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ABSTRACT 
 

To date, automatic target recognition (ATR) techniques in 
synthetic aperture radar (SAR) imagery have largely focused 
on features that use only the magnitude part of SAR’s 
complex valued magnitude-plus-phase history. While such 
techniques are often very successful, they inherently ignore 
the significant amount of discriminatory information 
available in the phase. This paper describes a method for 
exploiting the complex information for ATR by using a 
convolutional neural network (CNN) that accepts fully 
complex input features. We show a performance leap from 
87.30% to 99.21% accuracy on real collected wide-angle 
SAR data with the use of complex features. 
 
 Index Terms — Complex-valued Deep Learning, 
Convolutional Neural Networks, Complex Feature 
Extraction, Wide-angle SAR 
 

1. INTRODUCTION 
 

This paper describes an approach for fully exploiting 
complex synthetic aperture radar (SAR) data using a 
convolutional neural network (CNN).  While magnitude-
only CNNs have been successful [3-5] for SAR ATR, 
ignoring phase potentially sacrifices useful information that 
can aid classification. This motivates our proposed approach 
that fully exploits complex data. We show experimentally 
that this complex-input approach provides a substantial 
classification improvement over magnitude-only inputs for a 
set of collected wide-angle SAR data.  
 The paper proceeds as follows. First, we describe the 
magnitude-only CNN approach to ATR [4]. The input data 
is analogous to optical grayscale images, allowing CNN 
techniques developed for image classification to be used 
without modification. 
 Second, we describe the proposed CNN that uses 
complex-valued inputs, based on [1,2]. In this 
implementation, the first convolutional layer is fully 
complex. It implements a nonlinearity that produces real 
values at the output, and the rest of the network is made up 
of ordinary convolution and pooling layers.  

 Finally, we show experimental results for each approach 
that demonstrate that using complex features can aid in 
classification. 
 

2. CNN CLASSIFIER WITH MAGNITUDE ONLY 
 

Recent CNN-based SAR classification schemes [3-5] use 
magnitude-detected input data and leverage network designs 
originally designed for greyscale natural imagery. We 
briefly describe this approach here in order to contrast it to 
the fully complex CNN we present later. As such, we focus 
on the pertinent parts of the CNN implementation, namely 
the input normalization and CNN topology, which are most 
distinct from the complex-valued CNN. For more details on 
magnitude-only CNN ATR implementations see [4]. 
 
2.1 Normalization 
 
Before input images are used by the CNN, they are 
normalized so that pixel values fall between a fixed range, 
e.g., [-0.5, 0.5], with an image-wide average of 0. Let 𝑝𝑝(𝑖𝑖, 𝑗𝑗) 
represent the unnormalized (magnitude-detected, real-
valued) pixel values used as input. Let there be 𝑁𝑁 total 
pixels. Then the normalized feature 𝑝𝑝𝑛𝑛(𝑖𝑖, 𝑗𝑗) is  
 

𝑝𝑝𝑛𝑛(𝑖𝑖, 𝑗𝑗) =
 𝑝𝑝(𝑖𝑖, 𝑗𝑗) − 1

𝑁𝑁∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑖𝑖,𝑗𝑗

max
𝑖𝑖,𝑗𝑗

𝑝𝑝(𝑖𝑖, 𝑗𝑗)
. (1) 

 
2.2 Network Topology 
 
A CNN consists of several multi-resolution layers, each 
using a pooling method to pass information forward from 
layer to layer. A typical CNN topology for SAR image 
classification is summarized in Table 1 [3]-[5].  The 
numbers of network layers and filters in Fig. 5 are smaller 
than many general purpose CNN implementations to protect 
against overfitting for small size training image datasets 
typically available in SAR ATR. We implement the pooling 
layers with the well-established Stochastic Pooling [6] 
algorithm to further guard against overfitting. The output 
layer implements the CNN classification stage using the 
Softmax function.  
 



