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Abstract— Adaptive sensing involves actively managing sen-
sor resources to achieve a sensing task, such as object detection,
classification, and tracking, and represents a promising direc-
tion for new applications of discrete event system methods. We
describe an approach to adaptive sensing based on approxi-
mately solving a partially observable Markov decision process
(POMDP) formulation of the problem. Such approximations
are necessary because of the very large state space involved in
practical adaptive sensing problems, precluding exact computa-
tion of optimal solutions. We review the theory of POMDPs and
show how the theory applies to adaptive sensing problems. We
then describe Monte-Carlo-based approximation methods, with
an example to illustrate their application in adaptive sensing.
The example also demonstrates the gains that are possible from
nonmyopic methods relative to myopic methods.

I. INTRODUCTION

In its broadest sense, adaptive sensing has to do with

actively managing sensor resources to achieve a sensing task.

As an example, suppose our goal is to determine the presence

or absence of an object, and we have at our disposal a

single sensor that can interrogate the scene with any one

of K waveforms. Depending on which waveform is used

to radiate the scene, the response may vary greatly. After

each measurement, we can decide whether to continue taking

measurements using that waveform, change waveforms and

take further measurements, or stop and declare whether or

not the object is present. In adaptive sensing, this decision

making is allowed to take advantage of the knowledge gained

from the measurements so far. In this sense, the act of

sensing “adapts” to what we know so far. What guides

this adaptation is a performance objective that is determined

beforehand—in our example above, this might be the average

number of interrogations needed so that we can declare

the presence or absence of the object with a confidence

that exceeds some threshold (say, 90%). Adaptive sensing

problems arise in a variety of application areas: medical di-

agnostics; nondestructive testing; sensor scheduling for target

detection, identification, and tracking; waveform selection for

radar imaging; and laser pulse shaping. Adaptive sensing
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represents a promising direction for new applications of

discrete event system methods.

Adaptive sensing is fundamentally a resource management

problem, in the sense that the main task is to make decisions

over time on the use of sensor resources to maximize sensing

performance. It is informative to distinguish between myopic

and nonmyopic (also known as dynamic or multistage) re-

source management, a topic of much current interest (see,

e.g., [4], [15], [12], [7], [1], [8], [10], [16]). In myopic re-

source management, the objective is to optimize performance

on a per-decision basis. For example, consider the problem

of sensor scheduling for tracking a single target, where the

problem is to select, at each decision epoch, a single sensor

to activate. An example sensor-scheduling scheme is closest

point of approach, which selects the sensor that is perceived

to be the closest to the target. Another (more sophisticated)

example is the method described in [13], where the authors

present a sensor scheduling method using alpha-divergence

(or Rényi divergence) measures. Their approach is to make

the decision that maximizes the expected information gain

(in terms of the alpha-divergence).

Myopic adaptive sensing may not be ideal when the perfor-

mance is measured over a horizon of time. In such situations,

we need to consider schemes that trade off short-term for

long-term performance. We call such schemes nonmyopic.

Several factors motivate the consideration of nonmyopic

schemes, easily illustrated in the context of sensor scheduling

for target tracking:

Heterogeneous sensors. If we have sensors with different

locations, waveform characteristics, usage costs, and/or life-

times, the decision of whether or not to use a sensor, and with

what waveform, should consider the overall performance, not

whether or not its use maximizes the current performance.

Sensor motion. The future location of a sensor affects how

we should act now. To optimize a long-term performance

measure, we need to be opportunistic in our choice of sensor

decisions.

Target motion. If a target is moving, there is potential

benefit in sensing the target before it becomes unresolvable

(e.g., too close to other targets or to clutter, or shadowed by

large objects). In some scenarios, we may need to identify

multiple targets before they cross, to aid in data association.

Environmental variation. Time-varying weather patterns

affect target visibility in a way that potentially benefits

from nonmyopic decision making. In particular, by exploiting

models of target visibility maps, we can achieve improved

sensing performance by careful selection of waveforms and

beam directions over time.

