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Abstract—Many adaptive sensing and sensor management
strategies seek to determine a sequence of sensor actions that
successively optimizes an objective function. Frequently the goal
is to adjust a sensor to best estimate a partially observed state
variable, for example, the objective function may be the final
mean-squared state estimation error. Information-driven sensor
planning strategies adopt an objective function that measures
the accumulation of information as defined by a suitable metric,
such as Fisher information, Bhattacharyya affinity, or Kullback-
Leibler divergence. These information measures are defined on
the space of probability distributions of data acquired by the
sensor, and there is a distribution in this space corresponding
to each sensor configuration. Hence, sensor planning can be
posed as a problem of optimally navigating over a statistical
manifold of probability distributions. This information-geometric
perspective presents new insights into adaptive sensing and sensor
management.

Index Terms—Adaptive sensing, Sensor management, Infor-
mation geometry, Hellinger distance, Multinomial class of distri-
butions

I. INTRODUCTION

In the 1940s, C. R. Rao [1] and H. Jeffreys [2] recognized
that Fisher information induces a Riemannian metric structure
on a smooth manifold of parameters that index a collection of
probability distributions. This observation formed the corner-
stone of the area now known as information geometry, which
owes much of its development since the 1980s to S. Amari [3]
and his collaborators. This information geometric perspective
has been applied to problems in signal processing such as blind
source separation [4], Doppler imaging [5], and dimensionality
reduction [6].

Recently, the possibility of exploiting the geometric struc-
ture of Riemannian parameter manifolds in defining schemes
for sensor management has been broached [7], [8]. In these
papers the authors developed a correspondence between navi-
gating over the sensor configuration space and navigating over
a space of Riemannian information geometries induced by the
families of measurement distributions that could be generated
by the sensor. In this framework, each sensor configuration
induces a different Riemannian manifold of measurement
distributions and thus planning reduces to selecting among
induced Riemannian metrics; which themselves form a Rie-
mannian manifold. The present paper considers a somewhat
different framework than [7], [8] in which the configuration
of a sensing system may be adjusted in a manner that affects

the distribution of the data it collects, but only within a
fixed family of distributions. Such a framework is relevant
to sensors that always output the same parametric family
of distributions, e.g., a Gaussian, Wishart or multinomial
distribution, albeit with different parameter values, regardless
of their configuration.

More specifically, in this paper we assume that the distri-
bution of the collected data belongs to a parametric family
and the parameter value is determined by the configuration
of the sensor suite. It will be assumed that the parameter
space is a smooth manifold (possibly with boundary), that the
mapping between the sensor configuration and the parameter is
smooth, and that the sensor configuration can be controlled as
a function of time in a smooth fashion. In practical situations,
the assumption of smooth motion corresponds to constraining
the sensor suite to be adjusted gradually (e.g., as in the
position of a mobile sensor) as opposed to instantaneously
(e.g., transmitted waveform in a waveform-agile radar).

The general objective is to adjust the sensor configuration
according to some pre-established goal defined in terms of
the distribution parameter. For example, it may be desired
to “tune” the sensor system to a configuration in which the
collected data follow a particular distribution. Or, as arises
in some information-based sensor management strategies [9],
[10], the goal might be to adjust the sensor system within
a specified time to a configuration where the distribution
of the collected data will be as distinct as possible, in a
suitable informational sense, from some known distribution.
This situation is depicted in Figure 1.

Θ

p

p

q(0)

q(1)

pr

Fig. 1. An objective of navigation on the parameter manifold of interest in
information-based sensor management is, starting at q(0), to reach q(1) such
that the density pq(1) is as distant as possible from some reference density
pr . The distance of primary interest here is Hellinger distance dH , which is
monotonically related to information distance dI in the multinomial family
of distributions.



The mapping between the sensor configuration and the
distribution parameter of the data collected is not assumed to
be known a priori. Rather, sufficient data are collected in each
configuration as the sensor is navigated to enable high-fidelity
estimation of the parameter from data. This enables learning
of differential relationships between sensor configuration and
parameter value.

