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Abstract

This report is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample ofn points from a general multivariate Lebesgue densityf over [0, 1]d. It is known
that under broad conditions, when the functional applies power exponentγ ∈ (1, d) to the graph edge
lengths, the log of the functional normalized byn(d−γ)/d is a strongly consistent estimator of the Rényi en-
tropy of orderα = (d−γ)/d. In this paper, we investigate almost sure (a.s.) andLκ-norm (r.m.s. forκ = 2)
convergence rates of this functional. In particular, when1 ≤ γ ≤ d − 1, we show that over the space of
compacted supported multivariate densitiesf such thatf ∈ Σd(β, L) (the space of Holder continuous func-
tions),0 < β ≤ 1, theLκ-norm convergence rate is bounded above byO

(
n−αβ/(αβ+1) 1/d)

)
. We obtain

similar rate bounds for minimal graph approximations implemented by a progressive divide-and-conquer
partitioning heuristic. We also obtain asymptotic lower bounds for the respective rates of convergence,
using minimax techniques from nonparametric function estimation. In addition to Euclidean optimization
problems, these results have application to non-parametric entropy and information divergence estimation;
adaptive vector quantization; and pattern recognition.
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1 Introduction

It has long been known that, under the assumption ofn independent identically distributed (i.i.d.) vertices in[0, 1]d,

the suitably normalized weight function of certain minimal graphs overd-dimensional Euclidean space converges almost

surely (a.s.) to a limit which is a monotone function of the Rényi entropy of the multivariate densityf of the random

vertices. Recall that the Ŕenyi entropy orα-entropy is defined as

Hα(f) =
1

1− α
log

∫
fα(x)dx .

Graph constructions that satisfy this convergence property include: the minimal spanning tree (MST),k-nearest neighbors

graph (k-NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted variants.

See the recent books by Steele [1] and Yukich [2] for introduction to this subject. AnO(n−1/d) bound on the almost sure

(a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained by Redmond

and Yukich [3, 4] when the vertices are uniformly distributed over[0, 1]d.

In the present report we obtain bounds on a.s. andLκ-norm (r.m.s. forκ = 2) convergence rates of power-weighted

Euclidean weight functionals of orderγ for general Lebesgue densitiesf over[0, 1]d, for whichf ∈ Σd(β, L), the space of

Holder continuous functions,0 < β ≤ 1, andf
1
2− γ

d is integrable. Here the dimensiond is greater than one andγ ∈ (1, d)

is an edge exponent which is incorporated in the weight functional to taper the Euclidean distance between vertices of

the graph (see next section for definitions). As a special case of Proposition 5, we obtain aO
(
n−αβ/(αβ+1) 1/d)

)
bound

on the r.m.s. convergence. This bound implies a slower rate of convergence than the analogousO(n−1/d) rate bound

proven for uniformf by Redmond and Yukich [3, 4]. Furthermore, the rate constants derived here suggest that slower

convergence occurs when either the (Rényi) entropy of the underlying densityf or the constantL is large. We also derive

lower bounds to the respective convergence rates by recasting the problem as that of estimating the Rényi entropy, or

equivalently
∫

fα(x)dx, over the non-parametric class of densitiesf ∈ Σd(β, L). For this, we use standard minimax

techniques from non-parametric function estimation.

We also obtainLκ-norm convergence rate bounds for partitioned approximations to minimal graphs implemented

by the following fixed partitioning heuristic: 1) dissect[0, 1]d into a set ofmd cells of equal volumes1/md; 2) compute

minimal graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation

to the minimal graph spanning all of the points in[0, 1]d. Such heuristics have been widely adopted, e.g. see Karp [5],
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Ravi et al. [6], and Hero and Michel [7], for examples. The computational advantage of this partitioned heuristic comes

from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linear inn: the

partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer

thann points. In Proposition 6 we obtain bounds onLκ-norm convergence rate and specify an optimal “progressive-

resolution sequence”m = m(n), n = 1, 2, . . ., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing

applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [8, 9, 7, 10].

Beyond the signal processing applications mentioned above these results may have important practical implications in

adaptive vector quantizer design, where the Rényi entropy is more commonly called the Panter-Dite factor and is related

to the asymptotically optimal quantization cell density [11, 12]. Furthermore, as empirical versions of vector quantization

can be cast as geometric location problems [13], the asymptotics of adaptive VQ may be studied within the present

framework of minimal Euclidean graphs.

The outline of this report is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework of

continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate upper bounds for such

functionals with general Holder continuous densityf . In Section 4 we extend these results to partitioned approximations.

In Section 5 we derive lower bounds to the convergence rates. In Section 6 we make a brief comment about nonparametric

estimation of the Ŕenyi entropy. Finally, in section 7 we digress about the characterization of a density from itsα-entropy,

when the later is regarded as a function ofα. We also give an extension of the convergence rate upper bounds to densities

in a Sobolev class in Appendix B.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function

of a minimal graph such as the MST and the TSP over i.i.d. random pointsXn = {X1, . . . , Xn} asn →∞ has been of

great interest. The monographs by Steele [1] and Yukich [2] provide two engaging presentations of ensuing research in this

area. Many of the convergence results have been encapsulated in the general framework of continuous and quasi-additive

Euclidean functionals recently introduced by Redmond and Yukich [3]. This framework allows one to relatively simply
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obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required continuity and

subadditivity properties. We follow this framework in this paper.

Let F be a finite subset of points in[0, 1]d, d ≥ 2. A real-valued functionLγ defined onF is called aEuclidean

functional of orderγ if it is of the form

Lγ(F ) = min
E∈E

∑

e∈E

|e(F )|γ (1)

whereE is a set of graphs, e.g. spanning trees over the points inF , e is an edge in the graph,|e| is the Euclidean length

of e, andγ is called theedge exponentor power-weighting constant. We assume throughout this paper that0 < γ < d.

2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalLγ(Xn) of a minimal graph on[0, 1]d is a continuous quasi-additive functional if it can be closely

approximated by the the sum of the weight functionals of minimal graphs constructed on a dense partition of[0, 1]d.

Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),

and thek-nearest neighbor graph (k-NNG). In the TSP the objective is to find a graph of minimum weight among the set

C of graphs that visit each point inXn exactly once. The resultant graph is called theminimal TSP tourand its weight

is LTSP
γ (Xn) = minC∈C

∑
e∈C |e|γ . Construction of the TSP graph is NP-hard and arises in many different areas of

operations research [14]. In the MST problem the objective is to find a graph of minimum weight among the graphsT

which span the sampleXn. This problem admits exact solutions which run in polynomial time and the weight of the

MST is LMST
γ (Xn) = minT∈T

∑
e∈T |e|γ . MST’s arise in areas including: pattern recognition [15]; clustering [16];

nonparametric regression [17] and testing for randomness [18]. Thek-NNG problem consists of finding the setNk,i of

k-nearest neighbors of each pointXi in the setXn − {Xi}. This problem has exact solutions which run in linear-log-

linear time and the weight isLk−NNG
γ (Xn) =

∑n
i=1

∑
e∈Nk,i

|e|γ . Thek-NNG arises in computational geometry [19],

clustering and pattern recognition [20], spatial statistics [21], and adaptive vector quantization [22].

The following technical conditions on a Euclidean functionalLγ were defined in [3, 2].

• Null condition: Lγ(φ) = 0, whereφ is the null set.

• Subadditivity: Let Qm = {Qi}md

i=1 be a uniform partition of[0, 1]d into md subcubesQi with edges parallel to
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the coordinate axes having edge lengthsm−1 and volumesm−d and let{qi}md

i=1 be the set of points in[0, 1]d that

translate eachQi back to the origin such thatQi − qi has the formm−1[0, 1]d. Then there exists a constantC1

with the following property: for every finite subsetF of [0, 1]d

Lγ(F ) ≤ m−γ
md∑

i=1

Lγ (m[F ∩Qi − qi]) + C1m
d−γ (2)

• Superadditivity: For the same conditions as above onQi, m, andqi, there exists a constantC2 with the following

property:

Lγ(F ) ≥ m−γ
md∑

i=1

Lγ (m[F ∩Qi − qi])− C2m
d−γ (3)

• Continuity: There exists a constantC3 such that for all finite subsetsF andG of [0, 1]d,

|Lγ(F ∪G)− Lγ(F )| ≤ C3(card(G))(d−γ)/d, (4)

where card(G) is the cardinality of the subsetG. Note that continuity implies

|Lγ(F )− Lγ(G)| ≤ 2C3(card(F 4G))(d−γ)/d, (5)

whereF 4G = (F ∪G)− (F ∩G) denotes the symmetric difference of setsF andG.

