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Abstract— We propose a new algorithm that simultaneously
estimates the intrinsic dimension and intrinsic entropy of random
data sets lying on smooth manifolds. The method is based
on asymptotic properties of entropic graph constructions. In
particular, we compute the Euclidean

�
-nearest neighbors (

�
-

NN) graph over the sample points and use its overall total edge
length to estimate intrinsic dimension and entropy. The algorithm
is validated on standard synthetic manifolds.

I. INTRODUCTION

Several interesting classes of signals arising in fields such
as bioinformatics, image processing or Internet traffic analysis
live in high dimensional vector spaces. It is well known that
both computational complexity and statistical performance of
most algorithms quickly degrades as dimension increases. This
phenomenon, usually known as curse of dimensionality, makes
it impracticable to process such high dimensional data sets.
However, many real life signals do not fill the space entirely
but are constrained to lie on a smooth low dimensional non-
linear manifold embedded in the high dimensional space. Ma-
nifold learning is concerned with the problem of discovering
low dimensional structure based on a set of observed high
dimensional sample points on the manifold.

In the recent past, manifold learning has received substantial
attention from researchers in machine learning, computer
vision, signal processing and statistics [1]–[4]. This is due to
the fact that effectively solving the manifold learning problem
can bring considerable improvement to the solution of such
diverse problems as: feature extraction in pattern recognition;
multivariate density estimation and regression in statistics; data
compression and coding in information theory; visualisation of
high dimensional data; or complexity reduction of algorithms.
Several techniques for recovering the low dimensional struc-
ture of high dimensional data have been proposed. These range
from: linear methods as principal components analysis (PCA)
[5] and classical multidimensional scaling (MDS) [6]; local
methods as linear local imbedding (LLE) [1], locally linear
projections (LLP) [7], and Hessian eigenmaps [4]; and global
methods as ISOMAP [2].

One common step to the manifold reconstruction algorithms
mentioned above is that all require the explicit knowledge
of the intrinsic dimension of the manifold. In many real life
applications, this parameter cannot assumed to be known and
has to be estimated from the data. A frequent way of doing
this is to use linear projection techniques ([5]): a linear map is
explicitly constructed and dimension is estimated by applying
PCA, factor analysis, or MDS to analyze the eigenstructure

of the data. These methods rely on the assumption that
only a small number of the eigenvalues of the (processed)
data covariance will be significant. Linear methods tend to
overestimate the intrinsic dimension as they don’t account for
non-linearities in the data. Both nonlinear PCA [3] methods
and the ISOMAP circumvent this problem but they still rely on
unreliable and costly eigenstructure estimates. Other methods
have been proposed based on local geometric techniques, e.g.,
estimation of local neighborhoods [8] or fractal dimension [9],
and estimating packing numbers [10] of the manifold.

The closely related problem of estimating the manifold’s
intrinsic entropy arises if the data samples are drawn from
a multivariate distribution supported on the manifold. When
the distribution is absolutely continuous with respect to the
Lebesgue measure restricted to the lower dimensional ma-
nifold, this intrinsic entropy can be useful for exploring
data compression over the manifold or, as suggested in [11],
clustering of multiple sub-populations on the manifold.

The goal of this paper is to develop an algorithm that jointly
estimates both the intrinsic dimension and intrinsic entropy
on the manifold, without knowing the manifold description,
given only a set of random sample points. Our approach is
based on entropic graph methods; see [11] for an overview.
Specifically: construct the Euclidean � -nearest neighbors ( � -
NN) graph over all the sample points and use its growth rate to
estimate the intrinsic dimension and entropy by simple linear
least squares and method of moments procedure. This method
shares with the geodesic minimal spanning tree (GMST)
method introduced by us in previous work [12], the simplicity
of avoiding the reconstruction of the manifold or estimating
the multivariate density of the samples. However, it has the
main advantage of reducing runtime complexity by an order
of magnitude and is applicable to a wider class of manifolds.

