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Abstract

This report is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample of points from a general multivariate Lebesgue dengitwer [0, 1]¢. It is known
that under broad conditions, when the functional applies power expanent(1,d) to the graph edge
lengths, the log of the functional normalized b{—")/% is a strongly consistent estimator of théryi en-
tropy of ordera: = (d—+)/d. In this paper, we investigate almost sure (a.s.) apeorm (r.m.s. forx = 2)
convergence rates of this functional. In particular, whef v < d — 1, we show that over the space of
compacted supported multivariate densitfesuch thatf € ¥,(5, L) (the space of Holder continuous func-
tions),0 < 3 < 1, the £,.-norm convergence rate is bounded abovelbf ~5/(«5+1) 1/4)) \We obtain
similar rate bounds for minimal graph approximations implemented by a progressive divide-and-conquer
partitioning heuristic. We also obtain asymptotic lower bounds for the respective rates of convergence,
using minimax techniques from nonparametric function estimation. In addition to Euclidean optimization
problems, these results have application to non-parametric entropy and information divergence estimation;
adaptive vector quantization; and pattern recognition.
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1 Introduction

It has long been known that, under the assumption @idependent identically distributed (i.i.d.) vertices[in1]¢,

the suitably normalized weight function of certain minimal graphs dveimensional Euclidean space converges almost
surely (a.s.) to a limit which is a monotone function of theni entropy of the multivariate densitfy of the random
vertices. Recall that the@Ryi entropy o-entropy is defined as
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Ha(f) = 1 log [ f*(@)de.

Graph constructions that satisfy this convergence property include: the minimal spanning tree{M&anest neighbors

graph ¢-NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted variants.
See the recent books by Steele [1] and Yukich [2] for introduction to this subjeaR(An'/¢) bound on the almost sure

(a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained by Redmond

and Yukich [3, 4] when the vertices are uniformly distributed doet]?.

In the present report we obtain bounds on a.s. apghorm (r.m.s. fork = 2) convergence rates of power-weighted
Euclidean weight functionals of orderfor general Lebesgue densitigsver|0, 1]¢, for which f € ¥4(3, L), the space of
Holder continuous functions, < 3 < 1, andfz~7 is integrable. Here the dimensidiris greater than one ande (1,d)
is an edge exponent which is incorporated in the weight functional to taper the Euclidean distance between vertices of
the graph (see next section for definitions). As a special case of Proposition 5, we abtéirr&°/(«#+1) 1/4)) pound
on the r.m.s. convergence. This bound implies a slower rate of convergence than the an@lpgou€) rate bound
proven for uniformf by Redmond and Yukich [3, 4]. Furthermore, the rate constants derived here suggest that slower
convergence occurs when either th&(ii) entropy of the underlying densifyor the constant is large. We also derive
lower bounds to the respective convergence rates by recasting the problem as that of estimatenyitleatFopy, or
equivalently [ f*(x)dx, over the non-parametric class of densitfes ¥,(3, L). For this, we use standard minimax

techniques from non-parametric function estimation.

We also obtainl,-norm convergence rate bounds for partitioned approximations to minimal graphs implemented
by the following fixed partitioning heuristic: 1) dissd6t 1]¢ into a set ofin? cells of equal volumes/m?; 2) compute
minimal graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation

to the minimal graph spanning all of the points[in1]¢. Such heuristics have been widely adopted, e.g. see Karp [5],
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Ravi et al. [6], and Hero and Michel [7], for examples. The computational advantage of this partitioned heuristic comes
from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linetirein
partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer
thann points. In Proposition 6 we obtain bounds 8p-norm convergence rate and specify an optimal “progressive-

resolution sequenceh = m(n), n = 1,2, ..., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing
applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [8, 9, 7, 10].
Beyond the signal processing applications mentioned above these results may have important practical implications in
adaptive vector quantizer design, where tl@R entropy is more commonly called the Panter-Dite factor and is related
to the asymptotically optimal quantization cell density [11, 12]. Furthermore, as empirical versions of vector quantization
can be cast as geometric location problems [13], the asymptotics of adaptive VQ may be studied within the present

framework of minimal Euclidean graphs.

The outline of this report is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework of
continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate upper bounds for such
functionals with general Holder continuous dengityin Section 4 we extend these results to partitioned approximations.

In Section 5 we derive lower bounds to the convergence rates. In Section 6 we make a brief comment about nonparametric
estimation of the Bnyi entropy. Finally, in section 7 we digress about the characterization of a density frerantsopy,
when the later is regarded as a functiomofe also give an extension of the convergence rate upper bounds to densities

in a Sobolev class in Appendix B.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function

of a minimal graph such as the MST and the TSP over i.i.d. random piints { X, ..., X, } asn — oo has been of

great interest. The monographs by Steele [1] and Yukich [2] provide two engaging presentations of ensuing research in this
area. Many of the convergence results have been encapsulated in the general framework of continuous and quasi-additive

Euclidean functionals recently introduced by Redmond and Yukich [3]. This framework allows one to relatively simply



obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required continuity and

subadditivity properties. We follow this framework in this paper.

Let F' be a finite subset of points ijo, 1]%,d > 2. A real-valued function_., defined onF is called aEuclidean

functional of ordery if it is of the form

Ly(F) = min > _ |e(F)[" D)
ecE

wheref is a set of graphs, e.g. spanning trees over the poinks inis an edge in the grapk| is the Euclidean length

of e, and~ is called theedge exponerdr power-weighting constantWe assume throughout this paper that v < d.
2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL.,(X,,) of a minimal graph orj0, 1] is a continuous quasi-additive functional if it can be closely
approximated by the the sum of the weight functionals of minimal graphs constructed on a dense parfitjaif of
Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),
and thek-nearest neighbor graph-NNG). In the TSP the objective is to find a graph of minimum weight among the set
C of graphs that visit each point ift;,, exactly once. The resultant graph is called mhieimal TSP touiand its weight

is L$SP(X,1) = mincec ). le]?. Construction of the TSP graph is NP-hard and arises in many different areas of
operations research [14]. In the MST problem the objective is to find a graph of minimum weight among theZgraphs
which span the sampl&,,. This problem admits exact solutions which run in polynomial time and the weight of the
MST is LYST(X,,) = minper . cp le[?. MST's arise in areas including: pattern recognition [15]; clustering [16];
nonparametric regression [17] and testing for randomness [18]kTEG problem consists of finding the s&f; ; of
k-nearest neighbors of each poikit in the sett,, — {X;}. This problem has exact solutions which run in linear-log-
linear time and the weight iEﬁ*NNG(Xn) =>", > cen, , [€|7- Thek-NNG arises in computational geometry [19],

clustering and pattern recognition [20], spatial statistics [21], and adaptive vector quantization [22].