The functionalLγ is said to be acontinuous subadditive functionalof orderγ if it satisfies the null condition, sudad-

ditivity and continuity.Lγ is said to be acontinuous superadditive functionalof orderγ if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionalsLγ on [0, 1]d there exists adual superadditive functionalL∗γ . The dual

functional satisfies two properties: 1)Lγ(F ) + 1 ≥ L∗γ(F ) for every finite subsetF of [0, 1]d; and, 2) for i.i.d. uniform

random vectorsU1, . . . , Un over[0, 1]d,

∣∣E[Lγ(U1, . . . , Un)]− E[L∗γ(U1, . . . , Un)]
∣∣ ≤ C4n

(d−γ−1)/d (6)

with C4 a finite constant. The condition (6) is called theclose-in-mean approximationin [2].

A stronger condition which is useful for showing convergence of partitioned approximations is thepointwise closeness

condition

∣∣Lγ(F )− L∗γ(F )
∣∣ ≤ o

(
[card(F )](d−γ)/d

)
, (7)
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for any finite subsetF of [0, 1]d.

A continuous subadditive functionalLγ is said to be acontinuous quasi-additive functionalif Lγ is continuous sub-

additive and there exists a continuous superadditive dual functionalL∗γ . We point out that the dualL∗γ is not uniquely

defined. It has been shown by Redmond and Yukich [4, 3] that the boundary-rooted version ofLγ , namely, one where

edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite

property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [2, 3] almost sure limits with a convergence rate upper bound ofO
(
n−1/d

)
were obtained for continuous quasi-

additive Euclidean functionalsLγ(U1, . . . , Un) under the assumption of uniformly distributed pointsU1, . . . , Un and

an additional assumption thatLγ satisfies the “add-one bound”

• Add-one bound:

| E[Lγ(U1, . . . , Un+1)]− E[Lγ(U1, . . . , Un)] | ≤ C5n
−γ/d. (8)

The MST length functional of orderγ satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds whenLγ is merely continuous quasi-additive [2, Ch. 5]. Then−1/d convergence rate bound is exact ford = 2.

3 Convergence Rate Upper Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesgue densityf ∈ Σd(β, L). For

convenience we will focus on the case thatLγ is continuous quasi-additive and satisfies the add-one bound, although

some of the following results can be established under weaker assumptions. Our method of extension follows common

practice [23, 1, 2]: we first establish convergence rates of the meanE[Lγ(X1, . . . , Xn)]/n(d−γ)/d for piecewise constant

densities and then extend to arbitrary densities. Then we use a concentration inequality to obtain a.s. andLκ-norm

convergence rates ofLγ(X1, . . . , Xn)/n(d−γ)/d.

3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.
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Lemma 1 Let g(u) be a continuously differentiable function ofu ∈ IR which is concave and monotone increasing over

u ≥ 0. Then for anyuo > 0

g(uo)− g(uo)
uo

|∆| ≤ g(u) ≤ g(uo) + g
′
(uo)|∆|

where∆ = u− uo andg
′
(u) = dg(u)/du.

Proof:

Sinceg(u) is concave the tangent liney(u) def= g(uo) + g
′
(uo)(u− uo) upper boundsg. Hence

g(u) ≤ g(uo) + g
′
(uo)|u− uo|.

On the other hand, asg is monotone and concave, the functionz(u) def= g(uo) + g(uo)
uo

(u− uo)1{u≤uo} is a lower bound

ong, where1{u≤uo} is the indicator function of the set{u ≤ uo}. Hence,

g(u) ≥ g(uo)− g(uo)
uo

|u− uo|.

¤

A densityf(x) over [0, 1]d is said to be a block density withmd levels if for some set of non-negative constants

{φi}md

i=1 satisfying
∑md

i=1 φim
−d = 1,

f(x) =
md∑

i=1

φi1Qi(x)

where1Q(x) is the set indicator function ofQ ⊂ [0, 1]d and{Qi}md

i=1 is the uniform partition of the unit cube[0, 1]d

defined above.

Proposition 1 Letd ≥ 2 and1 ≤ γ ≤ d− 1. AssumeX1, . . . , Xn are i.i.d. sample points over[0, 1]d whose marginal

is a block densityf with md levels and supportS ⊂ [0, 1]d. Then for any continuous quasi-additive Euclidean functional

Lγ of orderγ which satisfies the add-one bound (8)
∣∣∣∣E[Lγ(X1, . . . , Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x) dx

∣∣∣∣ ≤ O
(
(nm−d)−1/d

)
.

whereβLγ ,d is a constant independent off . A more explicit form for the bound on the right hand side is

O
(
(nm−d)−1/d

)
=





K1+C4
(nm−d)1/d

∫
S f

d−γ−1
d (x)dx (1 + o(1)) , d > 2

K1+C4+βLγ ,d

(nm−d)1/d

∫
S f

d−γ−1
d (x)dx (1 + o(1)) , d = 2

.
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Proof:

Let ni denote the number of samples{X1, . . . , Xn} falling into the partition cellQi and let{U i}i denote an i.i.d.

sequence of uniform points on[0, 1]d. By subadditivity, we have

Lγ(X1, . . . , Xn) ≤ m−γ
md∑

i=1

Lγ (m[{X1, . . . , Xn} ∩Qi − qi]) + C1m
d−γ

= m−γ
md∑

i=1

Lγ(U1, . . . , Uni) + C1m
d−γ

since the samples in each partition cellQi are drawn independently from a conditionally uniform distribution givenni.

Note thatni has a BinomialB(n, φim
−d) distribution.

Taking expectations on both sides of the above inequality,

E[Lγ(X1, . . . , Xn)] ≤ m−γ
md∑

i=1

E [E [Lγ(U1, . . . , Uni)|ni]] + C1m
d−γ . (9)

The following rate of convergence for quasi-additive edge functionalsLγ satisfying the add-one bound (8) has been

established for1 ≤ γ < d [2, Thm. 5.2],

|E[Lγ(U1, . . . , Un)]− βLγ ,dn
d−γ

d | ≤ K1n
d−1−γ

d , (10)

whereK1 is a function ofC1, C3 andC5.

Using the result (10) and subadditivity (9) onLγ , for 1 ≤ γ < d we have

E[Lγ(X1, . . . , Xn)] ≤ m−γ
md∑

i=1

E

[
βLγ ,dn

d−γ
d

i + K1n
d−γ−1

d
i

]
+ C1m

d−γ

= m−γβLγ ,dn
d−γ

d

md∑

i=1

E

[(ni

n

) d−γ
d

]
+ m−γK1n

d−γ−1
d

md∑

i=1

E

[(ni

n

) d−γ−1
d

]
+ C1m

d−γ .

(11)

Similarly for the dualL∗γ it follows by superadditivity (3) and the close-in-mean condition (6)

E[L∗γ(X1, . . . , Xn)]

≥ m−γβLγ ,dn
d−γ

d

md∑

i=1

E

[(ni

n

) d−γ
d

]
− m−γ(K1 + C4)n

d−γ−1
d

md∑

i=1

E

[(ni

n

) d−γ−1
d

]
− C2m

d−γ (12)
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for 1 ≤ γ < d.

We next develop lower and upper bounds on the expected values in (11) and (12). As the functiong(u) = uν is

monotone and concave over the rangeu ≥ 0 for 0 < ν < 1, from Lemma 1

(ni

n

)ν

≥ pν
i − pν−1

i

∣∣∣ni

n
− pi

∣∣∣ , (13)

wherepi = φim
−d. In order to bound the expectation of the above inequality we use the following bound

E
[∣∣∣ni

n
− pi

∣∣∣
]
≤

√
E

[∣∣∣ni

n
− pi

∣∣∣
2
]

=
1√
n

√
pi(1− pi) ≤

√
pi√
n

.