The remainder of the paper is organized as follows. In
Section II we discuss the asymptotic behavior of the � -NN
graph on a manifold and the approximation of � -NN geodesic
distances by the corresponding Euclidean distances. The pro-
posed algorithm is described in Section III. Experimental
results are reported in Section IV.

The theoretical results introduced in this paper are presented
without proof due to space limitations. The corresponding
proofs can be found in [13].

II. THE � -NN GRAPH

Let �������
	�����������	���� be � independent and identically
distributed (i.i.d.) random vectors with values in a compact



subset of ��� . The ( � -)nearest neighbor of 	�� in ��� is given
by ���
	 ��������������������� ��� 	��	 �"! 
where distances between points are measured in terms of some
suitable distance function

�#�%$  $ ! . For general integer �'&(� ,
the � -nearest neighbor of a point is defined in a similar way.
The � -NN graph puts an edge between each point in � � and
its � -nearest neighbors. Let )+*-, � �.)/*-, � � � � ! be the set of
� -nearest neighbors of 	 � in � � . The total edge length of the
� -NN graph is defined as:0�1 , * � ����! � �2 �43 � 2�5�7698�: � � 1 � 	 �	 �"!  (1)

where ;=<?> is a power weighting constant.
If
��� 	 �@A! �CB 	EDF@'B , where B $ B is the usual Euclidean

(
0HG

) norm in � � , then the � -NN graph falls under the
framework of continuous quasi-additive Euclidean functionals
[14]. As a consequence, its almost sure (a.s.) asymptotic
behavior (also convergence in the mean) follows easily from
the umbrella theorems for such graphs:

Theorem 1 ([14, Theorem 8.3]): Let 	 ����������	�� be i.i.d.
random vectors with values in a compact subset of � � and
Lebesgue density I . Let

� &KJ , �MLN;PO � and define Q���R� DA;S!�T � . ThenUWV �
��X�Y 0�1 , * � ���Z!�\[ � ] � , 1 , *_^ I [ ��` !ba ` c � d � 

where
0�1 , * � ����! is given by equation (1) with Euclidean dis-

tance, and ] � , 1 , * is a constant independent of I . Furthermore,
the mean length e f 0g1 , * � ���Z!ih�T � [ converges to the same limit.

The integral factor j�I [ in the a.s. limit is a monotonic
function of the extrinsic Rényi Q -entropy of the multivariate
Lebesgue density I :kmlSn[ � Io! � ��pDqQ UWr 	 ^ l n I [ ��` !ba ` � (2)

In the limit, when Qts � the usual Shannon entropy,D j l n I �R` ! U4r 	 I �R` !ba ` , is obtained.
Assume now that u ��� �-@ � ��������@ � � is constrained to

lie on a compact smooth v -dimensional manifold w . The
distribution of @A� becomes singular with respect to Lebesgue
measure and an application of Theorem 1 results in a zero
limit for the length functional of the � -NN graph. However,
this behavior can be modified by changing the way distances
between points are measured. For this purpose, we use the
framework of Riemann manifolds.

A. Random Points in a Riemann Manifold

Given a smooth manifold w , a Riemann metric x is a
mapping which associates to each point y{z(w an inner
product x�| �%$  $ ! between vectors tangent to w at y [15]. A
Riemann manifold

� w }xZ! is just a smooth manifold w with
a given Riemann metric x . As an example, when w is a

submanifold of the Euclidean space �g� , the naturally induced
Riemann metric on w is just the usual dot product between
vectors.

For any tangent vector ~ to w at y , we can define its norm
as B ~gB � | �Px | � ~ �~\! . Using this norm, it is natural to define the
length of a piecewise smooth curve on w , � �_f > ���h_s�w ,
as � � ��! ��j �� B-���� � ��� !�B � | a � . The geodesic distance between
points y � �y � z.w is the length of the shortest piecewise
smooth curve between the two points:� � � y � %y � ! � V4�b�� ��� � ��!H��� � >�! ��y � �� � �-! ��y � � �

Given the geodesic distance, one can construct a geodesic
� -NN graph on u � by computing the nearest neighbor rela-
tions between points using

� � instead of the usual Euclidean
distance. Consequently, we define the total edge length of this
new graph as

0g1 , * � u �#! , where
0g1 , * � u ��! is given by (1) with

the correspondence
� s � � .