The following technical conditions on a Euclidean functiohalwere defined in [3, 2].

o Null condition L.,(¢) = 0, whereg¢ is the null set.

e Subadditivity Let 9™ = {Q,;};’;dl be a uniform partition of0, 1]¢ into m? subcubeg); with edges parallel to



the coordinate axes having edge lengitrs' and volumesn—¢ and Iet{qi}?;d1 be the set of points ifo), 1]¢ that
translate eacky; back to the origin such tha®; — ¢; has the formn 1[0, 1]¢. Then there exists a constaff

with the following property: for every finite subsétof [0, 1]¢
L,(F)<m™ mzd L, (m[FNQ; —q]) + Cim*™ 2
i=1
e Superadditivity For the same conditions as above®n m, andg;, there exists a consta6t with the following
property:
L,(F)>m™" § L, (m[FNQ; —q]) — Com®™ 3
i=1
o Continuity There exists a consta@t such that for all finite subsefs andG of [0, 1],
L, (FUG) = L, (F)| < C(card @)/, 4)
where cardG) is the cardinality of the subsét. Note that continuity implies
L (F) = L (G)| < 2C3(card F A @)=/, (5)
whereF' A G = (F UG) — (F N G) denotes the symmetric difference of sétandG.
The functionalL ., is said to be aontinuous subadditive functionaf order+ if it satisfies the null condition, sudad-

ditivity and continuity. L., is said to be aontinuous superadditive functionaif order- if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functiondls on [0, 1]¢ there exists aual superadditive functional’. The dual
functional satisfies two properties: L) (F) + 1 > L (F) for every finite subsef’ of [0, 1]¢; and, 2) for i.i.d. uniform

random vector§/ 4, ..., U, over|0,1]¢,
|E[L,(Uy,...,U,)] — E[LX(Uy,...,Uy)]| < Cyn'd—1=D/d (6)
with C} a finite constant. The condition (6) is called ttlese-in-mean approximatidn [2].

A stronger condition which is useful for showing convergence of partitioned approximationgigitit@ise closeness

condition

| (F) = L (F)] < o ([eard ()] =7/, (7)

v
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for any finite subsef” of [0, 1]¢.

A continuous subadditive functiondl, is said to be &ontinuous quasi-additive functionil L., is continuous sub-
additive and there exists a continuous superadditive dual functianalWe point out that the dual’ is not uniquely
defined. It has been shown by Redmond and Yukich [4, 3] that the boundary-rooted vergionnamely, one where
edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite
property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [2, 3] almost sure limits with a convergence rate upper boun@ Qﬁ*l/d) were obtained for continuous quasi-
additive Euclidean functionalé, (U, ..., U,,) under the assumption of uniformly distributed poibfs, ...,U,, and
an additional assumption that, satisfies the “add-one bound”

e Add-one bound
| B[L,(U,...,Upy1)] — B[L,(Uy,...,U,)] | < Csn~/4. 8)

The MST length functional of order satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds whenL., is merely continuous quasi-additive [2, Ch. 5]. Tie!/? convergence rate bound is exact foe 2.

3 Convergence Rate Upper Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesgue fleasify; (5, L). For
convenience we will focus on the case tHat is continuous quasi-additive and satisfies the add-one bound, although
some of the following results can be established under weaker assumptions. Our method of extension follows common
practice [23, 1, 2]: we first establish convergence rates of the lgan X 1, . .., X ,,)]/n(4=7)/4 for piecewise constant
densities and then extend to arbitrary densities. Then we use a concentration inequality to obtain &.s-nama

convergence rates @f, (X1, ..., X ,)/n(d=7/d,
3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.
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Lemmal Letg(u) be a continuously differentiable function®fe R which is concave and monotone increasing over

u > 0. Then for anyu, > 0

g(uo)

Uo

9(uo) — Al < g(u) < gluo) + ¢ (uo)|A

whereA = u — u, andg (u) = dg(u)/du.

Proof:
Sinceg(u) is concave the tangent lingw) dﬁfg(uo) + ¢ (uo)(u — u,) upper boundg. Hence

g(u) < gluo) +g (uo)lu — uol.

On the other hand, asis monotone and concave, the functigfa) dEfg

(uo) + %u;’)(u — o)1 {y<y,} is alower bound
ong, wherel, <,y is the indicator function of the st < u,}. Hence,

9(to)

o

g(u) > glue) — lu — .

O

A density f(x) over [0, 1]¢ is said to be a block density witl? levels if for some set of non-negative constants

{qsi};’;dl sati:sfyingzzrf1 dim~ 4 =1,

®)=3 oo, (@)

wherelg(z) is the set indicator function af C [0, 1]¢ and{Q;}"; is the uniform partition of the unit cub@, 1]¢

defined above.

Proposition 1 Letd > 2and1 <y < d — 1. AssumeX, ..., X, are i.i.d. sample points oveé®, 1] whose marginal
is a block density with m? levels and suppoi§ C [0, 1]¢. Then for any continuous quasi-additive Euclidean functional

L., of order~ which satisfies the add-one bound (8)

‘E[LW(Xl, o X))t/ ngd/ A=/ da
S

<0 ((nm_d)_l/d) .

wheref. 4 is a constant independent ¢f A more explicit form for the bound on the right hand side is

K1+Cy fS

(nm—9)1/4

z)de (1+0(1), d>2
0 ((nm_d)_l/d) =

K1+C4+Br., ,a f
(nm—d)1/d S

z)dz (1+0(1)), d=2



Proof:

Let n; denote the number of sampléX,, ..., X, } falling into the partition cell); and let{U,}; denote an i.i.d.

sequence of uniform points d6, 1]¢. By subadditivity, we have

md
Ly(X1,.., Xn) < m Y Ly(m[{X1,..., X} NQi — qi]) + Cym™®™?
=1

md
= m Y L,(Ui,....Uy,)+Cym*™
i=1

since the samples in each partition a@ll are drawn independently from a conditionally uniform distribution gixen

Note thatn; has a BinomialB(n, ¢;m~%) distribution.

Taking expectations on both sides of the above inequality,

md

E[Ly(X1,....X,)] < m™Y E[E[L,(U,...,Uy,)

=1

ng)] + Cym?=7. 9)

The following rate of convergence for quasi-additive edge functiohalsatisfying the add-one bound (8) has been

established fot < v < d[2, Thm. 5.2],

d—v d—1—~

|E[Ly(Uy,...,U,)] = Br,an @ | < Kin~a (10)

whereKj is a function ofC, C3 andCs.