Therefore, from (13),

E
[(ni

n

)ν]
≥ pν

i − p
ν− 1

2
i /

√
n. (14)

By concavity, Jensen’s inequality yields the upper bound

E
[(ni

n

)ν]
≤

[
E

(ni

n

)]ν

= pν
i (15)

Under the hypothesis1 ≤ γ ≤ d− 1 this upper bound can be substituted into expression (11) to obtain

E[Lγ(X1, . . . , Xn)/n(d−γ)/d]

≤ βLγ ,d

md∑

i=1

φ
d−γ

d
i m−d +

K1

(nm−d)1/d

md∑

i=1

φ
d−γ−1

d
i m−d +

C1

(nm−d)(d−γ)/d

= βLγ ,d

∫

S
f (d−γ)/d(x)dx +

K1

(nm−d)1/d

∫

S
f (d−γ−1)/d(x)dx +

C1

(nm−d)(d−γ)/d
. (16)

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual functionalL∗γ

E[L∗γ(X1, . . . , Xn)]/n(d−γ)/d

≥ βLγ ,d

∫

S
f

d−γ
d (x)dx− βLγ ,d

(nm−d)1/2

∫

S
f

1
2−

γ
d (x)dx

− K1 + C4

(nm−d)1/d

∫

S
f

d−γ−1
d (x)dx− C2

(nm−d)(d−γ)/d
(17)

By definition of the dual,

E[Lγ(X1, . . . , Xn)]/n
d−γ

d ≥ E[L∗γ(X1, . . . , Xn)]/n
d−γ

d − n−
d−γ

d (18)
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which when combined with (17) and (16) yields the result

∣∣∣∣
E[Lγ(X1, . . . , Xn)]

n
d−γ

d

− βLγ ,d

∫

S
f

d−γ
d (x)dx

∣∣∣∣ ≤ K1 + C4

(nm−d)1/d

∫

S
f

d−γ−1
d (x)dx +

βLγ ,d

(nm−d)1/2

∫

S
f

1
2−

γ
d (x)dx

+
K2

(nm−d)(d−γ)/d
+ n−

d−γ
d , (19)

whereK2 = max{C1, C2}. This establishes Proposition 1. ¤

3.2 Mean Convergence Rate for Holder Continuous Density Functions

Before extending Proposition 1 to general densities we will need to establish an approximation lemma for Holder contin-

uous functions.

Recall that the Holder classΣd(β, L) is defined by

Σd(β, L) =
{

g : |g(z)− p
bβc
x (z)| ≤ L |x− z|β , x, z ∈ Rd

}

wherepk
x(z) is the Taylor polynomial (multinomial) ofg of orderk expanded about the pointx, |.| denotes a norm in

Rd andbβc is defined as the greatest integer strictly less thanβ. Σd(1, L) is the set of Lipschitz functions with Lipschitz

constantL andΣd(β, L) contains increasingly smooth functions asβ increases.

ForQm = {Qi}md

i=1 a uniform resolution-m partition as defined in Sub-section 2.1, define the resolution-m block

density approximationφ(x) =
∑md

i=1 φi1Qi(x) of f , whereφi = md
∫

Qi
f(x)dx. The following lemma establishes how

close (inL1([0, 1]d) sense) these resolution-m block densities approximate functions inW 1,p(Rd).

Lemma 2 For 0 < β ≤ 1, let f ∈ Σd(β, L) have supportS ⊂ [0, 1]d. Then there exists a constantC6 > 0, independent

of m, such that ∫

S
|φ(x)− f(x)|dx ≤ C6 Lm−β . (20)

A proof of this lemma is given in Appendix A.

Remark. Lemma 2 shows how close, inL1(Rd) sense, a functionf ∈ Σd(β, L) can be approximated by its resolution-m

block density. To extend the results in this and the following sections to other classes of functions, all that it is needed is

an upper bound to theL1 approximation error similar to the one in equation 20. In Appendix B, we show how to do this
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for densities in the Sobolev spaceW 1,p(Rd), 1 ≤ p < ∞. The importance of Sobolev spaces derives from the fact that it

includes functions that are not differentiable in the usual (strong) sense.

We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-

uniform densityf . Let {X̃i}n
i=1 be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximationφ. By the triangle inequality,

∣∣∣∣E[Lγ(X1, . . . , Xn)]/n
d−γ

d − βLγ ,d

∫

S

f
d−γ

d (x)dx

∣∣∣∣ (21)

≤
∣∣∣∣E[Lγ(X̃1, . . . , X̃n)]/n

d−γ
d − βLγ ,d

∫

S

φ
d−γ

d (x)dx

∣∣∣∣ + βLγ ,d

∣∣∣∣
∫

S

φ
d−γ

d (x)dx−
∫

S

f
d−γ

d (x)dx

∣∣∣∣
+

∣∣∣E[Lγ(X1, . . . , Xn)]− E[Lγ(X̃1, . . . , X̃n)]
∣∣∣ /n

d−γ
d = I + II + III

TermI can be bounded by Proposition 1. To boundII, consider the following elementary inequality, which holds for

a, b ≥ 0, 0 ≤ γ ≤ d,
∣∣∣a(d−γ)/d − b(d−γ)/d

∣∣∣ ≤ |a− b|(d−γ)/d,

and therefore, by Lemma 2 and Jensen’s inequality,

II ≤ βLγ ,d

∫

S
|φ(x)− f(x)| d−γ

d dx ≤ βLγ ,d C
′
6 L(d−γ)/d m−β(d−γ)/d, (22)

whereC
′
6 = C

(d−γ)/d
6 .

The following Proposition establishes an upper bound on termIII in (21):

Proposition 2 Let d ≥ 2 and 1 ≤ γ ≤ d. Assume{Xi}n
i=1 are i.i.d. random vectors over[0, 1]d with densityf ∈

Σd(β, L), 0 < β ≤ 1, having supportS ⊂ [0, 1]d. Let{X̃i}n
i=1 be i.i.d. random vectors with marginal Lebesgue density

φ, the resolution-m block density approximation off . Then, for any continuous quasi-additive Euclidean functionalLγ

of orderγ
∣∣∣E[Lγ(X1, . . . , Xn)]− E[Lγ(X̃1, . . . , X̃n)]

∣∣∣ /n
d−γ

d ≤ C ′3 C ′6 L(d−γ)/d m−β(d−γ)/d, (23)

whereC ′3 = 2(2d−γ)/dC3.

Proof:
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As in equation (21), we denote the left hand side of (23) by III. First invoke continuity (5) ofLγ

n(d−γ)/dIII ≤ 2C3E

[
card

(
{X1, . . . , Xn} 4 {X̃1, . . . , X̃n}

)(d−γ)/d
]

.

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([23], Theorem

3). There it is shown that ifφ approximatesf in theL1(Rd) sense:

∫

S
|φ(x)− f(x)|dx ≤ ε,

then, by standard coupling arguments, there exists a joint distributionP for the pair of random vectors(X, X̃) such that

P{X 6= X̃} ≤ ε. It then follows by Lemma 2 and the set inequality{X1, . . . , Xn} 4 {X̃1, . . . , X̃n} ⊆ ∪n
i=1{Xi} 4

{X̃i} that

III ≤ 2C3E

[
card

(
∪n

i=1{Xi} 4 {X̃i}
)(d−γ)/d

]
/n(d−γ)/d

≤ 2C3E




(
2

n∑

i=1

1n
Xi 6= ˜Xi

o)(d−γ)/d

 /n(d−γ)/d

≤ 2C3(2nP{X1 6= X̃1})(d−γ)/d/n(d−γ)/d ≤ 2(2d−γ)/dC3ε
(d−γ)/d,

where the second inequality follows from the factcard
(
{Xi} 4 {X̃i}

)
∈ {0, 2}. Finally, by Lemma 2 we can makeε

as small asC6 Lm−β and still ensure thatφ be a block density approximation tof of resolutionm. ¤

We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain

∣∣∣∣E[Lγ(X1, . . . , Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f(x)(d−γ)/ddx

∣∣∣∣ (24)

≤ K1 + C4

(nm−d)1/d

(∫

S
f

d−1−γ
d (x)dx + o(1)

)
+

βLγ ,d

(nm−d)1/2

(∫

S
f

1
2− γ

d (x)dx + o(1)
)

+
K2

(nm−d)(d−γ)/d
+

1
n(d−γ)/d

+ (βLγ ,d + C ′3)C ′6 L(d−γ)/d m−β(d−γ)/d

This bound is finite under the assumptions thatf ∈ Σd(β, L) with support inS ⊂ [0, 1]d and thatf
1
2− γ

d is integrable

overS.

