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ABSTRACT

Populations of measurements of objects such as faces, genes
or internet data traces, lie in lower dimensional manifolds of
their high dimensional embedding spaces, e.g. face images,
gene microarrays, or multivariate time series records. Know-
ing the intrinsic dimension and relative entropy of these man-
ifolds is important for discovering structure, classifying dif-
ferences, or performing dimensionality reduction (compres-
sion). In this paper we apply a new family of entropic graph
methods to the estimation of intrinsic dimension and entropy
of datasets supported on synthetic manifolds and of a high
dimensional dataset of handwritten digits.

1. INTRODUCTION

Several interesting classes of signals arising in diverse fields
such as bioinformatics, image processing or Internet traffic
analysis cannot be characterized by low dimensional statis-
tics. This high dimensional nature of signals as images or
genome sequences, among others, makes them unsuitable to
the most common processing techniques and tools. However,
many real life signals that have high dimensional represen-
tations, and thus appear complex, can actually be explained
by only a few degrees of freedom. This is the case of signals
constrained to lie on a smooth low dimensional submanifold
of a higher dimensional vector space.

Understanding the aforementioned high dimensional
datasets thus requires greatly reducing the dimensionality
and finding intrinsic low dimensional structure. If a sim-
ple physical model generating the data is known, paramet-
ric modeling or PCA techniques can be adopted. However,
when applied to general nonparametric classes of signals,
these methods will result in systematic errors. Recently,
more powerful methods have been proposed in the machine
learning, signal processing and statistics literature. These
include ISOMAP [1], LLE [2], LLP [3] or Hessian eigenmaps
[4].

When characterizing high dimensional signals, two quan-
tities are of interest to us in this paper. One is the intrinsic
dimension of the data, which is given by the dimensionality
of the manifold supporting the data. Although all of the
methods mentioned above require the intrinsic dimension as
an input, it is generally unknown and has to be estimated
from the data. Also of interest is the intrinsic entropy of the
data, which characterizes statistical properties of the data
distribution supported on the manifold.

In this paper, we present two methods, based on en-
tropic graphs [5], aimed at learning the intrinsic dimension
and entropy of high dimensional datasets. They work by
constructing a Geodesic Minimal Spanning Tree (GMST) [6]
or Euclidean k-Nearest Neighbor (k-NN) graph [7] over the
sample points and their total graph weight is used to esti-
mate the quantities of interest. We compare the performance
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of both methods and ISOMAP on a synthetic manifold of
known characteristics. We also present preliminary results
on the analysis of the MNSIT database of handwritten digits
using the proposed methods.

The remainder of the paper is organized as follows. In
Section 2 we define the GMST and k-NN graph and dis-
cuss their asymptotic behavior. In Section 3, the asymptotic
results are used to motivate an algorithm for intrinsic di-
mension and entropy estimation. Experimental results are
reported in Section 4.

2. ENTROPIC GRAPHS ON MANIFOLDS

Let X, = {X1,...,X,} be n independent identically dis-
tributed (i.i.d.) random vectors in a compact subset of R?,
with multivariate Lebesgue density f, which we will also call
random vertices.

By solving certain Euclidean optimization problems on
the set A’,, one can obtain special graph constructions. For
example, the Euclidean minimal spanning tree over X, is the
acyclic graph spanning X, having minimal overall length
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where 7 = T(X,,) is the set of spanning trees over X, e is
an edge (e.g., e = X; — X;,i # j) in the graph T, |e| is the
Euclidean length of e, and v € (0,d) is a power-weighting
constant. Another example is the Euclidean k-NN graph.
Start by defining the (1-)nearest neighbor of X; € X, as

arg | X — X,

max
Xexn\{X;}

and, for general integer k£ > 1, define the k-nearest neighbor
of a point in a similar way. The k-NN graph puts an edge
between each point in X, and its k-nearest neighbors. Let
Ni,i = Nk,i(X,) be the set of k-nearest neighbors of X; in
Xn. The total edge length of the k-NN graph is defined as:
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2.1 Asymptotics in R?