Using the result (10) and subadditivity (9) @n, for 1 < v < d we have

d
d—~—1

m d—v o
E[L,(X1,...,X,)] < m”ZE[ﬂLwdnidJrKlnl a ]+C’1md7
=1

—1

d—

md d—v md
=m By, an’T ;E {(Z) ' ] +m KT ;E [(Z) ! } +Cymd
(11)

Similarly for the dualL, it follows by superadditivity (3) and the close-in-mean condition (6)

E[L:(Xy,..., X )]

o S [(2)7] o o]

i=1

} — Com®™  (12)



forl <~ <d.

We next develop lower and upper bounds on the expected values in (11) and (12). As the fyufictiea u” is

monotone and concave over the range 0 for 0 < v < 1, from Lemma 1

. v n
(%) = w-p |2 -
n n

: (13)
wherep; = ¢;m~%. In order to bound the expectation of the above inequality we use the following bound
B|% -nf) < /5|2 -nf] = ovia-m < VL.
Therefore, from (13),
()] = - e (14)

By concavity, Jensen’s inequality yields the upper bound
s ]= =G =n (15)

Under the hypothesis < v < d — 1 this upper bound can be substituted into expression (11) to obtain

ElL,(X1,...,X,)/n\d0/d

d
_ K o A=l C
—&mz¢d G ot
i=1

(nm*d)(d*w/d

K C
d—~v)/d 1 d—vy—1)/d 1

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual fuh¢tional

E[L}(X1,..., X,)]/nl40/d

_ 1,
ZﬂLmd/fdd(m)dsc—(nm i 1/2/f2 1 (x)de

K1+C4 l
KO

(nm d)(d v)/d (17)

By definition of the dual,

E[Ly(X1,...,X))/n T > E[L(X1,..., X,)]/n T —n T (18)
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which when combined with (17) and (16) yields the result

ElLy (X1, X4)] / iy K1+C4 Br,.a / 1,
— — C (x)dxe| < x)dx + . 27 d(x)dx
nd,dw ﬁL%d Sf ( ) l/d ( - d)1/2 Sf ( )
+W +n- ; (19)
whereK> = max{C4, C3}. This establishes Proposition 1. |

3.2 Mean Convergence Rate for Holder Continuous Density Functions
Before extending Proposition 1 to general densities we will need to establish an approximation lemma for Holder contin-
uous functions.

Recall that the Holder class, (3, L) is defined by
a8, L) = {g:19(z) ~ D () < L |o— 21, @, 2 € R}

wherepk (z) is the Taylor polynomial (multinomial) of of orderk expanded about the point, |.| denotes a norm in
R< and | 3] is defined as the greatest integer strictly less thah (1, L) is the set of Lipschitz functions with Lipschitz

constantZ andX,(3, L) contains increasingly smooth functions@screases.

For 9™ = {Qi};'fl a uniform resolutionn partition as defined in Sub-section 2.1, define the resolutioolock
density approximatiog(x) = Z;fl ¢ilg,(z) of f, wherep;, =m fQ x)dz. The following lemma establishes how

close (inL, ([0, 1]%) sense) these resolution-block densities approximate functionshii'-? (R4).

Lemma?2 For0 < 3 < 1,let f € ¥4(3, L) have suppor§ C [0, 1]¢. Then there exists a constafif > 0, independent

of m, such that
/ |p(x x)|de < Cs Lm™". (20)
A proof of this lemma is given in Appendix A.

Remark Lemma 2 shows how close, ity (R?) sense, a functioii € ¥4(3, L) can be approximated by its resolution-
block density. To extend the results in this and the following sections to other classes of functions, all that it is needed is

an upper bound to th&, approximation error similar to the one in equation 20. In Appendix B, we show how to do this
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for densities in the Sobolev spabé!?(R%), 1 < p < oo. The importance of Sobolev spaces derives from the fact that it

includes functions that are not differentiable in the usual (strong) sense.

We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-
uniform densityf. Let {Xl-}?:l be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximationp. By the triangle inequality,

’E[LW(Xl,...,Xn)]/ndd” _ﬁLwd/Sfd’T”(a;)dw (21)

< ‘E[LV(XI,...jn)]/nT —ngd/Sg;d?T"(x)dw + Br

/S 67 (@)da — /S 7 (@)da

n ’E[LV(Xl, o X)) = BlLy(Xy, .. X)) T =1+ 1+ 111

Term I can be bounded by Proposition 1. To bourd consider the following elementary inequality, which holds for
a,b>0,0<~vy<d,

‘a(d—w/d —pa=M/d| < g — p|@-M/d,
and therefore, by Lemma 2 and Jensen’s inequality,
1< B /S (¢(x) — f(@)| T dw < B, 4 Cg L/ = Pl=0/d, (22)
whereCj, = C{47/4,

The following Proposition establishes an upper bound on ferinin (21):

Proposition 2 Letd > 2and1 < v < d. Assume{Xi}?=1 are i.i.d. random vectors ovdp, 1]¢ with densityf €
¥q(3,L),0 < 3 < 1, having supportS c [0,1]%. Let{X;}’, be i.i.d. random vectors with marginal Lebesgue density
¢, the resolutionm block density approximation ¢f. Then, for any continuous quasi-additive Euclidean functidnal

of order~y

ElL,(X1,...,X,)] — E[L(X1,...,X,)]| /n T < C4C4 LA/ p=Bld=/d (23)

whereC} = 22d=/dCy,

Proof:
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As in equation (21), we denote the left hand side of (23) by Ill. First invoke continuity (), of
- - (d—v)/d
n =N/ < 904 E [card({Xl, LX) A {Xl,...,Xn}> ! ] .

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([23], Theorem

3). There it is shown that i approximates in the £, (R?%) sense:

/|¢ 2)|dz < e,

then, by standard coupling arguments, there exists a joint distrib&iimn the pair of random vectorsX, X) such that

P{X # X} <e. Itthen follows by Lemma 2 and the set inequalitf ;,..., X, } A {X,,...,X,} CU" {X,} A
{X,} that
II1 < 203E [card(u?_l{Xi}A{Xi})(dv)/d} /ntd=/d
n (d—v)/d
< 2C3FE <2§ 1 (X Xi}> ] /ntd="/d
< 205(2nP{X # X1 })@0/d pld=n/d < 9QRd=m)/dcy(d=1)/d

where the second inequality follows from the faatd ({Xi} A {XJ) € {0,2}. Finally, by Lemma 2 we can make

as small a€s L m~" and still ensure that be a block density approximation foof resolutionm. |

We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain

BIL, (X1 X)) a0 5y [ (@) e
S

K1+C4 < 2)do+ (1 )) +( ﬁLw,dl/Q (/ f24 (z)de + o(1 ))

(nm—2)17d
+ (Br,.a + C%) Cf L=/ d gy =Bld=)/d

(24)

* e d)(d n7d T B

This bound is finite under the assumptions tfiat (3, L) with support inS c [0,1]¢ and thatfz 4 is integrable

oversS.