The bound (24) is actually a family of bounds for different values ofm = 1, 2, . . .. By selectingm as the function of

n that minimizes this bound, we obtain the tightest bound among them:

12



Proposition 3 Let d ≥ 2 and1 ≤ γ ≤ d − 1. AssumeX1, . . . , Xn are i.i.d. random vectors over[0, 1]d with density

f ∈ Σd(β, L), 0 < β ≤ 1, having supportS ⊂ [0, 1]d. Assume also thatf
1
2− γ

d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalLγ of orderγ that satisfies the add-one bound (8)

∣∣∣∣E[Lγ(X1, . . . , Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣ ≤ O
(
n−r1(d,γ,p)

)
,

where

r1(d, γ, p) =
α β

α β + 1
1
d

whereα = d−γ
d .

Proof: Without loss of generality assume thatnm−d > 1. In the ranged ≥ 2 and1 ≤ γ ≤ d − 1, the slowest of the

rates in (24) are(nm−d)−1/d andm−β(d−γ)/d. We obtain anm-independent bound by selectingm = m(n) to be the

sequence increasing inn which minimizes the maximum of these rates

m(n) = arg min
m

max
{

(nm−d)−1/d, m−β(d−γ)/d
}

.

The solutionm = m(n) occurs when(nm−d)−1/d = m−β(d−γ)/d, or m = n1/[d(αβ+1)] (integer part) and, correspond-

ingly, m−β(d−γ)/d = n−
αβ

αβ+1
1
d . This establishes Proposition 3. ¤

3.3 Concentration Bounds

Any Euclidean functionalLγ of orderγ satisfying the continuity property (4) also satisfies the concentration inequality

[2, Thm. 6.3] established by Rhee [24]:

P (|Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)]| > t) ≤ C exp
(−(t/C3)2d/(d−γ)

Cn

)
, (25)

whereC is a constant depending only on the functionalLγ andd. It is readily verified that ifK > C3C
(d−γ)/(2d) the

right hand side of (25) is summable overn = 1, 2, . . . when t is replaced byK(n ln n)(d−γ)/(2d). Thus we have by

Borel-Cantelli

|Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)]| ≤ O
(
(n ln n)(d−γ)/(2d)

)
(a.s.).

Therefore, combining this with Proposition 3 we obtain the a.s. bound

13



Proposition 4 Let d ≥ 2 and1 ≤ γ ≤ d − 1. AssumeX1, . . . , Xn are i.i.d. random vectors over[0, 1]d with density

f ∈ Σd(β, L), 0 < β ≤ 1, having supportS ⊂ [0, 1]d. Assume also thatf
1
2− γ

d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalLγ of orderγ that satisfies the add-one bound (8)
∣∣∣∣Lγ(X1, . . . , Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣ ≤ O

(
max

{(
ln n

n

)α/2

, n−r1(d,γ,p)

})
(a.s.),

wherer1(d, γ, p) is defined in Proposition 3.

The concentration inequality can also be used to bound theLκ momentsE[|Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)]|κ]1/κ,

κ = 1, 2, . . .. In particular, as for any r.v.Z: E[|Z|] =
∫∞
0

P (|Z| > t)dt, we have by (25)

E [|Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)]|κ] =
∫ ∞

0

P
(
|Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)]| > t1/κ

)
dt

≤ C3C

∫ ∞

0

exp
(−t2d/[κ(d−γ)]

Cn

)
dt

= Aκnκ(d−γ)/(2d), (26)

whereAκ = C3C
κ(d−γ)/(2d)+1

∫∞
0

e−u2d/[κ(d−γ)]
du.

Combining the above with (24), we obtain

Proposition 5 Let d ≥ 2 and1 ≤ γ ≤ d − 1. AssumeX1, . . . , Xn are i.i.d. random vectors over[0, 1]d with density

f ∈ Σd(β, L), 0 < β ≤ 1, having supportS ⊂ [0, 1]d. Assume also thatf
1
2− γ

d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalLγ of orderγ that satisfies the add-one bound (8)
[
E

∣∣∣∣Lγ(X1, . . . , Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
κ]1/κ

(27)

≤ K1 + C4

(nm−d)1/d

(∫

S
f

d−1−γ
d (x)dx + o(1)

)
+

βLγ ,d

(nm−d)1/2

(∫

S
f

1
2− γ

d (x)dx + o(1)
)

+
K2

(nm−d)(d−γ)/d
+

1
n(d−γ)/d

+ (βLγ ,d + C ′3)C ′6 L(d−γ)/d m−β(d−γ)/d

+ A1/κ
κ n−(d−γ)/(2d)

Proof:

For any non-random constantµ, using Minkowski inequality,[E|W + µ|κ]1/κ ≤ [E|W |κ]1/κ + |µ|. Identify

µ = E[Lγ(X1, . . . , Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

W = (Lγ(X1, . . . , Xn)− E[Lγ(X1, . . . , Xn)])/n(d−γ)/d

14



and use (26) and (24) to establish Proposition 5. ¤

As them-dependence of the bound of Proposition 5 is identical to that of the bias bound (24), minimization of the

bound overm = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary 1 Let d ≥ 2 and1 ≤ γ ≤ d − 1. AssumeX1, . . . , Xn are i.i.d. random vectors over[0, 1]d with density

f ∈ Σd(β, L), 0 < β ≤ 1, having supportS ⊂ [0, 1]d. Assume also thatf
1
2− γ

d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalLγ of orderγ that satisfies the add-one bound (8)

[
E

∣∣∣∣Lγ(X1, . . . , Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
κ]1/κ

≤ O
(
n−r1(d,γ,p)

)
, (28)

wherer1(d, γ, p) is defined in Proposition 3.

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 4 and Corollary 1 hold uniformly over the class of Lebesgue densitiesf ∈ Σd(β, L)

and integrablef (d−γ)/d−1/2. If α = (d − γ)/d ∈ [1/2, (d − 1)/d] then, as the supportS ⊂ [0, 1]d is bounded,

this integrability condition is automatically satisfied. To extend Proposition 4 and Corollary 1 to the rangeα ∈

((d − 1)/d, 1) would require extension of the fundamental convergence rate bound ofO
(
n−1/d

)
used in (10),

established by Redmond and Yukich [3], to the case0 < γ < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems of [2, Ch. 7] that iff is not a Lebesgue

density then the convergence rates in Propositions 4 and 5 hold when the region of integrationS is replaced by the

support of the Lebesgue continuous component off .

3. The convergence rate bound satisfiesr1(d, γ, p) < 1/d, which corresponds to Redmond and Yukich’s rate bound

for the uniform density over[0, 1]d [2, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates

for non-uniform densities.

4. Whenf is piecewise constant over a known partition of resolutionm = mo faster rate of convergence bounds are

available. For example, in Proposition 1 the bound in (19) is monotone increasing inm. Therefore the sequence
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m(n) = mo minimizes the bound asn →∞ and, proceeding in the same way as in the proof of Proposition 5, the

best rate bound is of ordermax
{
n−(d−γ)/(2d), n−1/d

}
. As theO(n−1/d) bound on mean rate of convergence is

tight [2, Sec. 5.3] ford = 2 and uniform densityf , it is concluded that forα = (d − γ)/d ≥ 2/d the asymptotic

rate of convergence of the left hand side of (28) is exactlyO(n−1/d) for piecewise constantf andd = 2.

5. Forα = (d − γ)) ≥ 2/d, it can be shown that the rate bound of Proposition 1 remains valid even ifLγ does not

satisfy the “add-one bound.” Thus, withα ≥ 2/d, Corollary 1 extends to any continuous quasi-additive functional

Lγ including, in addition to the MST, the TSP, the minimal matching graph and thek-nearest neighbor graph

functionals. As for the caseα < 2/d, we can use a weaker rate of mean convergence bound [2, Thm. 5.1], which

applies to all continuous quasi-additive functionals and uniformf , in place of (10) in the proof of Proposition 1 to

obtain

∣∣∣∣E[Lγ(X1, . . . , Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣ ≤ O
(
n−

α
d/β+2

)
. (29)

6. A tighter upper bound than Corollary 5 on theLκ-norm convergence rate may be derived if a betterm-dependent

analog to the concentration inequality (25) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [5], Ravietal [25],

Mitchell [26], and Arora [27], as ways to reduce computational complexity. The fixed partition approximation is a simple

example whose convergence rate has been studied by Karp [5, 28], Karp and Steele [29] and Yukich [2] in the context of

a uniform densityf .