Both the MST and the k-NN graph are part of a large class of
graphs called entropic graphs [5]. Other graphs in this class
include the minimal Euclidean matching graph, the trave-
ling salesman tour or minimal triangulations among others.
This class of graphs exhibits remarkable asymptotic behavior
of its total edge length functional. Specifically, L,(X,)/n%,
where a = (d —)/d, converges with probability one (w.p.1)
to the limit Bq., [pq f*(y)dy, as n — oco. The value of
constant B4, > 0 depends on the graph considered, but
is independent of the distribution of X ;. The quantity that



determines the aforementioned limit is the extrinsic Rényi
a-entropy of the multivariate Lebesgue density f:

HE'(f) =

lialog/Rdfo‘(m)dm. (3)

In the limit when @ — 1 the usual Shannon entropy,
— Jra f( log f(x) de, is obtained.

2.2 Entropic Graphs and Geodesics

Consider now a set of ii.d. random vectors )Y, =
{Y1,...,Y,} that are constrained to lie on a compact
smooth m-dimensional submanifold M of R* (m < d). In
this case, the distribution of Y; is singular with respect to
Lebesgue measure, resulting in a zero limit for L. (X,)/n®.
However, by changing the notion of distance and dominating
measure, the length functionals can provide crucial informa-
tion for dimension and entropy estimation.

When M is a submanifold of R?, the usual Euclidean
distance in R? induces a natural norm on the tangent space
to M, given by the usual Euclidean norm. Using this norm,
it is natural to define the length of a piecewise smooth curve

on M, T':[0,1] = M, as T I'(t)|dt. The geodesic
dzstance between points 'yo,'y1 E ./\/f is the length of the
shortest piecewise smooth curve between the two points:

dm(yo,y1) = inf{l(L) : T(0) = 5, I'(1) = 9.} -

Geodesic distances carry strong information about the
nonlinear manifold M, but their exact computation requires
the knowledge of M, which is not known in advance. How-
ever, it is possible to accurately estimate these distances
based solely on a sample of points in M. One such geodesic
estimator, used in the ISOMAP algorithm, proceeds as fol-
lows. Two methods, called the e-rule and the k-rule [1], are
available for constructing the estimator. The first method
connects each point to all points within some fixed radius e
and the other connects each point to all its k-nearest neigh-
bors. A graph G defining the connectivity of these local
neighborhoods is then used to approximate the geodesic dis-
tance between any pair of points as the shortest path through
G that connects them. This results in an edge matrix whose
(%, 7) entry is the geodesic distance estimate for the (i, j)-th
pair of points.

After the geodesic distances have been estimated, they
can be used to construct new (non-Euclidean) graphs.
Specifically, denote by D the matrix of estimated pairwise
distances between points in V,, and by d(e;;) the estimated
geodesic length of the corresponding edge e;; = Y;—Y ;. De-
fine the GMST as the minimal graph over V), whose length

LgMST(yn) = min
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By using geodesic information, the GMST length functional
encodes global structure about the nonlinear manifold.

On the other hand, the local nature of nearest neighbor
distances circumvents the use of geodesic distances in the
k-NN graph: as the number of sample points increases, the
geodesic NN distances became small enough to be well ap-
proximated by simple Euclidean NN distances. However, the
global manifold structure is still accounted for in the k-NN
graph by summing over all the NN distances of all points.

2.3 Asymptotics in Submanifolds of R¢

For the geodesic graphs defined in the previous subsection,
the asymptotic behavior of L. (},) is no longer determined

by the density of Y'; relative to the Lebesgue measure of R%,

but depends instead on the density of Y'; relative to ug, the
induced measure on M via the manifold’s volume element

(8].

Theorem 1 Let M be a compact m-dimensional submani-
fold of R, with metric structure induced by the usual Eu-
clidean metric of R?. Suppose Y1,...,Y , are i.i.d. random
vectors of M with bounded density f relative to pg. Assume
m > 2,1 <+ <m and define « = (m —y)/m. Then, for
L,(Yn) given by equation (2) or (4), w.p.1,

Ly(Yn)
ey (5)
d<m
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where B,y 1s a constant independent of f and M. Further-
more, the mean length E[Ly(YVrn)] /n® converges to the same
limst.