We can now extend Theorem 1 to general compact Riemann
manifolds. This extension, Theorem 2 bellow, states that the
asymptotic behavior of

0 1 , * � u � ! is no longer determined
by the density of @ � relative to the Lebesgue measure of� � , but depends instead on the the density of @ � relative
to � � , the induced measure on w via the volume element [15].

Theorem 2: Let
� w }xZ! be a compact Riemann v -

dimensional manifold. Suppose @ � ��������@ � are i.i.d. random
elements of w with bounded density I relative to �\� . Let0�1 , * be the � -NN graph with lengths computed using the
geodesic distance

� � . Assume v�&PJ , ��L�;=O'v and defineQ � � v�D=;S!�T�v . Then,U4V �
��X�Y 0g1 , * � u ��!� [ ��]#� , 1 , *�^b� I [ � y�!��o� � aZy_! c � d �  (3)

where ]�� , 1 , * is a constant independent of I and
� w %xb! .

Furthermore, the mean length e f 0H1 , * � u ��!�h�T � [ converges to
the same limit.

Now, the integral factor in the a.s. limit of (3) is a monotonic
function of the intrinsic Rényi Q -entropy of the multivariate
density I on w :kq� � , ���[ � Io! � ��pD�Q U4r 	 ^���I [ � y�!�� � � aby_! � (4)

An immediate consequence of Theorem 2 is that, for knownv ,  k � � , ���[ � u �#! � v ;{¡ UWr 	 0g1 , * � u ��!� � �£¢ 1 �R¤
� D UWr 	 ]#� , 1 , *¦¥ (5)

is an asymptotically unbiased and strongly consistent estimator
of the intrinsic Q -entropy

k � � , �§�[ � Io! .
The intuition behind the proof of Theorem 2 comes from the

fact that a Riemann manifold w , with associated distance and
measure, looks locally like � � with Euclidean distance and
Lebesgue measure. This implies that on small neighborhoods
of the manifold the total edge length

0H1 , * � u ��! behaves like a
Euclidean length functional. As w is assumed compact, it can



be covered by a finite number of such neighborhoods. This
fact, together with subadditive and superadditive properties
[14] of

0g1 , * , allows for repeated applications of Theorem 1
resulting in (3).

B. Approximating Geodesic � -NN Distances

Assume now that w � � � . In the manifold learning
problem, w (or any representation of it) is not known in
advance. Consequently, the geodesic distances between points
on w cannot be computed exactly and have to be estimated
solely from the data samples. In the GMST algorithm [12] (or
the ISOMAP [2]), this is done by running a costly optimization
algorithm over a global graph of “neighborhood relations”
among all points.

Unlike the MST, the � -NN graph is only influenced by
local distances. For fixed � , the maximum nearest neighbor
distance of all points in u � goes to zero as the number �
of samples increases. For � sufficiently large, this implies
that the � -NN of each point will fall in a neighborhood of
the manifold where geodesic curves are well approximated
by the corresponding straight lines between end points. This
suggests using simple Euclidean � -NN distances as surrogates
for the corresponding true geodesic distances. In fact, we
prove that the geodesic � -NN distances are uniformly well
approximated by the corresponding Euclidean � -NN distances
in the following sense:

Theorem 3: Let
� w }xZ! be a compact Riemann submani-

fold of � � . Suppose @ ���������
@ � are i.i.d. random vectors ofw . Then, with probability 1,�5����� � � ������ 8§: �
	�� �� ���� B @ Dq@=��B� � � @ �@ � ! D'� ���� s > as � s�� � (6)

III. JOINT INTRINSIC DIMENSION/ENTROPY ESTIMATION

Let

 0�1 , * � u �#! be the total edge length of the Euclidean
� -NN graph over u � . Its asymptotic behavior is a simple
consequence of Theorems 2 and 3:

Corollary 4: Let
� w }xZ! be a compact Riemann v -

dimensional submanifold of � � . Suppose @ � ��������@ � are
i.i.d. random vectors of w with bounded density I relative to� � . Assume v�& J , ��L?; O?v and define Q � � vCDA;o!
T v .
Then,UWV �
��X�Y

 0�1 , * � u ��!
� [ � ] � , 1 , *_^ � I [ � y�!�� � � aby�! c � d �  (7)

where ] � , 1 , * is a constant independent of I and
� w }xZ! .

Furthermore, the mean length e �  0 1 , * � u � !��gT � [ converges
to the same limit.

We are now ready to apply this result to jointly estimate
intrinsic dimension and entropy. The key is to notice that the
growth rate of the length functional is strongly dependent onv while the constant in the convergent limit is equal to the
intrinsic Q -entropy. We use this strong growth dependence

as a motivation for a simple estimator of v . Define � ���UWr 	  0g1 , * � u ��! . According to Corollary 4, � � has the following
approximation

� � � cqUWr 	 ��������� �  (8)

where c � � vCDA;o!
T v � � UWr 	 ]#� , 1 , * � ;ST�v kq� � , ���[ � Io!  (9)Q � � v D=;o!
T v and � � is an error residual that goes to zero
a.s. as � s�� .

Using the additive model (8), we propose a simple non-
parametric least squares strategy based on resampling from
the population u � of points in w . Specifically, let � ���������
��� ,��L�� �(O �������O �!� L � , be " integers and let #
be an integer that satisfies # T�� �%$ for some fixed $ z� > ���h . For each value of �.z �&� �
�������'�!� � randomly draw# bootstrap datasets u)(* , + �E� �������,# , with replacement,
where the � data points within each u-(* are chosen from the
entire data set u � independently. From these samples compute
the empirical mean of the � -NN length functionals .0 * �# ¢ �0/21( 3 �

 0 1 , * � u)(* ! . Defining . 3 � f UWr 	 .0 * � ������� U4r 	 .0 * � h54
we write down the linear vector model

. 3 �76 ¡ c � ¥ �8� (10)

where 6 � ¡ UWr 	 ��� ����� UWr 	 �!�� ����� � ¥ 4 �
We now take a method-of-moments (MOM) approach in
which we use (10) to solve for the linear least squares (LLS)
estimates

 c   � of
c &� followed by inversion of the relations (9).

After making a simple large � approximation, this approach
yields the following estimates: v � round ��;\T � �9D  c ! � kq� � , ���[ �

 v ;:9
 
�HD U4r 	 ]<;� , 1 , *>= � (11)

The importance of constants ] � , 1 , * is different whether
dimension or entropy estimation is considered. On one hand,
due to the slow growth of �-]�� , 1 , * �-�@? � in the large � regime
for which the above estimates were derived, ]o� , 1 , * is not
required for the dimension estimator. On the other hand, the
value of ]�� , 1 , * is required for the entropy estimator to be
unbiased. From the proof of Theorem 2, it comes out that]#� , 1 , * is the limit of the normalized length functional of the
Euclidean � -NN graph for a uniform distribution on the unit
cube f > 7�¦h � . As closed form expressions are not available, this
constant must be determined by Monte Carlo simulations of
the � -NN length on the corresponding unit cube for uniform
random samples. We note, however, that in many applications
all that is required is the knowledge of the entropy up to a
constant. For example, when maximum or minimum entropy
is used as a discriminant on several data sets [11], only the
relative ordering of the entropies is important.
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Fig. 1. The Swiss roll manifold and corresponding � -NN graph on 400
sample points.
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Fig. 2. Log-log plot of the average � -NN length ���� for the Swiss roll
manifold and its least squares linear fit, for ���
	���� sample points, ����
and ����� . The estimated slope is �� ����� ����� which implies �� ��� .