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-

eterm controlling the number of cells in the uniform partitionQm = {Qi}m
i=1 of [0, 1]d discussed in Section 2. Whenm

is defined as an increasing function ofn we obtain a progressive-resolution approximation toLγ(Xn). This approximation

involves constructing minimal graphs of orderγ on each of the cellsQi, i = 1, . . . ,md, and the approximationLm
γ (Xn)

is defined as the sum of their weights plus a constant bias correctionb(m)

Lm
γ (Xn) =

md∑

i=1

Lγ(Xn ∩Qi) + b(m), (30)
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whereb(m) is O
(
md−γ

)
. In this section we specify a bound on theLκ-norm convergence rate of the progressive-

resolution approximation (30) and specify the optimal resolution sequence{m(n)}n>0 which minimizes this bound. Our

derivations are based on the approach of Yukich [2, Sec. 5.4] and rely on the concrete version of the pointwise closeness

bound (7)

∣∣Lγ(F )− L∗γ(F )
∣∣ ≤





C[card(F )](d−γ−1)/(d−1), 1 ≤ γ < d− 1
C log card(F ), γ = d− 1 6= 1
C, d− 1 < γ < d

, (31)

for any finiteF ⊂ [0, 1]d. This condition is satisfied by the MST, TSP and minimal matching function [2, Lemma 3.7].

We first obtain a fixed-m bound onL1 deviation ofLm
γ (Xn)/n(d−γ)/d from its a.s. limit.

Proposition 6 Letd ≥ 2 and1 ≤ γ < d− 1. Assume that the Lebesgue densityf ∈ Σd(β, L), 0 < β ≤ 1, has support

S ⊂ [0, 1]d. Assume also thatf1/2−γ/d are integrable overS. LetLm
γ (Xn) be defined as in (30) whereLγ is a continuous

quasi-additive functional of orderγ which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

if b(m) = O(md−γ)

E

[∣∣∣∣Lm
γ (Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
]

≤ O
(
max

{
(nm−d)−γ/[d(d−1)], m−β(d−γ)/d, n−(d−γ)/(2d)

})
(32)

Proof:

Start with

E

[∣∣∣∣Lm
γ (Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
]

≤ (33)

E

[∣∣∣∣Lγ(Xn)/n
d−γ

d − βLγ ,d

∫

S
f

d−γ
d (x)dx

∣∣∣∣
]

+ E
[∣∣Lm

γ (Xn)− Lγ(Xn)
∣∣] /n

d−γ
d . (34)

Analogously to the proof of [2, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the

difference between the partitioned weight functionLm
γ (F ) and the minimal weight functionLγ(F ) for any finiteF ⊂

[0, 1]d

b(m)− C1m
d−γ ≤ Lm

γ (F )− Lγ(F ) ≤ m−γC

md∑

i=1

(card(F ∩Qi))
(d−γ−1)/(d−1) + 1 + C2m

d−γ + b(m). (35)
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As usual letφ(x) =
∑md

i=1 φim
−d be a block density approximation tof(x). As {Xn ∩ Qi}md

i=1 are independent and

E[|Z|u] ≤ (E[|Z|])u for 0 ≤ u ≤ 1

E[
∣∣Lm

γ (Xn)− Lγ(Xn)
∣∣]

≤ m−γC

md∑

i=1

E
[
(card(Xn ∩Qi))

(d−γ−1)/(d−1)
]

+ |b(m)− C1m
d−γ |+ 1 + C2m

d−γ + b(m)

≤ m−γn(d−γ−1)/(d−1)C

md∑

i=1

(φim
−d)(d−γ−1)/(d−1) + |b(m)− C1m

d−γ |+ 1 + C2m
d−γ + b(m)

= mγ/(d−1)n(d−γ−1)/(d−1)C

md∑

i=1

φ
(d−γ−1)/(d−1)
i m−d + |b(m)− C1m

d−γ |+ 1 + C2m
d−γ + b(m)

= mγ/(d−1)n(d−γ−1)/(d−1)C

∫

S
φ(d−γ−1)/(d−1)(x)dx + |b(m)− C1m

d−γ |+ 1 + C2m
d−γ + b(m)

Note that the bias term|b(m)−C1m
d−γ | can be eliminated by selectingb(m) = C1m

d−γ . Dividing through byn(d−γ)/d,

noting that
(|b(m)− C1m

d−γ |+ C2m
d−γ + b(m)

)
/n(d−γ)/d ≤ B(nm−d)−(d−γ)/d for some constantB

E

[∣∣∣∣
Lm

γ (Xn)− Lγ(Xn)
n(d−γ)/d

∣∣∣∣
]

≤ (nm−d)−γ/[d(d−1)]C

∫

S
φ(d−γ−1)/(d−1)(x)dx + (nm−d)−(d−γ)/dB + n−(d−γ)/d.

Combining this with Proposition 5 we can bound the right hand side of (34) to obtain

E

[∣∣∣∣Lm
γ (Xn)]/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
]

≤ K1 + C4

(nm−d)1/d

(∫

S
f

d−1−γ
d (x)dx + o(1)

)
+

βLγ ,d

(nm−d)1/2

(∫

S
f

1
2− γ

d (x)dx + o(1)
)

+
K2

(nm−d)(d−γ)/d
+

2
n(d−γ)/d

+ (βLγ ,d + C ′3) C ′6 L(d−γ)/d m−β(d−γ)/d + A1n
−(d−γ)/(2d)

+
C

(nm−d)γ/[d(d−1)]

(∫

S
f (d−γ−1)/(d−1)(x)dx + o(1)

)
+ (nm−d)−(d−γ)/dB. (36)

Over the range1 ≤ γ < d− 1 the dominant terms are as given in the statement of Proposition 6. ¤

Finally, by choosingm = m(n) to minimize the maximum on the right hand side of the bound of Proposition 6 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Let d ≥ 2 and1 ≤ γ < d − 1. Assume that the Lebesgue densityf ∈ Σd(β, L), 0 < β ≤ 1, has support

S ⊂ [0, 1]d. Assume also thatf1/2−γ/d is integrable overS. LetLm
γ (Xn) be defined as in (30) whereLγ is a continuous

quasi-additive functional of orderγ which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

18



if b(m) = O(md−γ)

E

[∣∣∣∣Lm(n)
γ (X1, . . . , Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
]
≤ O

(
n−r2(d,γ,p)

)
, (37)

where

r2(d, γ, p) =
α β

d−1
γ α β + 1

1
d

,

whereα = d−γ
d . This rate is attained by choosing the progressive-resolution sequencem = m(n) = n1/[d( d−1

γ αβ+1)].

4.1 Discussion

We make the following remarks.

1. Under the assumed conditionγ < d − 1 in Corollary 2,r2(d, γ, p) ≤ r1(d, γ, p), wherer1(d, γ, p) is defined in

Corollary 1. Thus, as might be expected, the partitioned approximation has aLκ-norm convergence rate (37) that

is always slower than the rate bound (28), and the slowdown increases as(d− 1)/γ increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic raten−r2(d,γ,p) is

an increasing function of
∫
S f (d−γ−1)/(d−1)(x)dx, which is the Ŕenyi entropy off of order(d− γ − 1)/(d− 1).

Thus fastest convergence can be expected for densities with small Rényi entropy.

3. It is more tedious but straightforward to show that theL2 deviationE
[∣∣Lm

γ (Xn)/n(d−γ)/d − βLγ ,d

∫
S f (d−γ)/d(x)dx

∣∣2
]1/2

obeys the identical asymptotic rate bounds as in Proposition 6 and Corollary 2 with identical bound minimizing

progressive-resolution sequencem = m(n).