Proceedings of the 9th International
Workshop on Discrete Event Systems
Göteborg, Sweden, May 28-30, 2008

WeE1.5

978-1-4244-2593-8/08/$25.00 ©2008 IEEE 173



The main focus of this paper is on nonmyopic adaptive

sensing. The basic methodology presented here consists of

two steps: (1) Formulating the adaptive sensing problem as a

partially observable Markov decision process (POMDP); and

(2) applying an approximation to the optimal policy for the

POMDP, because computing the exact solution is intractable.

II. MOTIVATING EXAMPLE

We now present a concrete motivating example involving

a remote sensing application where the goal is to learn the

contents of a surveillance region via repeated interrogation.

(See [9] for a more complete exposition of adaptive sensing

applied to such problems.)

Consider a single airborne sensor which is able to image

a portion of a ground surveillance region to determine the

presence or absence of moving ground targets. At each time

epoch, the sensor is able to direct an electrically scanned

array so as to interrogate a small area on the ground. Each

interrogation yields some (imperfect) information about the

small area. The objective is to choose the sequence of

pointing directions that lead to the best ability to describe

the entire contents of the surveillance region.

Further complicating matters is the fact that at each time

epoch the sensor position causes portions of the ground to

be unobservable due to the terrain elevation between the

sensor and the ground. Given its position and the terrain

elevation, the sensor can compute a visibility mask which

determines how well a particular spot on the ground can be

seen. As an example, in Figure 1 we give binary visibility

masks computed from a sensor positioned (a) south and (b) to

the west of the topologically nonhomogeneous surveillance

region (these plots come from real digital terrain elevation

maps). As can be seen from the figures, sensor position

causes “shadowing” of certain regions. These regions, if mea-

sured, would provide no information to the sensor. A similar

target masking effect occurs with atmospheric propagation

attenuation from disturbances such as fog, rain, sleet, or

dust. This example illustrates a situation where nonmyopic

adaptive sensing is highly beneficial. Using a known sensor

trajectory and known topological map, the sensor can predict

locations that will be obscured in the future. This information

can be used to prioritize resources so that they are used on

targets that are predicted to become obscured in the future.

Extra sensor dwells immediately before obscuration (at the

expense of not interrogating other targets) will sharpen the

estimate of target location. This sharpened estimate will

allow better prediction of where and when the target will

emerge from the obscured area. This is illustrated graphically

with a six time-step vignette in Figure 2.

III. FORMULATING ADAPTIVE SENSING PROBLEMS

A. Partially Observable Markov Decision Processes

An adaptive sensing problem can be posed formally as a

partially observable Markov decision process (POMDP), a

model that should be familiar to the discrete event system

community. For completeness, we will introduce POMDPs

in sufficient detail to allow the reader to see how an adaptive
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(c) Elevation map of the surveillance region

Fig. 1. Visibility masks for a sensor positioned south and west of the
surveillance region. We show binary visibility masks (non-visible areas are
black and visible areas are white). In general, visibility may be between 0
and 1 indicating areas of reduced visibility, e.g., regions that are partially
obscured by foliage.

sensing problem can be posed as a POMDP, and to explore

methods to approximate optimal solutions. For a full treat-

ment of POMDPs and related background, see [2].

A POMDP is specified by the following ingredients:

• A set of states (the state space) and a distribution specifying

the random initial state.

• A set of possible actions.

• A state-transition law specifying the next-state distribution

given an action taken at a current state.

• A reward function specifying the reward (real number)

received given an action taken at a state.

• A set of possible observations.

• An observation law specifying the distribution of observa-

tions given an action taken at a state.

As usual, for technical formality, we will assume that the

state space, the action set, and the observation set are all

finite.