Finally, the complexity of the algorithm is dominated by
the search of nearest neighbors in the Euclidean metric.
Using efficient constructions such as K-D trees, this task can
be performed in � � � UWr 	 �\! time for � sample points. This
contrasts with both the GMST and ISOMAP that require
a costly � � � G UWr 	 �\! implementation of a geodesic pairwise
distance estimation step.

IV. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed � -NN algo-
rithm on manifolds of known dimension. In all the simulations
we used ; � � and � � ��� D "������� 
� � � � D/� . With regards
to intrinsic dimension estimation, we compare our algorithm to
ISOMAP. In ISOMAP, similarly to PCA, intrinsic dimension is
usually estimated by looking at the residual errors as a function
of subspace dimension.

A. Swiss Roll

The first manifold considered is the standard J -dimensional
Swiss roll surface [2] embedded in ��� (Fig. 1). Fig. 2 shows
a log-log plot of the average � -NN length .0 � as a function of
the number of samples. The good agreement between .0 � and
its least squares linear fit confirms the large sample behavior
predicted by Corollary 4 and shows evidence in favor of linear
model (8).

To compare the dimension estimation performance of the
� -NN method to ISOMAP we ran a Monte Carlo simulation.

For each of several sample sizes, ��> independent sets of i.i.d.
random vectors uniformly distributed on the surface were
generated. We then counted the number of times that the
intrinsic dimension was correctly estimated. To automatically
estimate dimension with ISOMAP, we look at its eigen-
value residual variance plot and try to detect the “elbow” at
which residuals cease to decrease “significantly” as estimated
dimension increases [2]. This is implemented by a simple
minimum angle threshold rule. Table I shows the results of
this experiment. As it can be observed, the � -NN algorithm
outperforms ISOMAP for small sample sizes.

B. Hyper-spheres

A more challenging problem is the case of the v -
dimensional sphere � � (embedded in � �! � ). This manifold
does not satisfy any of the usual isometric or conformal
embedding constraints required by ISOMAP or other methods
like C-ISOMAP [16] and Hessian eigenmap [4]. Once again,
we tested the algorithm over 30 generations of uniform random
samples over � � , for v � J "� "# and different sample sizes
� , and counted the number of correct dimension estimates. We
note that in all the simulations ISOMAP always overestimated
the intrinsic dimension as v � � . The results for � -NN are
shown in Table II for different values of the parameter " .
As it can be seen, the � -NN method succeeds in finding the
correct intrinsic dimension. However, Table II also shows that
the number of samples required to achieve the same level of
accuracy increases with the manifold dimension. This is the
usual curse of dimensionality phenomenon: as the dimension
increases, more samples are needed for the asymptotic regime
in (7) to settle in and validate the limit in Corollary 4.

C. Hyper-planes

We also investigate v -dimensional hyper-planes in � �! �
for which PCA methods are designed. We consider hyper-
planes of the form $ ��� ����� �%$#�! � ��> . Table III shows the
results of running a Monte Carlo simulation under the same
conditions as in the previous subsections. Unlike the ISOMAP,

TABLE I
NUMBER OF CORRECT DIMENSION ESTIMATES OVER ��� TRIALS AS A

FUNCTION OF THE NUMBER OF SAMPLES FOR THE SWISS ROLL
MANIFOLD.

� ����� �&��� '����
ISOMAP ( �(�*) ) 18 29 30

� -NN ( ������+-,.�*/ ) 29 30 30

TABLE II
NUMBER OF CORRECT DIMENSION ESTIMATES OVER 30 TRIALS AS A
FUNCTION OF THE NUMBER OF SAMPLES FOR HYPER-SPHERES, �!�*�

NEIGHBORS, �0�*� .
Sphere � 600 800 1000 1200132 ,.��/ 30 30 30 30154 ,.��/ 27 27 28 281 4 ,.�
67/ 29 30 30 30158 ,.��/ 23 26 26 261 8 ,.�
67/ 28 30 30 30



TABLE III
NUMBER OF CORRECT DIMENSION ESTIMATES OVER 30 TRIALS AS A
FUNCTION OF THE NUMBER OF SAMPLES FOR HYPER-PLANES, � �.)