4. As pointed out in the proof of Proposition 6 the bound minimizing choice of the bias correctionb(m) of the

progressive-resolution approximation (30) isb(m) = C1m
d−γ , whereC1 is the constant in the subaddivity condi-

tion (2). However, Proposition 6 asserts that, for example, usingb(m) = Cmd−γ with arbitrary scale constantC,

or even usingb(m) = 0, are asymptotically equivalent to the bound minimizingb(m). This is important since the

constantC1 is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special casek = n of the greedy approximation to thek-point minimal

graph approximation introduced by Ravietal [6] whose a.s. convergence was established by Hero and Michel [7]
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(Note that the overly strong BV condition assumed in [7] can be considerably weakened by replacing BV space

with Sobolev space and applying Lemma 2 of this paper). Extension of Proposition 6 to greedy approximations to

k-point graphs is an open problem.

5 Convergence Rate Lower Bounds

In this section we derive lower bounds for the convergence rates of minimal graphs. Define

Iα(f) =
∫

fα(x)dx . (38)

From sections 2 and 3,Lγ(X1, . . . , Xn)/n(d−γ)/d is a (strongly) consistent estimator ofIα(f) for α = d−γ
d . Thus, it is

natural to recast our problem as that of estimatingIα(f) over the nonparametric class of densitiesf ∈ Σd(β, L).

Let Îα be an estimator ofIα(f) (0 < α < 1) based on a sample ofn i.i.d. observations from a densityf . To access the

“quality” of Îα we adopt the usual (nonparametric) minimax risk criterion, i.e., we look atsupf∈F E|Îα − Iα(f)|p, the

worst case performance ofÎα over a known class of densitiesF , for a choice ofp ≥ 1. Under this criterion it is natural to

ask what is the minimum achievable risk for any estimator, i.e., what is

inf
Îα

sup
f∈F

E|Îα − Iα(f)|p ,

where the infimum is taken over all estimators ofIα(f), as this quantifies the best performance possible for any estimator.

Of course, asLγ(X1, . . . , Xn)/nα is valid estimator ofIα(f), this will also yield a lower bound to the convergence rates

of interest. The rest of this section is devoted to deriving these (asymptotic) bounds using standard minimax techniques.

5.1 Notation

In the following, we will take the classF as the set of multivariate Lebesgue densities defined on the unit cube[0, 1]d

(d ≥ 1), belonging to the functional Holder classΣd(β, L).

We will also use the affinity‖P ∧Q‖ between measuresP andQ defined by:

‖P ∧Q‖ = 1− 1
2
‖P −Q‖1 (39)
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where‖P‖1 is the total variation norm ofP defined as

‖P‖1 = sup
|f |≤1

∣∣∣∣
∫

f dP

∣∣∣∣

and the supremum is taken over all measurable functionsf bounded by 1. IfP andQ are absolutely continuous w.r.t. a

measureµ, with densitiesp andq, respectively, then‖P − Q‖1 =
∫ |p − q| dµ. In this case, we will write‖p − q‖1 for

‖P − Q‖1 and‖p ∧ q‖ for ‖P ∧ Q‖. Also, writepn as shorthand notation for
∏n

i=1 p(xi), the density of the product

measureP⊗n.

Finally, writeco(F) to denote the convex hull ofF .

5.2 Lower Bounds

In order to get lower bounds for the minimax risk, the usual technique is to build, for everyn, a subsetF0,n ⊂ F

of finite cardinality, such that the problem of estimatingIα(f) overF0,n is essentially as difficult as the full problem.

Assouad’s lemma or Fano’s lemma are the commonly used tools to address such constructions ([30]). However, in the

case of entropy estimation (as well as many other functional estimation problems, [31], [32]), these methods only give

the trivial lower bound zero. We will thus rely on a result by Le Cam (see for example [31]) that relates the minimax risk

to a testing problem between two sets of hypothesis, whose convex hulls are “well” separated in a total variation distance

sense. Bellow is a simplified version of this result, suited for our needs (for a simple proof see [31]):

Lemma 3 Let Î be an estimator ofI(f)1 based onn i.i.d. observations from a densityf ∈ F . Suppose that there are

subsetsG1 andG2 of G = {fn : f ∈ F} that are2δ-separated, in the sense that,|I(f1) − I(f2)| ≥ 2δ for all fn
1 ∈ G1

andfn
2 ∈ G2. Then

sup
f∈F

E|Î − I(f)| ≥ δ · sup
pi ∈ co(Gi)

‖p1 ∧ p2‖ .

We will apply lemma 3 to the usual small perturbations of the uniform density,u, on [0, 1]d. Towards this goal, fix

g ∈ Σd(β, 1) with support in[0, 1]d such that
∫

g(x) dx = 0,
∫

g2(x) dx = κ2 > 0 and|g(x)| ≤ M . Let {Qj}md

j=1 be

the uniform resolution-m partition and{xj}md

j=1 be the set of points in[0, 1]d that translate eachQj back to the origin, as

1From now on, we will omit the subscriptα from Îα andIα(f), unless necessary.
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defined in Sub-section 2.1. Letgj(x) = g (m(x− xj)). Forλ ∈ Λ = {−1, 1}md

, define the perturbation ofu as

fλ(x) = 1 +
md∑

j=1

L

2
m−β λj gj(x) (40)

It is easy to see that
∫

fλ(x) dx = 1, fλ ∈ Σd(β, L) and, form large enough,f ≥ 0. So (form large enough)f ∈ F .

We can now apply lemma 3 to the setsG1 = {un} andG2 = {fn
λ : λ ∈ Λ}. We will start by determining the

2δ-separation betweenG1 andG2. Consider the second order Taylor expansion

(1 + y)α = 1 + αy +
1
2

α(α− 1) ξα−2y2

whereξ lies between1 and1 + y. This implies that

∫
fα

λ (x) dx− 1 =
md∑

j=1

∫

Qj

(
1 +

L

2
m−β λj gj(x)κ

)α

dx− 1

=
1
2

(
L

2

)2

α(α− 1)m−2β
md∑

j=1

∫

Qj

ξα−2(x)g2
j (x) dx , (41)

where1−M L
2 m−β ≤ ξ(x) ≤ 1 + M L

2 m−β . Inserting these bounds in equation (41), we have

1
2

(
L

2

)2

α(α− 1)κ2 (1−M
L

2
m−β)α−2 m−2β ≤

∫
fα

λ (x) dx− 1

≤ 1
2

(
L

2

)2

α(α− 1)κ2 (1 + M
L

2
m−β)α−2 m−2β , (42)

which essentially means that
∫

fα
λ (x) dx− 1 .= m−2β . We can now use this result to conclude, for anyλ ∈ Λ,

|I(fn
λ )− I(un)| =

∣∣∣∣
∫

fα
λ (x) dx− 1

∣∣∣∣ ≥ 2 C m−2β , (43)

for some constantC > 0 andm large enough.

We now need to derive a lower bound forsuppi ∈ co(Gi) ‖p1 ∧ p2‖. To this end, lethn = 2−md ∑
λ∈Λ fn

λ ∈ co(G2).

The following lemma provides such a bound ([33]):

Lemma 4

‖un − hn‖21 ≤ exp





1
2

md

[
n

∫ (
L

2
m−βg1(x)

)2

dx

]2


− 1

A proof of this lemma is given in appendix A.
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For our choice ofg1, lemma 4 simplifies to:

‖un − hn‖21 ≤ exp

{
1
2

(
L

2

)4

κ2
2 n2 m−(4β+d)

}
− 1

Now, choosingm = O
(
n−2/(4β+d)

)
, the optimum value that balances the rates in lemma 3, andg such thatκ2 is small

enough, then there exists anε > 0 such that

‖un − hn‖21 ≤ (2(1− ε))2 .

Hence, by equation (39),

‖un ∧ hn‖ ≥ 1− 2(1− ε)/2 = ε > 0 . (44)

Finally, plugging equation (43) and (44), with the choice ofm = O
(
n−2/(4β+d)

)
, into lemma 3 and using Jensen’s

inequality, gives us the desired lower bound:

Proposition 7 For F = {f : f is a Lebesgue density on[0, 1]d andf ∈ Σd(β, L)}, p ≥ 1 and n large enough, there

exists a constantc = c(β, L, d, α) > 0 such that

inf
Îα

sup
f∈F

[
E|Îα − Iα(f)|p

]1/p

≥ c n−
4β

4β+d , (45)

where the supremum is taken over all estimatorsÎα of Iα(f) based onn i.i.d. observations from densityf .