The bound (24) is actually a family of bounds for different valueswof= 1, 2, .... By selectingn as the function of

n that minimizes this bound, we obtain the tightest bound among them:

12



Proposition 3 Letd > 2and1 < v < d — 1. AssumeX1,..., X, are i.i.d. random vectors ovef, 1]¢ with density
f € 34(B3,L),0 < B < 1, having supportS C [0,1]?. Assume also thafz 7 is integrable ovelrS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

ElL,(X1,..., X)) /ntd=n/d — ﬁLwd/ FUU (@) da
S

S [0) (n—h (dv’YyP)) ,

where

afp
af+1

7‘1(d7 ’Y,p) =

IS

wherea = .

Proof. Without loss of generality assume that.~? > 1. In the rangel > 2 and1 < v < d — 1, the slowest of the
rates in (24) arénm—%)~/¢ andm—#(@=7)/4_We obtain ann-independent bound by selecting = m(n) to be the

sequence increasing inwhich minimizes the maximum of these rates
m(n) = arg min max {(nm_d)_l/d, m_ﬁ(d_w/d} .

The solutionm = m(n) occurs wher{nm=)~1/4 = q~=Pd=1/d or m = p!/[d@F+D)] (integer part) and, correspond-

ingly, m~A(@-7/d — =314 This establishes Proposition 3. O
3.3 Concentration Bounds

Any Euclidean functionaL., of order~ satisfying the continuity property (4) also satisfies the concentration inequality

[2, Thm. 6.3] established by Rhee [24]:

_ \2d/(d—~)
P(L(X1,....Xn) — E[L(X1,....Xn)]| > 1) < Cexp (%) , (25)

where(' is a constant depending only on the functiohglandd. It is readily verified that it > C3C4=/(2d) the
right hand side of (25) is summable over= 1,2,... whent is replaced byK (n1nn)(@=7/2d)  Thus we have by
Borel-Cantelli

IL(X1,.... Xn) — E[L(X1,....,X,)]| <O ((n 1nn)<dﬂ>/<2d>) (a.s.).

Therefore, combining this with Proposition 3 we obtain the a.s. bound

13



Proposition 4 Letd > 2and1 < v < d — 1. AssumeX1,..., X, are i.i.d. random vectors ovef, 1]¢ with density
f € 34(B3,L),0 < B < 1, having supportS C [0,1]?. Assume also thafz 7 is integrable ovelrS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

Inn\
<0 (max {( ) , n”(d’”’)}> (a.s.),
n

The concentration inequality can also be used to bound fmeomentsZ[| L (X 1, ..., X ,,) — E[L, (X1, ..., X,)]|"]V/*,

Ly(X1,..., X)) a0/ — g, d/fd /(@) da

wherer (d, v, p) is defined in Proposition 3.

k= 1,2,.... In particular, as for any r\zZ: E[|Z|] = [, P(|Z| > t)dt, we have by (25)

BlIL, (X1 Xo) = B, (X X = [ P (1L (X X0) = BIL (X X)) > 67
0
oo —2d/[r(d=7)]
< 030/ exp <) dt
Cn
= A.ntd=/C (26)
2d/[r(d—7)]

whereA,, = C3CHd=7/Qd)+1 5 g—u du.

Combining the above with (24), we obtain

Proposition 5 Letd > 2and1 < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ovéf, 1] with density
ol

f € 24(B,L),0 < 3 < 1, having supportS C [0,1]¢. Assume also thaﬁ*a is integrable overS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)
k1l/K
[E L(X1,...,X,)/nld=0/d g / U=/ () da } (27)
S

P < o)+ of1 )) BL_Wd,dl/2 (/ F2 4 (z)da + o(1 ))

nm—d (nm—d)1/d
+ (Br,.a + C%) Cf L=/ d g =Bld=)/d

+ -

(nm— d)(d M7d T - v)/d

+ AV =)/ 2d)

Proof:
For any non-random constamt using Minkowski inequality] E[W + p|*]*/* < [E|W|*]Y/* + |u|. Identify

po =EL,(X1,..., X )] /n4 0 g / U=/ () da
S

w = (Ly(X1,...,Xy) — B[L,(X1,...,X,)])/nld/d
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and use (26) and (24) to establish Proposition 5. a

As them-dependence of the bound of Proposition 5 is identical to that of the bias bound (24), minimization of the

bound overn = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary 1 Letd > 2and1 < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ovep, 1]¢ with density
f € 24(B,L),0 < 3 < 1, having supportS C [0,1]¢. Assume also thatz—4 is integrable overS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

E

wherery (d, v, p) is defined in Proposition 3.

m:| 1/k <0 (n,m(dﬁm)) , (28)

L(X1,...,X,)/nld=0/d g / U=/ () da
S

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 4 and Corollary 1 hold uniformly over the class of Lebesgue defisitigs (3, L)
and integrablef (¢=")/d=1/2 |f o = (d — ~)/d € [1/2,(d — 1)/d] then, as the suppo& C [0, 1] is bounded,
this integrability condition is automatically satisfied. To extend Proposition 4 and Corollary 1 to thecange
((d — 1)/d,1) would require extension of the fundamental convergence rate boué(of 1/¢) used in (10),

established by Redmond and Yukich [3], to the dase~ < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems of [2, Ch. 7}tlsandt a Lebesgue
density then the convergence rates in Propositions 4 and 5 hold when the region of inte§jiatieplaced by the

support of the Lebesgue continuous componernt of

3. The convergence rate bound satisfiggl, v, p) < 1/d, which corresponds to Redmond and Yukich’s rate bound
for the uniform density ovejo, 1]¢ [2, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates

for non-uniform densities.

4. Whenf is piecewise constant over a known partition of resolutios= m,, faster rate of convergence bounds are

available. For example, in Proposition 1 the bound in (19) is monotone increasing Tierefore the sequence
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m(n) = m, minimizes the bound as — oo and, proceeding in the same way as in the proof of Proposition 5, the
best rate bound is of ordetax {n~(4=7/(d) n=1/d}As theO(n~!/¢) bound on mean rate of convergence is
tight [2, Sec. 5.3] ford = 2 and uniform densityf, it is concluded that forv = (d — 7)/d > 2/d the asymptotic

rate of convergence of the left hand side of (28) is exa@tly ~'/%) for piecewise constant andd = 2.