A POMDP is a controlled dynamical process in discrete

time. The process begins at time k = 0 with a (random)

initial state. At this state, we perform an action and receive

a reward, which depends on the action and the state. At the

same time, we receive an observation, which again depends

on the action and the state. The state then transitions to

some random next state, whose distribution is specified by

the state-transition law. The process then repeats in the same

way—at each time, the process is at some state, and the

action taken at that state determines the reward, observation,

and next state. As a result, the state evolves randomly over

time in response to actions, generating observations along

the way.
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Fig. 2. A six time step vignette where a target moves through an obscured
area. Other targets are present elsewhere in the surveillance region. The
target is depicted by an asterisk. Areas obscured to the sensor are black and
areas that are visible are white. Extra dwells just before becoming obscured
(time = 1) aid in localization after the target emerges (time = 6).

B. Belief State

As a POMDP evolves over time, we do not have direct

access to the states that occur. Instead, all we have are the

observations generated over time, providing us with clues

of the actual underlying states (hence the term partially

observable). These observations might, in some cases, allow

us to infer exactly what states actually occurred. However,

in general, there will be some uncertainty in our knowledge

of the states that actually occurred. This uncertainty is

represented by the belief state (or information state), which

is the a posteriori distribution of the underlying state given

the history of observations.

Let X denote the state space (the set of all possible states

in our POMDP), and let B be the set of distributions over

X . Then a belief state is simply an element of B. Just

as the underlying state changes over time, the belief state

also changes over time. At time k = 0, the (initial) belief

state is equal to the given initial state distribution. Then,

once an action is taken and an observation is received, the

belief state changes to a new belief state, in a way that

depends on the observation received and the state-transition

and observation laws. This change in the belief state can be

computed explicitly using Bayes’ rule.

To elaborate, suppose that the current time is k, and the

current belief state is bk ∈ B. Note that bk is a probability

distribution over X—we use the notation bk(x) for the

probability that bk assigns to state x ∈ X . Suppose that we

take action ak and, as a result, we receive observation zk.

Denote the transition law by Ptrans, so that the probability of

transitioning to state y given that action a is taken at state x

is Ptrans(y|x, a). Similarly, denote the observation law by Z,

so that the probability of receiving observation z given that

action a is taken at state x is Pobs(z|x, a). Then, the next

belief state given action ak is computed using the following

two-step update procedure:

1. Compute the “updated” belief state b̂k based on the

observation yk of the state xk at time k, using Bayes’

rule:

b̂k(x) =
Pobs(yk|x, ak)bk(x)

∑

y∈X
Pobs(yk|y, ak)bk(y)

, x ∈ X .

2. Compute the belief state bk+1 using the state-transition

law:

bk+1(x) =
∑

y∈X

b̂k(y)Ptrans(x|y, ak), x ∈ X .

This two-step procedure is commonly realized in terms of a

Kalman filter or a particle filter [9].

It is useful to think of a POMDP as a random process of

evolving belief states. Just as the underlying state transitions

to some random new state with the performance of an

action at each time, the belief state also transitions to some

random new belief state. So the belief state process also has

some “belief-state-transition” law associated with it, which

depends intimately on the underlying state-transition and the

observation laws. But, unlike the underlying state, the belief

state is fully accessible.

Indeed, any POMDP may be viewed as a fully observable

Markov decision process (MDP) with state space B, called

the belief-state MDP or information-state MDP (see [2]). To

complete the description of this MDP, we sill show how to

write its reward function, which specifies the reward received

when action a is taken at belief-state b. Suppose b ∈ B is

some belief state and a is an action. As before, let R(x, a) be

the reward received if action a is taken at underlying state

x. Then let r(b, a) =
∑

x∈X
b(x)R(x, a) be the expected

reward with respect to belief-state b, given action a. This

reward r(b, a) then represents the reward function of the

belief-state MDP.