We make the following comments about this proposition.

1. For sufficiently smooth densities, i.e., forβ ≥ d/4, 4β/(4β + d) ≥ 1/2, which is the usual rate of convergence

for parametric problems. This suggests, using the extension of the efficiency concept to the nonparametric setting

(Cramer-Rao type inequalities, ... to be verified), that the lower bound in Proposition 7 can be replaced by

inf
Îα

sup
f∈F

[
E|Îα − Iα(f)|p

]1/p

≥ c n−( 4β
4β+d∧ 1

2 )

2. The results of Proposition 7 agree with those obtained by Birgé and Massart in [34]. In there, they derive lower

bounds on the minimax risk for the general problem of nonparametric estimation of a functional

T (f) =
∫

ϕ(f(x), f ′(x), . . . , f (k)(x), x) dx satisfying some smoothness conditions. They also show, that for

β ≥ 2k + d/4, the
√

n-rate is achievable. Kerkyacharian and Picard closed the problem in [35] by showing that

the corresponding rates forβ < 2k + d/4 are also achievable.
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3. Are the rates in Proposition 7 achievable? (I think they are...)

Remark. If, instead of the Ŕenyi entropy, we were interested in the Shannon entropyH1(f) = − ∫
f(x) log f(x) dx, the

same rates would be obtained. This can be seen by considering the second order Taylor expansion,

(1 + y) log(1 + y) = y +
1
2

ξ−1 y2

and following the same steps as forIα(f). In [36], Laurent exhibits an efficient estimator of this entropy, for densities

defined on a compact set of the real line with smoothness parameterβ ≥ 1/4, that achieves the
√

n-rate on densities

bounded away from zero on their domain.

6 Performance of Minimal Graph and Plug-in Entropy Estimators

In this section we derive upper bounds for the maximum risk of plug-in estimators and minimal-graph based estimators

of entropy.

We consider entropy estimates of the form̂Hα = (1− α)−1 log Îα, whereÎα is a consistent estimator ofIα(f). By a

standard perturbation analysis ofln x,

|Ĥα −Hα(f)| = 1
1− α

|Îα − Iα(f)|
Iα(f)

+ o(|Îα − Iα(f)|) .

Thus, asIα(f) is bounded away from zero uniformly over the classF (i.e., inff∈F Iα(f) > 0) , the asymptotic rate of

convergence of̂Hα −Hα(f), as a function ofn, will be identical to that of̂Iα − Iα(f).

Let f̂ be a density estimate off based onn i.i.d. observations (from densityf ). We have the following upper bound

for plug-in estimatorsIα(f̂):

Proposition 8 For F as defined in Proposition 7,

sup
f∈F

E
∣∣∣Iα(f̂)− Iα(f)

∣∣∣ ≤ C1 n−
αβ

2β+d (46)

for C1 = C1(β, L, d) > 0.
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Proof: The proof relies on the well known minimax rates for density estimation available in the literature (see, for example,

[37]). Specifically, these rates are of orderO
(
n−β/(2β+d)

)
, i.e.,

sup
f∈F

E

∫
|f̂(x)− f(x)|dx ≤ C1 n−

β
2β+d

for the best estimatorŝf (for example, wavelet thresholding based estimators).

Using the above result, the inequality|aα− bα| ≤ |a− b|α (a, b ≥ 0) and successive applications of Jensen’s inequality

yield the desired result,

E
∣∣∣Iα(f̂)− Iα(f)

∣∣∣ ≤ E

∫ ∣∣∣f̂(x)− f(x)
∣∣∣
α

dx

≤ E

[∫ ∣∣∣f̂(x)− f(x)
∣∣∣ dx

]α

≤
[
E

∫ ∣∣∣f̂(x)− f(x)
∣∣∣ dx

]α

≤ C1 n−
αβ

2β+d

¤

For Îα denoting the minimal graph estimator ofIα(f), we have from Proposition 5 the following result:

Proposition 9 For F as defined in Proposition 7, with0 < β ≤ 1, 1/2 ≤ α ≤ (d− 1)/d,

sup
f∈F

E
∣∣∣Îα − Iα(f)

∣∣∣ ≤ C2 n−
αβ

αβ+1
1
d (47)

for C2 = C2(β, L, d, α) > 0.

7 Notes on the Invertibility of the α-entropy

This section is somehow different in character from the previous sections. In here, we briefly digress about how the

knowledge ofHα(f), for α ∈ G, whith G ∈ [0, 1] being any open interval, can provide information about the densityf .

We consider first the 1-dimensional case, i.e.,f is a univariate Lebesgue density. LetS1, S2, . . . be the support regions

of a monotonic decomposition off such that the change of variabley = ln f(x) is (locally) invertible over each setSi.

Define alsof−1
i as the local inverse off(x) overx ∈ Si. We thus have

Iα(f) =
∫

fα(x) dx =
∫

eα ln f(x) dx =
∫

eαy
∑

i

(∣∣∣∣
d
dx

ln f(x)
∣∣∣∣
x=f−1

i (ey)

)−1

1Si(f
−1
i (ey)) dy

=
∫

eαy
∑

i

∣∣∣∣
f(f−1

i (ey))
f ′(f−1

i (ey))

∣∣∣∣ 1ln f(Si)(y) dy . (48)
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Equation (48) shows thatIα(f), as a function ofα, is the Laplace transform of the functiong(y) =
∑

i

∣∣∣ f(f−1
i (ey))

f ′(f−1
i (ey))

∣∣∣ 1ln f(Si)(y).

Of course many different densitiesf will result in the sameg; just consider any location change of probability mass in f

and the resulting entropy will remain the same.

Consider now the multivariate case. Without loss of generality, we only need to study the 2-dimensional case, as the

general situation follows by induction. Writef asf(x1, x2) = f(x1|x2)f(x2), wheref(x1|x2) is the conditional density

of X1 givenX2 andf(x2) is the marginal density ofX2. Letg(y1|x2) be the functiong defined above withf(x) replaced

by f(x1|x2). Proceeding in the same fashion as above, we have the following equalities:

Iα(f) =
∫ ∫

fα(x1, x2) dx1dx2 =
∫ ∫

fα(x1|x2)fα(x2) dx1dx2

=
∫ ∫

eαy1+αy2
∑

i

g(y1|f−1
i (ey2)) g(y2) dy1dy2 =

∫ ∫
eαy1+αy2 G(y1, y2) dy1dy2 , (49)

whereG(y1, y2) =
∑

i g(y1|f−1
i (ey2)) g(y2). Equation (49) shows thatIα(f) is the 2-D Laplace transform of the

function G(y1, y2), evaluated at the point(α, α). So, the knowledge of the multivariateα-entropy of a density, as a

function ofα, characterizes only the Laplace transform of the functionG over the lineα1 = α2 on the Laplace frequency

plane.

8 Conclusion

In this report we have given rate of convergence bounds for length functionals of minimal-graphs satisfying continuous

quasi-additivity, and briefly discussed their performance for entropy estimation. These results suggest that further explo-

ration of minimal graphs for estimation of Rényi divergence, Ŕenyi mutual information, and Ŕenyi Jensen difference is

justifed.

There are still many problems that remain to be studied. One such problem is the achievability of the minimax rates

derived in section 5, in particular, the existence of practical estimators that achieve these rates. We believe this is a

challenging problem as the techniques commonly used to address this problem yield only estimators of theoretical interest.

One other problem is the derivation of convergence rate bounds for thek-MST, as this graph provides a robust entropy

estimator. Also, to complete the results given in this report, it would be interesting to extend the rate bounds to smoother

Holder continuous densities (i.e.,β > 1). With regards to future applications, we feel that these methods can be applied

in problems such as independent component analysis (ICA) or clustering techniques. Finally, establishing general weak
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convergence results for these types of minimal graphs could have a significant impact in applications such as hypothesis

testing and goodness of fit tests.
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A Appendix

Proof of Lemma 2:By the mean value theorem, there exist pointsξi ∈ Qi such that

φi = md

∫

Qi

f(x)dx = f(ξi) .