5. Fora = (d — v)) > 2/d, it can be shown that the rate bound of Proposition 1 remains valid evendbes not
satisfy the “add-one bound.” Thus, with> 2/d, Corollary 1 extends to any continuous quasi-additive functional
L., including, in addition to the MST, the TSP, the minimal matching graph and:thearest neighbor graph
functionals. As for the case < 2/d, we can use a weaker rate of mean convergence bound [2, Thm. 5.1], which
applies to all continuous quasi-additive functionals and uniférim place of (10) in the proof of Proposition 1 to

obtain

BlL,(X1,...,X,,)]/ntd=/1 _ ﬁL,Y,d/ FUEI () da
S

<0 (n‘m) : (29)

6. A tighter upper bound than Corollary 5 on thg-norm convergence rate may be derived if a bettedependent

analog to the concentration inequality (25) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [8{aHa8i,
Mitchell [26], and Arora [27], as ways to reduce computational complexity. The fixed partition approximation is a simple
example whose convergence rate has been studied by Karp [5, 28], Karp and Steele [29] and Yukich [2] in the context of

a uniform densityf.

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-
eterm controlling the number of cells in the uniform partiti@™ = {Q;}™, of [0, 1]¢ discussed in Section 2. Whemn
is defined as an increasing functiorrofve obtain a progressive-resolution approximatiof {9.X,,). This approximation
involves constructing minimal graphs of ordeon each of the cell§;, i = 1,...,m¢, and the approximatio’ (X,,)

is defined as the sum of their weights plus a constant bias corrégtion

m d

LX) = Ly(Xn N Qi) + b(m), (30)
=1
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whereb(m) is O (mdﬂ). In this section we specify a bound on tiig-norm convergence rate of the progressive-
resolution approximation (30) and specify the optimal resolution sequen¢e) } .~ which minimizes this bound. Our
derivations are based on the approach of Yukich [2, Sec. 5.4] and rely on the concrete version of the pointwise closeness

bound (7)

| Ly (F) = L;

5 C'log card(F)), y=d—-1#1 , (31)

") Cleard(F)]@=r=D/(d=1) " 1 <y <d—1
F)| <
C, d—1<~vy<d

for any finite F C [0, 1]%. This condition is satisfied by the MST, TSP and minimal matching function [2, Lemma 3.7].

We first obtain a fixedn bound onZ; deviation of L (X;,) /n(?=7)/? from its a.s. limit.

Proposition 6 Letd > 2and1 < v < d — 1. Assume that the Lebesgue dengity ¥,(5, L), 0 < 8 < 1, has support
S c [0,1]¢. Assume also that'/2~7/¢ are integrable oves. Let L7} (&X,) be defined as in (30) whefg, is a continuous

guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

d |

if b(m)=0(m?"7)

L;”(Xn)/n(d_"”/d _ Ingd/ f(d_"’)/d(w)dw
s

<0 (max{(nm*d)*W/[d(d*U]’ m—Bd=/d, n*(df“/)/@d)}) (32)
Proof:
Start with
E { LINX)]/n' = — B g / F (@) da } < (33)
S
E [ Ly(X,)/n T = Br,a /S [T (@)da } + B [|L7(X) = Ly(X)|] /0T (34)

Analogously to the proof of [2, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the
difference between the partitioned weight functibft (/") and the minimal weight functiod.., (F) for any finite ' C
[0,1]¢

md

b(m) — Cym?™ < LM(F) = Ly(F) <m™C Y (card(F N Q) ™/ 1 4 Comd=7 + b(m).  (35)

Y
=1
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As usual letp(x) = Z;’i #;m~% be a block density approximation ft{z). As {X,, N Qi}?;dl are independent and

E[Z]"] < (E[|Z])* for0 < u < 1

B\ LT (%) — Ly (X))

md

< m_'yCZE [(card(é\fn N Qi))(d_v_l)/(d_l)} + |b(m) — C1m4™Y| + 1 4+ Com®™7 + b(m)
i=1

md

< m Ipld-r=b/d-H Z((bimfd)(dﬂfl)/(dfl) + |b(m) — Cym™| +1 4+ Com?™ 4 b(m)

=1

md
— D) A==/ 0§ G000 ) — Cym®| 414 Com™ + b(im)
=1

= m)/[d=Dpld=y=1)/[d-D / =D/ @D ()da + |b(m) — Cym@™ 7] + 1 4 Com®™ + b(m)
S

Note that the bias terfid(m) — Cym=7| can be eliminated by selectingn) = C;m?~". Dividing through byn(¢=7)/4,

noting that(|b(m) — C1m?=7| 4+ Com=7 + b(m)) /nld=7/4 < B(nm=4)~(4=7)/4 for some constanB

|25 — 1, ()
n(d_'Y)/d

} < (nm—%y~/ldE- Do / $=1D/@) (g) g + (nm~ ) ~@N/AR 4 g (d=)/d,
S

Combining this with Proposition 5 we can bound the right hand side of (34) to obtain

E{ |
x)dz + o(1 )) BL_E 172 </f x)dz + o(1 ))

+(Br..a+ Cé) C’é L@=/d y,—Bld=y)/d + Aln—(d—v)/@d)

LI (X)) /n@= 04— gy / FAD/ () g
K+ Cy <

nm—d (o —d\1/d

* )(d n7d T o

c

ey (L7 @de 4 o(1)) + ()4, (36)

Over the rangé < v < d — 1 the dominant terms are as given in the statement of Proposition 6. O

Finally, by choosingn = m(n) to minimize the maximum on the right hand side of the bound of Proposition 6 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Letd > 2and1 < v < d — 1. Assume that the Lebesgue dengitg ¥,(5,L), 0 < 8 < 1, has support
S C [0,1]¢. Assume also that!/2~7/4 is integrable overs. Let LT (X,,) be defined as in (30) whete, is a continuous

guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then
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if b(m)=0(m?=7)

d

} <O (nreln), 37)

Lr(Xy, L X))/ _5Lmd/ FAD/4( )
S

where

al 1
d77 :777
r2(d, 7, ) Tlagi1d

wherea = %=, This rate is attained by choosing the progressive-resolution sequeneen(n) = n'/14(*5* @5+,
4.1 Discussion
We make the following remarks.

1. Under the assumed conditign< d — 1 in Corollary 2,r5(d,~,p) < r1(d,~,p), whereri(d,~,p) is defined in
Corollary 1. Thus, as might be expected, the partitioned approximation Basyarm convergence rate (37) that

is always slower than the rate bound (28), and the slowdown increaéés-al) /v increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic faté"») is
an increasing function of; f(4=7=1/(¢=1)()da, which is the Rnyi entropy off of order(d — v — 1)/(d — 1).
Thus fastest convergence can be expected for densities with semfi &itropy.

, 1/2
3. Itis more tedious but straightforward to show thatfheleviationF [|L;”(Xn)/n(d*7)/d — B s f(d*W)/d(a:)dm|2]

obeys the identical asymptotic rate bounds as in Proposition 6 and Corollary 2 with identical bound minimizing

progressive-resolution sequenee= m(n).