C. Optimization Objective

Given a POMDP, our goal is to select actions over time

to maximize the expected cumulative reward (we take ex-

pectation here because the cumulative reward is a random

variable). To be specific, suppose we are interested in the

expected cumulative reward over a time horizon of length

H: k = 0, 1, . . . ,H − 1. Let xk and ak be the state and

action at time k, and let R(xk, ak) be the resulting reward

received. Then, the cumulative reward over horizon H is

given by

VH = E

[

H−1
∑

k=0

R(xk, ak)

]

,

where E represents expectation. It is important to realize that

this expectation is with respect to x0, x1, . . .; i.e., the random

initial state and all the subsequent states in the evolution of

the process, given the actions a0, a1, a2, . . . taken over time.

The goal is to pick these actions so that the objective function

is maximized.

Note that we can also represent the objective function in

terms of r (the reward function of the belief-state MDP)
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instead of R:

VH(b0) = E

[

H−1
∑

k=0

r(bk, ak)

∣

∣

∣

∣

∣

b0

]

.

where E[·|b0] represents conditional expectation given b0.

D. Optimal Policy

In general, the action chosen at each time should be

allowed to depend on the entire history up to that time (i.e.,

the action at time k is a random variable that is a function

of all observable quantities up to time k). However, it turns

out that if an optimal choice of such a sequence of actions

exists, then there is an optimal choice of actions that depends

only on “belief-state feedback” (this result is due to [18]).

In other words, it suffices for the action at time k to depend

only on the belief-state bk at time k. So what we seek is, at

each time k, a mapping π∗
k : B → A such that if we perform

action ak = π∗
k(bk), then the resulting objective function is

maximized. As usual, we call such a mapping a policy. So,

what we seek is an optimal policy.

E. Bellman’s Principle and Q-values

The key result in Markov decision theory relevant here

is Bellman’s principle. Let V ∗
H(b0) be the optimal objective

function value (over horizon H) with b0 as the initial belief

state. Then, Bellman’s principle states that

V ∗
H(b0) = max

a
(r(b0, a) + E[V ∗

H−1(b1)|b0, a])

where b1 is the random next belief state (with distribution

depending on a), and E[·|b0, a] represents conditional ex-

pectation with respect to the random next state b1, whose

distribution depends on b0 and a. Moreover,

π∗
0(b0) = arg max

a

(r(b0, a) + E[V ∗
H−1(b1)|b0, a])

is an optimal policy.

Define the Q-value of taking action a at state bk as

QH−k(bk, a) = r(bk, a) + E[V ∗
H−k−1(bk+1)|bk, a],

where bk+1 is the random next belief state (which depends

on the observation zk at time k, as described in Section III-

B). Then, Bellman’s principle can be rewritten as

π∗
k(bk) = arg max

a

QH−k(bk, a)

i.e., the optimal action at belief-state bk (at time k, with a

horizon-to-go of H − k) is the one with largest Q-value at

that belief state. This principle, called lookahead, is the heart

of POMDP solution approaches.

F. Stationary policies

In general, an optimal policy is a function of time k. If H

is sufficiently large, then the optimal policy is approximately

stationary (independent of k). This is intuitively clear: if

the end of the time horizon is a million years away, then

how we should act today given a belief-state is the same

as how we should act tomorrow with the same belief state.

Said differently, if H is sufficiently large, the difference

between QH and QH−1 is negligible. Henceforth we will

assume for convenience there is a stationary optimal policy,

and this is what we seek. We will use the notation π for

stationary policies (with no subscript k)—this significantly

simplifies the notation. Our approach is equally applicable

to the short-horizon, nonstationary case, with appropriate

notational modification (to account for the time dependence

of decisions).

G. Receding horizon

Assuming H is sufficiently large and that we seek a

stationary optimal policy, at any time k we write:

π∗(b) = arg max
a

QH(b, a).