Now, the quantity that determines the non-zero finite
limit in (5) is the intrinsic Rényi a-entropy of the multivari-
ate density f on M:

HY(f) = m/fw%m) (6)
3. LEARNING INTRINSIC DIMENSION AND
ENTROPY

The asymptotic characterization of the GMST or k-NN
length functional stated in Thm. 1 provides the framework
for developing consistent estimators of both intrinsic dimen-
sion and entropy. The key observation is to note that param-
eter d' in expression (5) indexes the different growth rates in
n that the length functional can have. In particular, only
when d' is equal to the true intrinsic dimension, m, will

Ly(Vn) /n(d’_")/ 4 have a non-zero finite limit, determined
by the intrinsic entropy of the random vectors involved.

Let I, = log L,x(Vn). According to (5), I, has the fol-
lowing approximation
ln=alogn+b+e,, (7)
where
a = (m - 7)/m )
(8)

b= 1og B,y +HSD (F) v/m

and €, is an error residual that goes to zero w.p.1 as n — co.

Using the additive model (7), we propose a simple non-
parametric least squares strategy based on resampling from
the population Y, of points in M. Specifically, let p1,...,pqo,
1 <p1 <...,<pg <n, be @ integers and let N be an
integer that satisfies N/n = p for some fixed p € (0,1].
For each value of p € {p1,...,pq} randomly draw N boot-
strap datasets )5, j = 1,..., N, with replacement, where
the p data points within each )} are chosen from the en-
tire data set ), independently. From these samples com-
pute the emplrical mean of the graph length functionals
L,=N" EJ ", L,k ()%). Now, considering the vector of

observations I = [log Ly, , . - -,log L, ] and using the linear
model (7), one can solve for the linear least squares (LLS) es-
timates &,l; of a, b followed by determination of 7 and H by
inversion of the relations (8). After making a simple large n
approximation, this approach yields the following estimates:

m = round{y/(1 — a)}

% (I; —log ,Bm,,,) . ©)

(Ma9) _
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Figure 1: The GMST (k = 7) and 4-NN graph on 500 sample
points on the 2D-sphere.

The constants B,y in the above estimators depend only
on m, v and the particular entropic graph construction al-
gorithm, e.g., GMST or k-NN. Due to the slow growth of
{Bm,y}m>0 in the large n regime for which the above esti-
mates were derived, [,y is not required for the dimension
estimator. On the other hand, the value of 8, 42 is required
to obtain unbiased estimates of entropy. Bm, is the limit of
the normalized length functional of the corresponding Eu-
clidean entropic graph for a uniform distribution on the unit
cube [0,1]™. As, closed form expressions are not available,
it can be determined by Monte Carlo simulations of the en-
tropic graph length on the unit cube [0, 1]™ for uniform ran-
dom samples. Another approach, in the GMST case, is to
use known approximations and bounds [9].

With regards to computational complexity, the geodesic
free property of the k-NN algorithm makes it computation-
ally inexpensive as compared with other manifold learning
algorithms. In this case, complexity is dominated by deter-
mining nearest neighbors, which can be done in O(nlogn)
time for n sample points. This contrasts with the GMST,
which, as ISOMAP, requires a costly O(n” logn) implemen-
tation of the geodesic pairwise distance estimation step.

4. EXPERIMENTAL RESULTS

We illustrate the performance of the entropic graph algo-
rithm on manifolds of known dimension as well as on a real
high dimensional data set consisting of handwritten digits.
In all the simulations we fixed the parameters v = 1 and
pr=n—@Q,...,po =n—1. With regards to intrinsic di-
mension estimation, we compare our algorithms to ISOMAP.
In ISOMAP, similarly to PCA, intrinsic dimension is usually
estimated by detecting changes in the residual fitting errors
as a function of subspace dimension.

4.1 Hyper-spheres

We first consider the case of the m-dimensional sphere S™
embedded in R™** (Figure 1). This manifold presents some
challenges as it does not satisfy any of the usual isometric
or conformal embedding constraints required by ISOMAP
or Hessian eigenmap [4] among others. We tested the algo-
rithms over 30 generations of uniform random samples over
S™, for m = 2, 3,4 and different sample sizes n, and counted
the number of correct dimension estimates. We note that
in all the simulations ISOMAP always overestimated the in-
trinsic dimension as m + 1. The results for the GMST and
k-NN are shown in Table 1 for different values of the param-
eter Q. As it can be seen, both methods succeed in finding
the correct intrinsic dimension. It can also be noticed that,
as intrinsic dimension increases, the GMST has a slightly

Table 1: Number of correct dimension estimates over 30 tri-
als as a function of the number of samples for hyper-spheres
(N =5).