4. As pointed out in the proof of Proposition 6 the bound minimizing choice of the bias corréctionof the
progressive-resolution approximation (30pisn) = Cym?~7, whereC; is the constant in the subaddivity condi-
tion (2). However, Proposition 6 asserts that, for example, uging = Cm?~" with arbitrary scale constaxt,
or even using(m) = 0, are asymptotically equivalent to the bound minimizirig:). This is important since the
constant’; is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special case n of the greedy approximation to thepoint minimal

graph approximation introduced by Ratal [6] whose a.s. convergence was established by Hero and Michel [7]
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(Note that the overly strong BV condition assumed in [7] can be considerably weakened by replacing BV space
with Sobolev space and applying Lemma 2 of this paper). Extension of Proposition 6 to greedy approximations to

k-point graphs is an open problem.
5 Convergence Rate Lower Bounds

In this section we derive lower bounds for the convergence rates of minimal graphs. Define

1(f) = / £ () da (38)

From sections 2 and 3, (X1,.. ., X,)/n(?"/4is a (strongly) consistent estimator bf( ) for a = 4=2. Thus, itis

natural to recast our problem as that of estimafingf) over the nonparametric class of densitfes X,(5, L).

Let I,, be an estimator af.(f) (0 < a < 1) based on a sample afi.i.d. observations from a densiffy To access the
“quality” of I,, we adopt the usual (nonparametric) minimax risk criterion, i.e., we IoekmjtefE\fa — I, (f)P, the
worst case performance of over a known class of densitiég, for a choice ofp > 1. Under this criterion it is natural to

ask what is the minimum achievable risk for any estimator, i.e., what is

inf sup E|l, — I.(f)|”,
I, fEF

where the infimum is taken over all estimatordgf /), as this quantifies the best performance possible for any estimator.
Of course, ad, (X ,..., X ,)/n® is valid estimator of, (f), this will also yield a lower bound to the convergence rates

of interest. The rest of this section is devoted to deriving these (asymptotic) bounds using standard minimax techniques.
5.1 Notation

In the following, we will take the clasg as the set of multivariate Lebesgue densities defined on the unit[@uljé

(d > 1), belonging to the functional Holder cla&s (3, L).

We will also use the affinity P A Q|| between measurd? and@ defined by:

IPAQI=1- 2P~ Qlh (39)
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where|| P||; is the total variation norm aP defined as

1Py = sup ‘/fdP’
[fI<1

and the supremum is taken over all measurable functfdmsunded by 1. IfP and@ are absolutely continuous w.r.t. a
measure., with densitieg andg, respectively, thefiP — Q|1 = [ |p — ¢/ dp. In this case, we will writé|p — ¢|, for
[P — Q|1 and|p A g| for ||P A Q]|. Also, writep™ as shorthand notation fdf;_, p(z;), the density of the product

measureP®”,

Finally, write co(F) to denote the convex hull of.
5.2 Lower Bounds

In order to get lower bounds for the minimax risk, the usual technique is to build, for eyeysubsetr,, C F

of finite cardinality, such that the problem of estimatihg f) over Fy ,, is essentially as difficult as the full problem.
Assouad’s lemma or Fano’s lemma are the commonly used tools to address such constructions ([30]). However, in the
case of entropy estimation (as well as many other functional estimation problems, [31], [32]), these methods only give
the trivial lower bound zero. We will thus rely on a result by Le Cam (see for example [31]) that relates the minimax risk
to a testing problem between two sets of hypothesis, whose convex hulls are “well” separated in a total variation distance

sense. Bellow is a simplified version of this result, suited for our needs (for a simple proof see [31]):

Lemma 3 Let I be an estimator of (f)! based om i.i.d. observations from a densitfy ¢ F. Suppose that there are
subsetyj; andG, of G = {f" : f € F} that are2j-separated, in the sense thak(f1) — I(f2)| > 2d for all f1* € Gy
and f3 € Go. Then

sup E|I —I(f)| >6- sup |p1 Apa -
feF pi € co(Gi)

We will apply lemma 3 to the usual small perturbations of the uniform densitgn [0, 1]¢. Towards this goal, fix
g € Z4(B,1) with support in[0, 1]¢ such thatf g(z) dz = 0, [ ¢*(z)dx = ks > 0 and|g(z)| < M. Let{Qj}yf1 be

the uniform resolution partition and{x; };”:1 be the set of points ift, 1] that translate eadfy; back to the origin, as

YFrom now on, we will omit the subscript from I, andI.(f), unless necessary.
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defined in Sub-section 2.1. Lgf(x) = g (m(x — x;)). ForA € A = {-1, 1}md, define the perturbation ef as
md L
@) =1+ 5m P X g;(@) (40)
j=1

Itis easy to see thaf fi(x)dx =1, f\ € Z4(8, L) and, form large enoughf > 0. So (form large enoughy € F.

We can now apply lemma 3 to the sgis = {u"} andG, = {f¥ : A € A}. We will start by determining the

26-separation betwealy, andg,. Consider the second order Taylor expansion
« 1 a—2, 2
(14+y) :1+ay+§a(a—1)§ Yy

where¢ lies betweerl and1 + y. This implies that
fa(:c)dw—lzgd: 1+£m‘ﬁ)\-g-(w)/~@ ad:c—l
A p S 9 79I
_ 1Ly’ - Z i) de (41)
2\ 2 ’

wherel — MLm= < ¢(x) <14 MLm= Inserting these bounds in equation (41), we have

2
% (é’) oo —1) ks (1 M% m—8)0=2 =268 < /ff(ac) dz — 1
2
< % (s) ala—1) ko (1 + M% O e (42)

which essentially means th#itf{ (z) dz — 1 = m 2. We can now use this result to conclude, for ang A,

1) - 16 = | [ p(e)de 1| > 20 (@3
for some constant’ > 0 andm large enough.

We now need to derive a lower bound fotp,, ¢ .,(g,) lP1 A p2||. To this end, let:,, = 2-m* dorea [X € co(Ga).

The following lemma provides such a bound ([33]):

9 2
|u"—hn||%<exp{;md [n / (’;m—ﬁgmw)) dw] }—1

A proof of this lemma is given in appendix A.

Lemma 4
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For our choice ofj;, lemma 4 simplifies to:

1/L\*
™ — hnH% < exp {2 (2) H% n2 m—(45+d)} -1

Now, choosingn = O (n~=2/(4#+4) the optimum value that balances the rates in lemma 3ganeth thats, is small

enough, then there exists an- 0 such that
lu™ = hallf < (2(1 —€))*.