Notice that the horizon is taken to be fixed at H , regardless

of the current time k. This is justified by our assumption

that H is so large that at any time k, the horizon is

still approximately H time steps away. This approach of

taking the horizon to be fixed at H is called receding

horizon control. For convenience, we will also henceforth

drop the subscript H from our notation (unless the subscript

is explicitly needed).

IV. Q-VALUE APPROXIMATION METHODS

A. Basic approach

By Bellman’s principle, knowing the Q-values allows us

to make optimal control decisions. In particular, if we are

currently at belief-state b, we need only find the action a

with the largest Q(b, a). This principle yields a basic control

framework.

Recall the definition of the Q-value,

Q(b, a) = r(b, a) + E[V ∗(b′)|b, a], (1)

where b′ is the random next belief state (with distribution

depending on a). In all but very special problems, it is

impossible to compute the Q-value exactly. In this section,

we describe methods to approximate the Q-value, focusing

on Monte-Carlo-based methods. Because the first term on the

right-hand side of (1) is usually straightforward to compute,

most approximation methods focus on the second term. It

is important to realize that the quality of an approximation

to the Q-value is not so much in the accuracy of the actual

values obtained, but in the ranking of the actions reflected

by their relative values.

B. Monte Carlo sampling

In general, we can think of Monte Carlo methods simply as

the use of computer generated random numbers in computing

expectations of random variables through averaging over

many samples. With this in mind, it seems natural to consider

using Monte Carlo methods to compute the value function

directly based on Bellman’s equation:

V ∗
H(b0) = max

a0

(r(b0, a0) + E[V ∗
H−1(b1)|b0, a0]).

Notice that the second term on the right-hand side involves

expectations (one per action candidate a0), which can be
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computed using Monte Carlo sampling. However, the random

variable inside each expectation is itself an objective function

value (with horizon H − 1), and so it too involves a max of

an expectation via Bellman’s equation:

V ∗
H(b0) = max

a0

(

r(b0, a0) + E

[

max
a1

(r(b1, a1) + E[V ∗
H−2(b2)|b1, a1])

∣

∣

∣

∣

b0, a0

])

.

Notice we now have two “layers” of max and expectation,

one “nested” within the other. Again, we see the inside

expectation involves the value function (with horizon H−2),

which again can be written as a max of expectations. Pro-

ceeding this way, we can write V ∗
H(b0) in terms of H layers

of max and expectations. Each expectation can be computed

using Monte Carlo sampling. The remaining question is how

computationally burdensome is this task?

Kearns, Mansour, and Ng [11] have provided a method

to calculate the computational burden of approximating the

value function using Monte Carlo sampling as described

above, given some prescribed accuracy in the approxima-

tion of the value function. Unfortunately, it turns out that

for practical POMDP problems this computational burden

is prohibitive, even for modest degrees of accuracy. So,

while Bellman’s equation suggests a natural Monte Carlo

method for approximating the value function, the method is

not useful in practice. For this reason, we seek alternative

approximation methods. In the next few subsections, we

explore some of these methods.

C. Hindsight optimization

Let us write the value function (optimal objective function

value as a function of belief state) as

V ∗(b) = max
π

E

[

H−1
∑

k=0

r(bk, π(bk))

∣

∣

∣

∣

∣

b, π(b)

]

= E

[

max
a0,...,aH−1:ak=π(bk)

H−1
∑

k=0

r(bk, ak)

∣

∣

∣

∣

∣

b

]

,

where the notation maxa0,...,aH−1:ak=π(bk) means maximiza-

tion subject to the constraint that each action ak is a (fixed)

function of the belief state bk. If we relax this constraint on

the actions and allow them to be arbitrary random variables,

then we have an upper bound on the value function:

V̂HO(b) = E

[

max
a0,...,aH−1

H−1
∑

k=0

r(bk, ak)

∣

∣

∣

∣

∣

b

]

.