A particular case of interest, which we emphasize in this
paper, is when the sensing configurations generate measure-
ments whose distributions lie in the multinomial family. This
model is relevant to the many sensors that generate histograms
of data, e.g., vision sensors that form histograms of visual
features over a SIFT or HOG codebook, or chemical sensors
that count the number of trace element particles over a number
of wavelengths and/or energy levels [11]. Remarkably, in
this multinomial case the statistical manifold simplifies to a
simple Hellinger sphere and, given an initial distribution and
a desired final distribution, the information-optimal sensor
planning trajectories are geodesic great circle paths on the
Hellinger sphere. Furthermore, under the multinomial model
the accumulated Fisher information along the geodesic is
equivalent to the Hellinger distance between the distributions.
It is notable that these special properties are specific to the
multinomial distribution and do not hold for other commonly
encountered distributions in sensor signal processing.

The outline of the paper is as follows. The following
section presents a more precise formulation of the class of
problems just introduced. Subsequently, attention is directed in
Section III to the multinomial family, an exponential family of
probability distributions. Some elaboration upon known results
that show monotonic relationships between global measures of
distance, including Hellinger distance and Bhattacharyya affin-
ity, and information distance, which is defined in terms of a
local quantity (Fisher information). Geometrical interpretation
of one of these monotonically equivalent distance measures
offers appealing insight about the nature of optimal trajectories
in this setting. Section IV describes a notional application and
explains how control of the sensor system configuration can
be informed by the geometry of the parameter manifold in
this example. The paper concludes with some discussion of
potential directions for additional research in this vein.

II. MATHEMATICAL FORMULATION

Denote by Θ a smooth n-dimensional manifold and let F
be a family of probability densities parameterized by Θ; i.e.,
F = {pq | q ∈ Θ} with each pq a probability density function.
In what follows, the Hellinger distance [12]

dH(pq, pr) =

[∫ (√
pq(x)−

√
pr(x)

)2

dx

]1/2
(1)

=

[
2− 2

∫ √
pq(x)pr(x) dx

]1/2
is adopted as a global metric on Θ. Because Hellinger dis-
tance is an f -divergence [13], the Riemannian metric on Θ
obtained locally from the second derivative of dH is the Fisher

information. This is particularly appealing from a discrimina-
tion perspective, since the Kullback-Leibler (KL) divergence
dKL(pq||pr), also known as relative entropy, is a natural
measure of the value of data drawn from pq for discriminating
between parameter values q and r in a hypothesis test. KL
divergence is also an f -divergence, so it also leads to Fisher
information as a Riemannian metric on Θ. For the purposes of
what follows, it is more convenient to use Hellinger distance
than KL divergence, even though it is KL divergence that
provides a more intuitive interpretation of the Riemannian
structure on Θ imparted by Fisher information in terms of
discrimination.

The configuration of the sensor system will also be taken
to be parameterized by a smooth manifold Γ of dimension
m ≤ n, and the mapping Φ : Γ → Θ taking a configuration
s ∈ Γ to the parameter q = Φ(s) of the distribution of data
collected in that configuration will be taken to be smooth and
non-degenerate. Thus a smooth trajectory s : [0, 1] → Γ of
sensor configurations corresponds to a smooth curve q = Φs of
parameters. Further, if Ψ is a diffeomorphism between Θ and
Θ̃, then F is equivalently parameterized by Θ̃ with a curves
q ∈ Θ and q̃ ∈ Θ̃ serving as interchangeable representations of
the sequence of densities corresponding to the sequence s(t)
of sensor configurations in Γ, as depicted in Figure 2.
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Fig. 2. Relationship between trajectories in sensor configuration space Γ
and equivalent parameter spaces Θ and Θ̃ for F .

III. ANALYSIS IN THE MULTINOMIAL FAMILY

As noted in [14] and developed further here, the information
geometry of the multinomial family FM engenders properties
that are particularly desirable for development of the kinds of
navigation strategies sought here. First, Hellinger distance in
this family is monotonically related to information distance,
which is defined as an integral of a local quantity (Fisher
information). Moreover, the geodesic curves defining informa-
tion distance in the standard parameter space Θ correspond to
great circles in an alternative spherical parameter space Θ̃,
connecting navigation problems in FM to classical navigation
on the Earth’s surface.