Hence, by equation (39),

U Abp|| >1—2(1—€)/2=¢>0. (44)

Finally, plugging equation (43) and (44), with the choicenof= O (n=2/(4*4)), into lemma 3 and using Jensen’s

inequality, gives us the desired lower bound:

Proposition 7 For 7 = {f : fis a Lebesgue density ¢, 1]¢ and f € X4(3,L)}, p > 1 andn large enough, there
exists a constant = ¢(g3, L, d, ) > 0 such that

) R 1/p 4B
inf sup |E|l, — Lo (f)[? >cn B (45)
1o feF

where the supremum is taken over all estimatiorsf I, (f) based om: i.i.d. observations from densitf.
We make the following comments about this proposition.

1. For sufficiently smooth densities, i.e., fér> d/4, 45/(45 + d) > 1/2, which is the usual rate of convergence
for parametric problems. This suggests, using the extension of the efficiency concept to the nonparametric setting

(Cramer-Rao type inequalities, ... to be verified), that the lower bound in Proposition 7 can be replaced by

>c n_(4/3+d/\%)

. 1/p
inf sup |:E|I(y — Ia(f)‘p}
I, feF

2. The results of Proposition 7 agree with those obtained byéBargd Massart in [34]. In there, they derive lower
bounds on the minimax risk for the general problem of nonparametric estimation of a functional
T(f) = [o(f(z), f'(),...,f®)(z),z)ds satisfying some smoothness conditions. They also show, that for
B > 2k + d/4, the/n-rate is achievable. Kerkyacharian and Picard closed the problem in [35] by showing that

the corresponding rates f6r< 2k + d/4 are also achievable.
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3. Are the rates in Proposition 7 achievable? (I think they are...)

Remark If, instead of the Rnyi entropy, we were interested in the Shannon entfépyf) = — | f(x)log f(x) dz, the

same rates would be obtained. This can be seen by considering the second order Taylor expansion,

1
(I+y)log(l+y) =y+5¢ Ly?

and following the same steps as fr(f). In [36], Laurent exhibits an efficient estimator of this entropy, for densities
defined on a compact set of the real line with smoothness parageter /4, that achieves the/n-rate on densities

bounded away from zero on their domain.
6 Performance of Minimal Graph and Plug-in Entropy Estimators

In this section we derive upper bounds for the maximum risk of plug-in estimators and minimal-graph based estimators

of entropy.

We consider entropy estimates of the foffg = (1 — o)~ ! log I,,, wherel,, is a consistent estimator f,(f). By a

standard perturbation analysislafz,

1 |1
1—a I,(f)

|Ho — Ho(f)| =

Thus, asl,,(f) is bounded away from zero uniformly over the cléSgi.e.,inf ;e I, (f) > 0), the asymptotic rate of

convergence ofl,, — H,(f), as a function of., will be identical to that ofl, — I.,(f).

Let f be a density estimate gfbased om i.i.d. observations (from densitf). We have the following upper bound

for plug-in estimatord,, (f):

Proposition 8 For F as defined in Proposition 7,

sup E Ia(f)—la(f) < angfd (46)
feFr

for Cq = Cl(ﬁ, L,d) > 0.
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Proof. The proof relies on the well known minimax rates for density estimation available in the literature (see, for example,

[37]). Specifically, these rates are of orden—?/(26+d)) je.,

sup E [ |f(x) — f(@)|de < Cyn~ 7554
feF

for the best estimatorf (for example, wavelet thresholding based estimators).

Using the above result, the inequaljty* — b*| < |a — b|* (a, b > 0) and successive applications of Jensen’s inequality

yield the desired result,

[e%

Bl - 1.0 < £ [|i@ - @) aa
< [ [|i@ - ) aa] < [e [|fe)- 1@ ae| <cin
(|
Forl, denoting the minimal graph estimator bf( f), we have from Proposition 5 the following result:
Proposition 9 For F as defined in Proposition 7, with< 5 < 1,1/2 < a < (d—1)/d,
sup & fa—la(f)‘ < Gy (47)

for Cy = Cy(8, L,d, ) > 0.
7 Notes on the Invertibility of the a-entropy

This section is somehow different in character from the previous sections. In here, we briefly digress about how the

knowledge ofH, (f), for « € G, whith G € [0, 1] being any open interval, can provide information about the defsity

We consider first the 1-dimensional case, ifeis a univariate Lebesgue density. Lt S, . . . be the support regions
of a monotonic decomposition gfsuch that the change of variabje= In f(z) is (locally) invertible over each s&;.

Define alsof; ' as the local inverse of(x) overz € S;. We thus have

/fa(x)dx/eo‘lnf(g”)dx/eay; (‘(i,lnf(x)

_ ey f(fz_l(ey))
- / Z FI(FHev))

Ia(f)

-1
: ) Ls.(f; ' (e")) dy
z=f; " (e¥)
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FUT )

Equation (48) shows thdy, ( f), as a function of, is the Laplace transform of the functigfy) = >, m’ Lin £(5) ().

Of course many different densitigswill result in the samey; just consider any location change of probability mass in f

and the resulting entropy will remain the same.

Consider now the multivariate case. Without loss of generality, we only need to study the 2-dimensional case, as the
general situation follows by induction. Wrifeas f (z1, z2) = f(x1]z2) f (z2), wheref (z1]z2) is the conditional density
of X; given X, andf(z2) is the marginal density oX,. Let g(y;|z2) be the functiory defined above witlf (x) replaced

by f(z1]z2). Proceeding in the same fashion as above, we have the following equalities:

I,(f) //fa(zl,xg)dxld@://f"‘(x1|x2)f°‘(:c2)dx1dx2

/ / e N " (| £ (6%2)) 9(y2) dyrdys = / / T Gy, ya) dyndyz . (49)

whereG(y1,y2) = >, 9(y1|f(e¥2)) g(y2). Equation (49) shows thal,(f) is the 2-D Laplace transform of the
function G(y1,y2), evaluated at the poirf,, o). So, the knowledge of the multivariateentropy of a density, as a
function of«, characterizes only the Laplace transform of the funcficover the linen; = as on the Laplace frequency

plane.

8 Conclusion

In this report we have given rate of convergence bounds for length functionals of minimal-graphs satisfying continuous
guasi-additivity, and briefly discussed their performance for entropy estimation. These results suggest that further explo-
ration of minimal graphs for estimation oféRyi divergence, Bnyi mutual information, and &yi Jensen difference is

justifed.

There are still many problems that remain to be studied. One such problem is the achievability of the minimax rates
derived in section 5, in particular, the existence of practical estimators that achieve these rates. We believe this is a
challenging problem as the techniques commonly used to address this problem yield only estimators of theoretical interest.
One other problem is the derivation of convergence rate bounds fér-8M8T, as this graph provides a robust entropy
estimator. Also, to complete the results given in this report, it would be interesting to extend the rate bounds to smoother
Holder continuous densities (i.e1,> 1). With regards to future applications, we feel that these methods can be applied

in problems such as independent component analysis (ICA) or clustering techniques. Finally, establishing general weak
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convergence results for these types of minimal graphs could have a significant impact in applications such as hypothesis

testing and goodness of fit tests.
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A Appendix

Proof of Lemma 2By the mean value theorem, there exist po§jt& @; such that

o= | fla)e=1(&).