[Sphere [ @ [ = [ 600 [ 800 ] 1000 | 1200 ]

g2 10 GMST 29 30 30 30
5-NN 30 30 30 30

GMST || 27 | 28 | 28 | 28
s |10 5NN || 27 | 27 | 28 | 28
S GMST || 29 | 30 | 30 | 30
20 5NN || 29 | 30 | 30 30
GMST || 23 | 27 | 20 | 29
. 100 5NN || 23 | 26 | 26 | 26
S GMST || 28 | 30 | 30 | 30
20 5NN || 28 | 30 | 30 | 30

Table 2: Entropy estimates H for S? (n = 600, N = 5,Q =
10).

| | emp. mean [ std. deviation |

GMST 5.4266 0.3514
5-NN 4.7424 0.9737

better performance than the k-NN graph. As the GMST
uses geodesic information to build its estimates, it is able to
learn better the global geometry of the manifold, as opposed
to the more local nature of the k-NN graph.

Table 2 shows the entropy estimates obtained by both
methods on uniform samples supported in S?. The true en-
tropy is Hy/» = 2log(27) = 5.3.

4.2 MNSIT Database of Handwritten Digits

The MNIST database' consists of 256 gray levels images
of handwritten digits obtained by optical character recog-
nition. This publicly available database has became one of
the benchmarks for testing new digit recognition algorithms
[10], containing extensive test and training sets of all digits.
Each digit in the database consists of a 28 x 28 pixels image
that was size normalized and translated so that its center
of mass lies in the center of the image. For the purpose of
dimensionality estimation, we chose the first 1000 samples
of digits 2 and 3 (Figure 4) in the training set. As a real life
high dimensional dataset, its manifold structure and intrinsic
dimension are unknown.

Figure 3 shows the histogram of the dimension estimates
for 30 simulations of both the GMST and k-NN algorithm
applied to the samples of digit 2. Although the histograms
show high variability, the GMST predicts an intrinsic dimen-
sion between 13 and 14, while the k-NN graph predicts the
dimension to be in between 12 and 13. Figure 4 shows the
corresponding residual plot used by ISOMAP to estimate
intrinsic dimension. Even though it is not obvious how to
assign a single dimension estimate from this plot - one of the
main disadvantages of using spectral methods to estimate
dimension - it is clear that the dataset should be at most
10-dimensional, as the residual variance ceases to decrease
significantly after that value. The difference between the es-
timates predicted by entropic graphs and ISOMAP might be
justified by the isometric assumption required by ISOMAP.
The digits database contains nonlinear transformations, such
as width distortions of each digit, that are not described by
isometries. As consequence, ISOMAP underestimated these
extra degrees of freedom, resulting in a lower dimension es-
timate than the entropic graphs, that are valid for a broader

Thttp://yann.lecun.com/exdb/mnist/
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Figure 2: Samples from digits 2 and 3 of MNIST database.

Figure 3: Histogram of intrinsic dimensionality estimates
for digit 2 in the MNIST database: (a) GMST; (b) 5-NN
(N =10, Q=15).

class of manifolds.

Table 3 displays the results of applying the entropic
graphs to both digits, where the last column shows the re-
sults of processing both digits simultaneously.

5. CONCLUSION

We have applied entropic graph methods to the problem of
estimating intrinsic dimension and entropy of high dimen-
sional datasets constrained to lie on a manifold. In partic-
ular, our first results on a database of handwritten digits
reveals interesting consequences: the low dimensionality of
this dataset, as predicted by the proposed methods, con-
trasts with the complex state of the art classifiers developed
for digit recognition [10], that require learning hundreds or

- digit2
\ —< digit 3
osf\| A digits 2+3

Residual variance

8 0
ISOMAP dimensionality

Figure 4: ISOMAP (k = 6) residual variance for digits 2 and
3 in the MNIST database.

Table 3: Dimension estimates 7 for digits 2 and 3 in the
MNIST database.

| | digit 2 | digit 3 | digit 2+3 |
GMST 13 12 13
5-NN 12 11 12

even thousands of parameters/degrees of freedom.

Future work includes the development of bias correction
mechanisms to improve the bootstrapping resampling step
of the algorithm.
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