For the multinomial family K outcomes and N = 1
trial, densities are parameterized by a vector parameter q =
(q1, . . . , qK) where qk is the probability of outcome k. Each
qk is non-negative and q1 + · · · + qK = 1, so the parameter



space Θ is the face of the unit simplex in the non-negative
orthant in RK . An equivalent parameterization is by vectors

q̃ = (q̃1, . . . , q̃K) = (
√
q1, . . . ,

√
qK),

which are unit vectors in RK with non-negative elements;
i.e., q̃ ∈ Θ̃, the portion of the unit sphere intersecting the
non-negative orthant in RK . Both Θ and Θ̃ are smooth
(K − 1)-dimensional manifolds with boundary, and they are
diffeomorphic under the non-degenerate map Ψ taking q to
q̃. If N > 1 (and is known), the multinomial family is still
parameterized by q ∈ Θ and equivalently by q̃ ∈ Θ̃, so much
of the following discussion applies without significant change.

With the assumptions noted in Section II, each sensor con-
figuration s(t) on a smooth curve s : [0, 1] → Γ corresponds
to a parameter q(t) on a smooth curve q = Φs in Θ or
equivalently to a parameter q̃(t) = Ψq(t) on a smooth curve
q̃ in Θ̃. The probability density function corresponding to the
parameter q ∈ Θ will be denoted by pq . With this notation,
the Hellinger distance between pq(0) and pq(t) is given by (1)
as

d2H(pq(0), pq(t)) = 2− 2

∫ √
pq(0)(x)pq(t)(x) dx (2)

= 2− 2 〈q̃(0), q̃(t)〉 .

In this expression, the integral is simply the sum over the
discrete outcome set {1, . . . ,K} and 〈·, ·〉 is thus the standard
inner product in RK . Thus, in this family of distributions,
dH(pq, pr) depends only on the angle between the unit vectors
q̃ and r̃ as defined by 〈q̃, r̃〉. This inner product is known as
the Bhattacharyya affinity between pq and pr.

The information distance dI(pq(0), pq(t)) between pq(0) and
pq(t) is defined as the minimum value, over all curves q sharing
the endpoint values q(0) and q(t), of∫ t

0

√
I(u) du.

Here, I(u) is the Fisher information at q(u) ∈ Θ. The log
likelihood function is given by log qk(u), k ∈ {1, . . . ,K}. So
the score function is

1

qk(u)

d

du
qk(u), k ∈ {1, . . . ,K}

and the Fisher information is

I(u) =

K∑
k=1

(
1

qk(u)

d

du
qk(u)

)2

qk(u) (3)

=

K∑
k=1

(
d

du
qk(u)

)2(
1

qk(u)

)
.

Note that∣∣∣∣ ddu q̃(u)

∣∣∣∣2 =
K∑

k=1

(
d

du

√
qk(u)

)2

=
1

4

K∑
k=1

1

qk(u)

(
d

du
qk(u)

)2

=
1

4
I(u).

So the integral of
√
I(u) along any smooth curve q in Θ

is twice the length of the corresponding curve q̃ in Θ̃. In
particular, the information distance between pq(0) and pq(t)
is twice the great circle (geodesic) distance between q̃(τ) and
q̃(t) in the spherical segment Θ̃.

Now, since Θ̃ contains only points on the unit sphere
that lie in the non-negative orthant, the great circle distance
between two points q̃(0) and q̃(t) in Θ̃ is the angle subtended
by the unit vectors q̃(τ) and q̃(t); i.e., dI(pq(0), pq(t)) =
2 arccos 〈q̃(0), q̃(t)〉. But, from (2),

〈q̃(0), q̃(t)〉 = 1− 1

2
d2H(pq(0), pq(t)).

Thus,

dI(pq(0), pq(t)) = 2 arccos

(
1− 1

2
d2H(pq(0), pq(t))

)
and

dH(pq(0), pq(t)) = 2 sin

(
dI(pq(0), pq(t))

4

)
. (4)

The preceding development shows that the multinomial fam-
ily offers attractive properties for the purposes of information-
geometric sensor management. Not only do optimal trajecto-
ries for Hellinger and information distance metrics coincide,
but they have particularly appealing interpretations as great
circle segments in Θ̃. Methods for following great circles
have been well studied in connection with classical navigation,
which may provide a source of insight about sensor manage-
ment schemes in this setting.