Layer Type Image Size Feature Maps Kernel Size 
Input 80 x 80 1 - 
Convolutional 72 x 72 18 9 x 9 
Pooling 18 x 18 18 4 x 4 
Convolutional 12 x 12 36 7 x 7 
Pooling 4 x 4 36 3 x 3 
Convolutional 1 x 1 120 4 x 4 
Fully Connected 1 120 - 
Fully Connected 1 120 - 
Output 1 10 - 

Table 1: Topology of the magnitude-only CNN. 
 

3. COMPLEX CNN 
 

There are several ways to implement a CNN that uses 
complex inputs. The main difficulty lies in specification of 
the activation function, which allows networks to learn 
highly non-linear functions for classification as well as 
produce a weight-error gradient used for training.  
 A successful activation function must be both non-
linear and differentiable. The most common modern 
activation functions are rectified linear units (ReLU) [7] and 
the close variants (e.g. Leak-ReLU [8], PReLU [9]). Neither 
these nor classic activation functions such as Sigmoid and 
hyperbolic tangent are differentiable for complex inputs. 
Some researchers suggest splitting real and imaginary parts 
and processing each as a real number [10,11] or close 
variations [12]. Others suggest activation functions that 
ignore magnitude [13]. The problem with split activation 
functions is that phase information is overly distorted. The 
issue with ignoring magnitude is that magnitude contains 
significant information, defeating the point of a complex 
CNN, which attempts to make use of all available 
information.  
 These facts are illustrated in Figure 2 below, which 
shows the magnitude and phase information of an example 
from the GOTCHA dataset [14]. It is clear that both 
magnitude and phase contain structure, which suggests there 
is discriminatory information in both parts. 
 

 
Figure 1: Magnitude (L) and phase (R) of tophat1 

 
Our proposed complex-valued CNN is similar to an 

approach described in [1,2]. It is distinguished from these 
earlier efforts in that we do not use the absolute value 
function as the nonlinearity after the first hidden layer.  

In our complex-valued CNN implementation, only the 
first layer is complex-valued and provides a nonlinearity that 

produces real values. The rest of the network is made up of 
ordinary convolution and pooling layers. The complex layer 
has two filters for every feature map produced by the first 
hidden layer. Let 𝐴𝐴𝑖𝑖 denote the matrix resulting from 
convolving the real part of our complex input image with the 
first filter of the 𝑖𝑖th node and let 𝐵𝐵𝑖𝑖  represent the matrix 
resulting from convolving the imaginary part of the complex 
input with the second filter of the 𝑖𝑖th node. Our nonlinearity 
function for the 𝑖𝑖th node is 

𝑓𝑓(𝐴𝐴𝑖𝑖,  𝐵𝐵𝑖𝑖) = �𝐴𝐴𝑖𝑖2 + 𝐵𝐵𝑖𝑖2 (2) 

The error gradients for training use the partial derivatives 

𝜕𝜕𝜕𝜕(𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖)
𝜕𝜕𝐴𝐴𝑖𝑖

= 𝐴𝐴𝑖𝑖
𝜕𝜕(𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖)

    and    𝜕𝜕𝜕𝜕(𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖)
𝜕𝜕𝐵𝐵𝑖𝑖

= 𝐵𝐵𝑖𝑖
𝜕𝜕(𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖)

 (3) 

The feature maps produced here look distinctly different 
from a magnitude-only CNN, as shown in Figure 2 below. 

 

 
Figure 2: Detected image of a 5” quad trihedral labeled stri01_1 
(L), feature maps of first hidden layer for a greyscale CNN (C), 
feature maps of first hidden layer for a complex-input CNN (R) 

 
3.1 Normalization 
 
Normalization is handled differently in the proposed 
complex-valued CNN because subtracting the mean pixel 
value from every individual pixel distorts the phase 
information. Instead we use a scaling normalization 

𝑝𝑝𝑛𝑛(𝑖𝑖, 𝑗𝑗) =  𝑝𝑝(𝑖𝑖, 𝑗𝑗)/ max
𝑖𝑖,𝑗𝑗

|𝑝𝑝(𝑖𝑖, 𝑗𝑗)|. (4) 

3.2 Network Topology 
 
In contrast to the magnitude-only CNN described above, the 
first hidden layer is now a complex convolutional layer, as 
described above. Since the output of the complex 
convolutional layer is real-valued, the succeeding layers can 
be normal convolutional and pooling layers. See Figure 5 for 
the detailed complex CNN anatomy. 

