∑

i

P (Bi is empty) . (28)

Under the i.i.d. assumption on the samples, the probability P (Bi is empty) can be computed as:

P (Bi is empty) =

(

1 −

∫

Bi

fdµg

)n

≤ (1 − Vmin(δ/2) fmin)n

≤ exp {−n Vmin(δ/2) fmin} ,

(29)

where the last inequality follows from the inequality log(1−x) ≤ −x. Substituting equation (29) in (28)

and using the asymptotic value for Vmin(δ/2) results in:

P (δ-sampling condition holds) ≥ 1 −
V

Vmin(δ/4)
exp {−n Vmin(δ/2) fmin}

= 1 − C1 V δ−m exp {−C2 fmin n δm} ,

(30)

where C1 and C2 are constants.

Now, choose δ = δn as a function of the number of samples such that δn → 0 and n δm
n → ∞ as

n → ∞. For example, δn = O
(

n−ξ/m
)

, for some 0 < ξ < 1, will satisfy these conditions. Then choose

a sequence εn such that εn → 0 and εn/δn → 0 as n → ∞. For example, εn = o
(

n−ξ/m
)

. Given λ > 0,

there exists an integer n0 such that for all n > n0, εn is small enough to satisfy conditions 5, 6 and 7

of Main Theorem A of [23]. This theorem, together with equation (30), implies that

P

(

max
1≤i,j≤n

i6=j

∣

∣

∣

∣

∣

d̂(Y i, Y j)

dg(Y i, Y j)
− 1

∣

∣

∣

∣

∣

≥ λ

)

≤ C1 V δ−m
n exp {−C2 fmin n δm

n } ,

for n > n0. As the choice of δn implies that
∑

n>n0
δ−m
n exp {−C2 fmin n δm

n } < ∞, the desired result

follows by the Borel-Cantelli Lemma.

C. Proof of Theorem 4

Without loss of generality, assume that M ∈ [0, 1]d. We first prove that Mn,k = Mn,k(Yn), the length

of the longest k-NN link, converges to zero with probability 1.

Given ε > 0, partition [0, 1]d into a finite number of cubes, {Qj}, with edge length at most ε. Let

pj =
∫

Qj∩M
f(y) µg(dy). By the strong law of large numbers, there will be n (pj + o(1)) points in Qj

with probability 1. This implies, for pj > 0, that there exists an integer Nj such that for all n > Nj ,

n (pj + o(1)) ≥ k. Let N = maxj Nj . Ignoring the cubes with pj = 0 (with probability 1 they will have

no points), each cube has at least k points for n > N . This implies that for all n > N , Mn,k < O(ε),

i.e, Mn,k → 0 as n → ∞. With this result in hand, Theorem 4 follows directly by an application of

Corollary 4 from [23].



21

REFERENCES

[1] H. Edelsbrummer, M. Facello, and J. Liang, “On the definition and the construction of pockets on macromolecules,”

Discrete Applied Math., vol. 88, pp. 83–102, 1998.

[2] A.O. Hero, B. Ma, O. Michel, and J. Gorman, “Applications of entropic spanning graphs,” IEEE Signal Processing

Magazine, vol. 19, no. 5, pp. 85–95, October 2002.

[3] A. K. Jain and R. C. Dubes, Algorithms for clustering data, Prentice Hall, Englewood Cliffs, NJ, 1988.

[4] M. Kirby, Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns,

Wiley-Interscience, 2001.

[5] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,”

Science, vol. 290, pp. 2319–2323, 2000.

[6] F. Camastra and A. Vinciarelli, “Estimating the intrinsic dimension of data with a fractal-based method,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 24, no. 10, pp. 1404–1407, October 2002.
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