IV. NOTIONAL APPLICATION

The distribution of particle types 1, 2, and 3 impinging on
a detector depends on the fraction of the aperture covered
by filtering materials A and B. The objective is to tune the
instrument to admit a desired mix of particle types; i.e., the
desired final density is pq(1) with q(1) = (q1(1), q2(1), q3(1))
pre-established. The distribution of particle types is controlled
via a two-dimensional control vector ϕ = (ϕ1, ϕ2), which de-
termines the fraction of the aperture covered with materials A
and B. The initial value of ϕ is ϕ(0) = (ϕ1(0), ϕ2(0)) and the
values of the components of ϕ can be adjusted independently
in a smooth fashion. The relationship between the sensor
configuration ϕ(t) and the parameter of the corresponding
particle-type distribution is fixed but unknown.

By collecting data in the initial configuration, q(0) is
estimated. From the analysis in Section III, the trajectory
along which the Hellinger distance between the initial and
final distributions will be reduced most quickly by a small
change in configuration space follows the great circle in the
two-sphere Θ̃ joining q̃(0) and q̃(1).

At any time t, the local relationship between the control
parameters (ϕ1(t), ϕ2(t)) and the parameter q(t) of the cor-
responding distribution can be estimated as follows:

1) With ε small, estimate ∂qi
∂ϕ1

(t) for i = 1, 2, 3 by set-
ting the sensor configuration to (ϕ1(t) + ε, ϕ2(t)) and



observing the change in the value of qi estimated from
data collected in the new configuration.

2) Similarly, estimate ∂qi
∂ϕ2

(t) by setting the sensor config-
uration to (ϕ1(t), ϕ2(t) + ε).

3) Using the local relationship between ϕ(t) and q̃(t)
estimated in this way, set ϕ(t+∆t) so that q̃(t+∆t) falls
(approximately) on the desired great circle trajectory in
Θ̃.

4) Collect data to estimate q(t+ ∆t) and repeat steps 1-3
seeking to follow the great circle trajectory from q̃(t+
∆t) to q̃(1).

This crude algorithm illustrates in principle how a prac-
tical system might learn enough about the local relation-
ship between motion on the sensor configuration manifold
Γ and the motion it induces in the parameter manifold Θ
to approximately navigate a desired trajectory in Θ. More
sophisticated learning schemes, possibly informed by some a
priori knowledge about the map Φ beyond its differentiability,
would likely be possible in an actual application of this kind.

V. DISCUSSION

The preceding sections have described how certain sensor
management scenarios can manifest in terms of the metric
structure and geometry of a related statistical manifold. In
the multinomial family, the particular form (3) of the Fisher
information at each point along a curve in the parameter man-
ifold Θ motivates its interpretation as differential arc length
in the spherical segment Θ̃, immediately implying that the
geodesics are great circle arcs in this parameter manifold. This
observation makes clear the monotonic relationship between
Hellinger distance and information distance in the multinomial
family. To the authors knowledge, such simple relationships do
not hold for any other important families of distributions. For
example, for statistical manifolds induced by the multivari-
ate Gaussian, student-t, Dirichlet, and Wishart distributions,
geodesics are not great circle arcs. Further investigation into
such issues, including characterization of situations in which
dH and dI are not consistent, appears warranted.

Information distance is explicitly defined in terms of accu-
mulation of Fisher information along a path, while Hellinger
distance is defined strictly in terms of the end points of the
path. But Hellinger distance does have a derivative that evolves
along a given path. So it may be enlightening to investigate
differential relationships between dI and dH along paths, in
particular for assessing the equivalence of “energy integrals”
and the geodesics that arise as solutions of variational prob-
lems on these integrals.

It will be valuable to explore the relationships between the
parametric framework presented in this paper and the non-
parametric framework presented in [7] and [8]. It is certainly
plausible, but remains to be proved, that there are asymptotic
regimes where the non-parametric framework reduces to the
parametric framework. Specifically, when multiple (n) i.i.d.
measurements are collected from each sensor configuration
along the planning path, and these measurements are quantized
to a histogram, large n asymptotic theory asserts that the

histograms converge to a multinomial distribution. Thus in
this asymptotic case the sensor output distributions can be
expected to be well approximated by the multinomial family
investigated here. Under different assumptions the statistical
distributions may converge to other parametric families, for
example, to the multivariate Gaussian distribution under the
CLT.

Finally, another important area of investigation will be the
impact of navigation constraints that may prevent navigation
along a desired trajectory in the parameter manifold. For exam-
ple, there may be no sensor configuration in Γ corresponding
to certain points or regions in Θ in the vicinity of the geodesic
path. Approaches for accommodating such constraints will be
essential if ideas like those outlined in this paper are to become
useful tools in real-world sensor management applications.
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