Note that, in what follows|.| means both the absolute valuelRnand any norm irR?. Using now the fact thaf <
Ed(ﬂ) L)y
Jlo@ —s@pw=3" [ 15€) - @<y [ Lz gl
i=1 i i=1 g

Asz,&; € Q;, asub-cube with edge length™", [, |z —§;/°da = O(m~7~7). Thus, we have

[ 1ot@) ~ f(@)lta < CLm™"

0
Proof of Lemma 4This proof follows from [33]. Define
L L
) — ) — Zn BN .. N — Z BN )

Gi(A) = G(X;,A) = ; 5 A9 (X0) = 5m PN g(X5)

whereX = (Af,..., A\pa)t € Aandg = (g1, ..., gme)t. Define also
Ti(A, 1) = EynGi(X)Gi(p)

for A, u € A. Note that, due to construction gf

and due to identically distributed samples assumptigih, p1) = 71 (A, ).

Now, rewriteh,, as:

Aen  i=l
= Y wy (1 +D G+ GG A + D Gi(NGNGR(N) +)
AeA i i<y i<j<k

wherewy = 2-m" From a Bayesian perspective, the weights define a uniform prior probability oA.
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Using Jensen’s inequality,

1B — ([} = (Bun |hn — 1|)2 < Eun

A pen i<j i

+ 3 GG ) + - ) } (51)

i<j

B — 12

Expanding out the product in (51), due to independence and (50), only the terms where eacfi fgktas paired

with a correspondingr; () will survive. All other terms with an isolated factor will be zero. The result is

> wywp (Z )+ T T p) + - )

A UeA 2

i 1<J
= > wywp (L+7m(Ap)" -1 (52)
A UeA

Eyn|h, —1)?

Regarding the double sum in (52) as an expectation of a pair of independent random variabtgs, each distributed

according to a uniform prior irk, we get the following bound for the total variation norm:
Ay =T < EQ+n(A\p)" —1 < Bexp{nni(A, p)} -1, (53)
where the last inequality comes frash > 1 + x.

Now, note that the functiong have disjoint supports and, so, are orthogonal in the sens&lat X ,)g; (X1) = 0,

for ¢ #£ 5. Thus, we have
L 4 ? t t 2yt
np) =5 m AN Eqn{g(X1)g'(X1)jpu=0"Np,
with o2 = [ (£ m—ﬁgl(m))2 dz. Equation (53) simplifies to
| hn — un”% < Eexp{n02 Atﬂ} -1.

The above expectation is easy to compute because the choice of a uniform pkionakes the coordinates indepen-

dent, taking values-1 and—1 with probability 1/2:

d
1 1 " 1
Eexp{no® Xpu} = (2 enol 4 3 en02> < exp {2 m? (n02)2} .

Lemma 4 now follows. O
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B Appendix

In this Appendix we will introduce some concepts from the theory of Sobolev spaces and then show how to extend the

previous results on convergence rate bounds to densities in the Sobolev class.

Let £, (R?) be the space of measurable functions @&#such that| f||, = ([ | f(z)[Pdx)'/P < cc. For f areal valued
differentiable function oveR?, letD,, f = 0f/0xz; be thex;-th partial derivative off, andD f = [0f /0x1,...,0f/0z4]
be the gradient of. The concept of derivative can be extended to non-differentiable functionsf EoL,(R?), g is

called thez ;-th weak derivativeof f [38], written asg d:e szj fif

[ t@D,,p@ie =~ [ @)
for all functions infinitely differentiable with compact support. The weak derivaijvis sometimes called thgener-

alized derivativeof f or distributional derivativeof f. If f is differentiable, then its weak derivative coincides with the

(usual) derivative.

We now define a function space whose members have weak derivatives lyingdp (fRé) spaces [38]. Fop > 1,
define theSobolev space

WHP(RY) = L,(RY) N {f: Dy, f € L(RY), 1 <5 < d}.

The spacdV!? is equipped with a norm

[fllp = [1fllp + D]l -

The Sobolev spacd’ 7 (R?) is a generalization of the space of continuously differentiable functions, in the sense that
WP (R?) contains functions that do not have to be differentiable (in the usual sense), but can be approximated arbitrarily

close in the|.||;,, norm by infinitely differentiable functions with compact support ([38, Thm. 2.3.2]).

Let ¢ be the resolutionr block density approximation of, as defined in section 3.2. The following lemma establishes

how close (inZ; (R¢) sense) these resolution-block densities approximate functionslii!-» (R9).

Lemma5s For1 < p < oo, let f € W1P(R9) have suppors C [0, 1]%. Then there exists a constafit> 0, independent

of m, such that

/8 6(x) — f(@)ldz < CmL(IDf], + o(1)) . (54)
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Proof: First assume that is a continuously differentiable function. By the mean value theorem, there exist gpmtQ;

such that
i =m? de = f(&) -
i =m /Qi f(z)dx = f(&)

Also by the mean value theorem there exist poipfs= @; such that

|f(x) = f(&)l = Df (i) - (w = &), €@

Using the above results, Jensen inequality and Cauchy-Schwarz inequality

([ o)~ roaa) < [ iso) - \pdw—Z/ e e

;/Q IDf(%;) - (& —&;)[Pda < ;Df(tpiﬂp/@ o — £, Pda .

Asz,1; € Q;, asub-cube with edge length™": [, |z — &;[’dz = O(m~>~%). Thus, we have

IN

([ 16t) - sieia)’ < Cnr S D s m < O * ([ r@rde o)

i=1

Since smooth functions are denselin'?(R?) ([38, Thm. 2.3.2]), using the standard limiting argument the above

inequality holds forf € W'?(R4). This establishes the desired result. O

Lemma 5 now provides the necessary result to extend the convergence rate bounds derived previously to the Sobolev
case. As it can be seen from section 3.2,£h@pproximation error will influence the final rate upper bound only through
the exponeng in equation (20). As the Sobolev approximation error (54) is similar to the Holder class case-far,

we immediately have the following proposition:

Proposition 10 Letd > 2and1 < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ove0, 1]¢ with density

X
d

f e WP(R%), 1 < p < oo, having supportS C [0,1]¢. Assume also thatz~7 is integrable ovetS. Then, for any

continuous quasi-additive Euclidean functioda| of order~ that satisfies the add-one bound (8)

ke 1/K
E | o(wen).

Ly(X1,..., X,,)/nld=/d ﬁLwd/ U=/ () da
S
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