In some applications, this bound provides a suitable approxi-

mation to the value function. The advantage of this method is

that in certain situations the computation of the “max” above

involves solving a relatively easy optimization problem. This

method is called hindsight optimization [5], [19].

An implementation of particular interest here involves av-

eraging over many Monte Carlo simulation runs to compute

the expectation above. In this case, the “max” is computed

for each simulation run by first generating all the random

numbers for that run, and then applying a static optimiza-

tion algorithm to compute optimal actions a0, . . . , aH−1. It

is easy now to see why we call the method “hindsight”

optimization: the optimization of the action sequence is

done after knowing all uncertainties over time, as if making

decisions in hindsight.

D. Rollout

Next, we describe the method of rollout [3]. The basic idea

is simple. First let V π(b0) be the objective function value

corresponding to policy π. Recall that V ∗ = maxπ V π . In

the method of rollout, we assume that we have a candidate

policy πbase (called the base policy), and we simply replace

V ∗ in (1) by V πbase . In other words, we use the following

approximation to the Q-value:

Qπbase(b, a) = r(b, a) + E[V πbase(b′)|b, a].

We can think of V πbase as the performance of applying

πbase in our system. In many situations of interest, V πbase is

relatively easy to compute, either analytically, numerically,

or via Monte Carlo simulation.

It turns out that the policy π defined by

π(b) = arg max
a

Qπbase(b, a) (2)

is at least as good as πbase (in terms of the objective

function); in other words, this step of using one policy

to define another policy has the property of policy im-

provement. This result is the basis for a method known

as policy iteration, where we iteratively apply the above

policy-improvement step to generate a sequence of policies

converging to the optimal policy. However, policy iteration is

difficult to apply in problems with large belief-state spaces,

because the approach entails explicitly representing a policy

and iterating on it (remember that a policy is a mapping with

the belief-state space B as its domain).

In the method of rollout, we do not explicitly construct

the policy π in (2). Instead, at each time step, we use (2) to

compute the output of the policy at the current belief-state.

For example, the term E[V πbase(b′)|b, a] can be computed

using Monte Carlo sampling. To see how this is done,

observe that V πbase(b′) is simply the mean cumulative reward

of applying policy πbase, a quantity that can be obtained by

Monte Carlo simulation. The term E[V πbase(b′)|b, a] is the

mean with respect to the random next belief-state b′ (with

distribution that depends on b and a), again obtainable via

Monte Carlo simulation. We provide more details in Sec-

tion IV-E. In our subsequent discussion of rollout, we focus

on implementation of rollout using Monte Carlo simulation.

For an application of the rollout method to sensor scheduling

for target tracking, see [7], [8], [10], [16]. For an extension

involving multiple base policies, see [6].

As a further approximation, suppose we use a delta

distribution to approximate belief states in our simulation

of the future. In other words, in our lookahead simulation,

we do away with keeping track of belief states altogether

and instead simulate only a completely observable version
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of the system. In this case, we need only consider a base

policy that maps underlying states to actions—we could

simply apply rollout to this policy, and not have to maintain

any belief states in our simulation. We call this method

completely observable (CO) rollout. It turns out that in

certain applications, such as in sensor scheduling for target

tracking, a CO-rollout base policy is naturally available (see

[7], [8], [10], [16]). Note that we will still need to keep track

of (or estimate) the actual belief state of the system, even if

we use CO rollout. The benefit of CO rollout is that it allows

us to avoid keeping track of (simulated) belief states in our

simulation of the future evolution of the system.

E. Control architecture

Figure 3 shows the basic control architecture. The top-

most block represents the sensing system, which we treat

as having an input and two forms of output. The input

represents actions (external control commands) we can apply

to control the sensing system. Actions usually include sensor-

resource controls, such as which sensor(s) to activate, at what

power level, where to point, what waveforms to use, and

what sensing modes to activate. Actions may also include

communication-resource controls, such as the data rate for

transmission from each sensor.