NEIGHBORS.

Hyper-plane
dimension

� '���� 	���� 67����� 67�����
� �0�*��+ , � / 30 30 30 30

� �0�*��+ , � / 27 27 28 28
� � � 67��+-, � 6 � 30 30 30 30

� � � 67��+-, � 6 � 22 23 26 26
� � � 67��+-, � 67/ 24 26 28 28
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Fig. 3. Real valued intrinsic dimension estimates and histogram for the � -D
hyper-plane, for � � �&��� sample points, �!��� , � �
67� and ,.� 6 � .

which was observed to correctly predict the dimension for all
sample sizes investigated, the � -NN method has a tendency to
underestimate the correct dimension at smaller sample sizes.
This fact can be observed in Fig. 3. The first column shows the
real valued estimates of the intrinsic dimension, i.e., estimates
obtained before the rounding operation in (11). Any value
that falls in between the dashed lines will then be rounded
to the middle point. The second column of Fig. 3 shows the
histogram for these rounded estimates over the 30 simulations
trial. We believe that the resampling strategy of the algorithm
may be responsible for this underestimation. Several methods
for improving the performance of the � -NN algorithm are
currently under investigation.

D. Full Dimensional Uniform Samples on the Unit Cube

Finally, we consider uniformly distributed samples on the
full dimensional unit cube f > 7�¦h � � � � . The results sum-
marized by Table IV are similar to those for hyper-planes
in the previous subsection. ISOMAP correctly estimated the
dimensionality of the data for all sample sizes.

V. CONCLUSION

We have introduced a novel method for intrinsic dimension
and entropy estimation based on the growth rate of the Eu-
clidean � -NN graph length functional. The proposed algorithm
is applicable to a wider class of manifolds than previous
methods and has reduced computational complexity. We have
validated the new method by testing it on synthetic manifolds
of known dimension.

TABLE IV
NUMBER OF CORRECT DIMENSION ESTIMATES OVER 30 TRIALS AS A

FUNCTION OF THE NUMBER OF SAMPLES FOR FULL DIMENSIONAL
UNIFORM DISTRIBUTION, �!��) NEIGHBORS

Unit cube � 600 800 1000 1200� ��+ 6�� 4 � ����+-,.��/ 26 27 27 27� ��+ 6�� 4 �0�
67��+-,.� 6 � 30 30 30 30� ��+ 6�� 8 �0�
67��+-,.� 6 � 24 25 26 26� ��+ 6�� 8 �0�
67��+-,.� 67/ 27 28 29 29

In order to improve the performance of the derived estima-
tors, a better understanding of the statistics of the error term
in the linear model (8) would be important. Also of great
interest is the study of the effect of additive noise on the
manifold samples. With regards to applications, we plan to
test the proposed algorithm on databases of faces, handwritten
digits and genetic data.
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[10] B. K égl, “Intrinsic dimension estimation using packing numbers,” in
Neural Information Processing Systems: NIPS, Vancouver, CA, Dec.
2002.

[11] A.O. Hero, B. Ma, O. Michel, and J. Gorman, “Applications of entropic
spanning graphs,” IEEE Signal Processing Magazine, vol. 19, no. 5, pp.
85–95, October 2002.

[12] J. A. Costa and A. O. Hero, “Geodesic minimal spanning trees for
dimension and entropy estimation in manifold learning,” IEEE Trans.
on Signal Processing, 2003, under revision.

[13] J. A. Costa and A. O. Hero, “Manifold learning using Euclidean � -
neartest neighbor graphs,” in preparation, 2003.

[14] J. E. Yukich, Probability theory of classical Euclidean optimization
problems, vol. 1675 of Lecture Notes in Mathematics, Springer-Verlag,
Berlin, 1998.

[15] M. Carmo, Riemannian geometry, Birkhäuser, Boston, 1992.
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