 
4. EXPERIMENTAL RESULTS 

 
We use wide angle SAR data from the GOTCHA collect as 
in [14]. The dataset contains a set of civilian vehicles and a 
set of reflectors for target discrimination challenges. The 
vehicle set contains many moving targets and often has 
multiple targets per chip. To avoid multiple and or moving 
targets, that would require using motion-compensation 
techniques, we use the basic backprojection function 

https://www.google.com/search?espv=2&biw=1579&bih=919&q=differentiable&spell=1&sa=X&ved=0ahUKEwj6jY--9fDMAhVDElIKHcn4DV8QBQgZKAA


included in the GOTCHA distribution to synthesize 
composite images of the reflector set. We exclude SAR 
chips under the labels tophat2a and tophat2b because the 
targets are moving, and we exclude chips under label 
tophat_2_3 because the resolution is different and there are 
multiple targets per chip. We combine all instances of like 
shapes into single classes. The result is 651 complex chips 
of 80x80 pixels divided into 6 classes. We then split the set 
into 80% training and 20% testing sets of 525 and 126 chips 
respectively. The number of instances of each class is 
proportional between the training and testing sets.  
 We trained the CNN’s using stochastic mini-batches of 
size 35, resulting in 15 iterations per epoch. Each test 
involved training for 130 epochs (1950 iterations), tracking 
the loss value on the training set for another 10 epochs, then 
choosing the epoch that resulted in the lowest training set 
loss as the version of the network to test on. 
 
4.1 Magnitude-only CNN 
 
For the magnitude-only CNN the training set accuracy is 
100%, while the testing set accuracy is 87.30%. Table 2 
shows the testing set confusion matrix.  
 

 
Table 2: Confusion matrix for the magnitude-only CNN 

 An interesting metric is the entropy of the output 
prediction between classes, especially when comparing 
chips classified correctly and chips classified incorrectly. 
Low entropy among correctly classified chips is desirable, 
as it means that the network made a correct prediction with 
high certainty. Consequently, high entropy among 
misclassified chips is desirable as it means that incorrect 
predictions were made with low certainty and this is 
potentially detectable to the user. For probability distribution 
𝑝𝑝(𝑥𝑥), the entropy is defined as 

𝐸𝐸�𝑝𝑝(𝑥𝑥)� =  −�𝑝𝑝(𝑥𝑥)log (𝑝𝑝(𝑥𝑥)) (5) 

For our 6-class scenario, total uncertainty corresponds 
to an entropy value of 1.8; a 50/50 split between two classes 
is ~0.7. Figure 3 compares the entropy of correct predictions 
to incorrect predictions for the magnitude-only case. 

 
Figure 3: Output entropy for our magnitude-only CNN 

 
4.2 Complex CNN 
 
Accuracy on the training set is 100%, while testing accuracy 
is 99.21%. Table 3 shows the testing set confusion matrix 
and Figure 4 shows the histogram of prediction entropy. 
 

 
Table 3: Confusion matrix for our complex CNN 

 

 
Figure 4: Output entropy for our complex CNN 

 
5. CONCLUSION 

 
Figure 1 shows that there is structure to the phase in the area 
of the target, suggesting that there is discriminatory 
information to glean from it. From this, we expect that 
making use of the phase information could lead to better 
results, as seen in the complex CNN experiment. 
 It is also interesting that the entropy of correct 
predictions decreased when the complex information was 
exploited. This suggests that the fully-complex approach has 
more desirable prediction entropy properties.  
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 It is difficult to draw a conclusion for incorrect 
prediction entropy results since there are fewer incorrect 
predictions, but the outcomes seem comparable. 
 Our future work will focus on validating the 
performance improvement of the proposed complex-valued 
CNN on a larger database of SAR images. 
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Figure 5: Detailed anatomy of the complex-input CNN; the CNN block diagram was inspired by figure 3 of [15] 

 

 
Figure 6: A random subset of training examples (L) and a random subset of testing examples (R) of the reflectors set of [14]; all are 

magnitude-detected and without normalization 
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