Note that, in what follows,|.| means both the absolute value inR and any norm inRd. Using now the fact thatf ∈

Σd(β, L),
∫

S
|φ(x)− f(x)|dx =

md∑

i=1

∫

Qi

|f(ξi)− f(x)|dx ≤
md∑

i=1

∫

Qi

L |x− ξi|βdx .

As x, ξi ∈ Qi, a sub-cube with edge lengthm−1,
∫

Qi
|x− ξi|βdx = O(m−β−d). Thus, we have

∫

S
|φ(x)− f(x)|dx ≤ C L m−β .

¤

Proof of Lemma 4:This proof follows from [33]. Define

Gi(λ) = G(Xi,λ) =
md∑

j=1

L

2
m−βλjgj(Xi) =

L

2
m−βλtg(Xi)

whereλ = (λ1, . . . , λmd)t ∈ Λ andg = (g1, . . . , gmd)t. Define also

τi(λ, µ) = EunGi(λ)Gi(µ)

for λ, µ ∈ Λ. Note that, due to construction ofg,

EunGi(λ) = 0 , (50)

and due to identically distributed samples assumption,τi(λ, µ) = τ1(λ, µ).

Now, rewritehn as:

hn =
∑

λ∈Λ

wλ

n∏

i=1

(1 + Gi(λ))

=
∑

λ∈Λ

wλ


1 +

∑

i

Gi(λ) +
∑

i<j

Gi(λ)Gj(λ) +
∑

i<j<k

Gi(λ)Gj(λ)Gk(λ) + . . .




wherewλ = 2−md

. From a Bayesian perspective, the weightswλ define a uniform prior probability onΛ.
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Using Jensen’s inequality,

‖hn − un‖21 = (Eun |hn − 1|)2 ≤ Eun |hn − 1|2

= Eun





∑

λ,µ∈Λ

wλwµ


∑

i

Gi(λ) +
∑

i<j

Gi(λ)Gj(λ) + . . .




(∑

i

Gi(µ)+

+
∑

i<j

Gi(µ)Gj(µ) + . . .






 (51)

Expanding out the product in (51), due to independence and (50), only the terms where each factorGi(λ) is paired

with a correspondingGi(µ) will survive. All other terms with an isolated factor will be zero. The result is

Eun |hn − 1|2 =
∑

λ,µ∈Λ

wλwµ


∑

i

τi(λ, µ) +
∑

i<j

τi(λ,µ)τj(λ, µ) + . . .




=
∑

λ,µ∈Λ

wλwµ (1 + τ1(λ,µ))n − 1 (52)

Regarding the double sum in (52) as an expectation of a pair of independent random variablesλ andµ, each distributed

according to a uniform prior inΛ, we get the following bound for the total variation norm:

‖hn − un‖21 ≤ E (1 + τ1(λ,µ))n − 1 ≤ E exp{n τ1(λ, µ)} − 1 , (53)

where the last inequality comes fromex ≥ 1 + x.

Now, note that the functionsgi have disjoint supports and, so, are orthogonal in the sense thatEugi(X1)gj(X1) = 0,

for i 6= j. Thus, we have

τ1(λ, µ) =
(

L

2
m−β

)2

λt Eun

{
g(X1)gt(X1)

}
µ = σ2 λtµ ,

with σ2 =
∫ (

L
2 m−βg1(x)

)2
dx. Equation (53) simplifies to

‖hn − un‖21 ≤ E exp{nσ2 λtµ} − 1 .

The above expectation is easy to compute because the choice of a uniform prior onΛ makes the coordinatesλi indepen-

dent, taking values+1 and−1 with probability1/2:

E exp{nσ2 λtµ} =
(

1
2

en σ2
+

1
2

e−n σ2
)md

≤ exp
{

1
2

md (n σ2)2
}

.

Lemma 4 now follows. ¤
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B Appendix

In this Appendix we will introduce some concepts from the theory of Sobolev spaces and then show how to extend the

previous results on convergence rate bounds to densities in the Sobolev class.

LetLp(Rd) be the space of measurable functions overRd such that‖f‖p = (
∫ |f(x)|pdx)1/p < ∞. Forf a real valued

differentiable function overRd, letDxj f = ∂f/∂xj be thexj-th partial derivative off , andDf = [∂f/∂x1, . . . , ∂f/∂xd]

be the gradient off . The concept of derivative can be extended to non-differentiable functions. Forf ∈ L1(Rd), g is

called thexj-th weak derivativeof f [38], written asg
def= Dxj

f if

∫

Rd

f(x)Dxj
ϕ(x)dx = −

∫

Rd

g(x)ϕ(x)dx

for all functionsϕ infinitely differentiable with compact support. The weak derivativeg is sometimes called thegener-

alized derivativeof f or distributional derivativeof f . If f is differentiable, then its weak derivative coincides with the

(usual) derivative.

We now define a function space whose members have weak derivatives lying in theLp(Rd) spaces [38]. Forp ≥ 1,

define theSobolev space

W 1,p(Rd) = Lp(Rd) ∩ {f : Dxj f ∈ Lp(Rd), 1 ≤ j ≤ d} .

The spaceW 1,p is equipped with a norm

‖f‖1,p = ‖f‖p + ‖Df‖p .

The Sobolev spaceW 1,p(Rd) is a generalization of the space of continuously differentiable functions, in the sense that

W 1,p(Rd) contains functions that do not have to be differentiable (in the usual sense), but can be approximated arbitrarily

close in the‖.‖1,p norm by infinitely differentiable functions with compact support ([38, Thm. 2.3.2]).

Let φ be the resolution-m block density approximation off , as defined in section 3.2. The following lemma establishes

how close (inL1(Rd) sense) these resolution-m block densities approximate functions inW 1,p(Rd).

Lemma 5 For 1 ≤ p < ∞, letf ∈ W 1,p(Rd) have supportS ⊂ [0, 1]d. Then there exists a constantC > 0, independent

of m, such that ∫

S
|φ(x)− f(x)|dx ≤ Cm−1(‖Df‖p + o(1)) . (54)
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Proof: First assume thatf is a continuously differentiable function. By the mean value theorem, there exist pointsξi ∈ Qi

such that

φi = md

∫

Qi

f(x)dx = f(ξi) .

Also by the mean value theorem there exist pointsψi ∈ Qi such that

|f(x)− f(ξi)| = |Df(ψi) · (x− ξi)|, x ∈ Qi .

Using the above results, Jensen inequality and Cauchy-Schwarz inequality

(∫

S
|φ(x)− f(x)|dx

)p

≤
∫

S
|φ(x)− f(x)|pdx =

md∑

i=1

∫

Qi

|f(ξi)− f(x)|pdx

=
md∑

i=1

∫

Qi

|Df(ψi) · (x− ξi)|pdx ≤
md∑

i=1

|Df(ψi)|p
∫

Qi

|x− ξi|pdx .

As x, ψi ∈ Qi, a sub-cube with edge lengthm−1:
∫

Qi
|x− ξi|pdx = O(m−p−d). Thus, we have

(∫

S
|φ(x)− f(x)|dx

)p

≤ Cm−p
md∑

i=1

|Df(ψi)|pm−d ≤ Cm−p

(∫

S
|Df(x)|pdx + o(1)

)
.

Since smooth functions are dense inW 1,p(Rd) ([38, Thm. 2.3.2]), using the standard limiting argument the above

inequality holds forf ∈ W 1,p(Rd). This establishes the desired result. ¤

Lemma 5 now provides the necessary result to extend the convergence rate bounds derived previously to the Sobolev

case. As it can be seen from section 3.2, theL1 approximation error will influence the final rate upper bound only through

the exponentβ in equation (20). As the Sobolev approximation error (54) is similar to the Holder class case forβ = 1,

we immediately have the following proposition:

Proposition 10 Let d ≥ 2 and1 ≤ γ ≤ d − 1. AssumeX1, . . . , Xn are i.i.d. random vectors over[0, 1]d with density

f ∈ W 1,p(Rd), 1 ≤ p < ∞, having supportS ⊂ [0, 1]d. Assume also thatf
1
2− γ

d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalLγ of orderγ that satisfies the add-one bound (8)

[
E

∣∣∣∣Lγ(X1, . . . , Xn)/n(d−γ)/d − βLγ ,d

∫

S
f (d−γ)/d(x)dx

∣∣∣∣
κ]1/κ

≤ O
(
n−

α
α+1

1
d

)
.
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