The two forms of outputs from the sensing system repre-

sent: (1) Fully observable aspects of the internal state of the

sensing system (called observables), and (2) measurements

(observations) of those aspects of the internal state that

are not directly observable (which we refer to simply as

measurements). We assume that the underlying state-space is

the Cartesian product of two sets, one representing unobserv-

ables and the other representing observables. Target states

are prime examples of unobservables. So, measurements are

typically the outputs of sensors, representing observations of

target states. Observables include things like sensor locations

and orientations, which sensors are activated, battery status

readings, etc. In the remainder of this section, we describe

the components of our control framework. Our description

starts from the architecture of Figure 3 and progressively fills

in the details.

At each decision epoch, the controller takes the outputs

(measurements and observables) from the sensing system

and, in return, generates an action that is fed back to

the sensing system. This basic closed-loop architecture is

familiar to mainstream control system design approaches.

The controller has two main components. The first is the

particle filter, which takes as input the measurements, and

provides as output samples of unobservable internal states

(henceforth called unobservables), representing the posterior

distribution of the unobservables. This posterior distribution,

together with the observables, form the belief state.

The second component is the action selector, which takes

the belief state and computes an action (the output of

the controller). As shown in Figure 4, the action selector

consists of a search (optimization) algorithm that optimizes

an objective function, the Q-function, with respect to an

action. In other words, the Q-function is a function of the

Sensing SystemSensing System
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Action

Selector

Action
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Samples of
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Fig. 3. Basic control architecture.
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Fig. 4. Components of the action selector.

action—it maps each action, at a given belief state, to its

Q-value. The action that we seek is one that maximizes

the Q-function. The search algorithm iteratively generates a

candidate action and evaluates the Q-function at this action

(this numerical quantity is the Q-value), searching over the

space of candidate actions for one with the largest Q-value.

Search algorithms that are suitable here include the method

of [17], which is designed for such problems, dovetails

well with a simulation-based approach, and accommodates

heuristics to guide the search within a rigorous framework.

To further explain the components of the control archi-

tecture, consider applying the method of rollout. In this

case, the evaluation of the Q-value for any given candi-

date action relies on a simulation model of the sensing

system with some base policy. This simulation model is

a “dynamic” model in that it evaluates the behavior of

the sensing system over some horizon of time (specified

beforehand). The simulator requires as inputs the current

observables and samples of unobservables from the particle

filter (to specify initial conditions) and a candidate action.

The output of the simulator is a Q-value corresponding to

the current measurements and observables, for the given

candidate action. The output of the simulator represents the

mean performance of applying the base policy, depending

on the nature of the objective function. For example, the

performance measure of the system may be the negative

mean of the sum of the cumulative tracking error and the

sensor usage cost over a horizon of H time steps, given the

current system state and candidate action.

To elaborate on exactly how the Q-value approximation

using rollout is implemented, suppose we are given the

current observables and a set of samples of the unobservables

(from the particle filter). The current observables together

with a single sample of unobservables represent a candidate

current underlying state of the sensing system. Starting from

this candidate current state, we simulate the application of
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the given candidate action (which then leads to a random

next state), followed by application of the base policy for

the remainder of the time horizon—during this time horizon,

the system state evolves according to the dynamics of the

sensing system as encoded within the simulation model. For

this single simulation run, we compute the performance of

the system (e.g., the negative of the sum of the cumulative

tracking error and sensor usage cost over that simulation

run). We do this for each sample of the unobservables, and

then average over the performance values from these multiple

simulation runs. This average is what we output as the Q-

value.

The samples of the unobservables from the particle filter

that are fed to the simulator (as candidate initial conditions

for unobservables) may include all the particles in the particle

filter (so that there is one simulation run per particle), or may

constitute only a subset of the particles. In principle, we may

even run multiple simulation runs per particle.

The Monte Carlo method for approximating POMDP

solutions has some beneficial features. First, it is flexible

in that a variety of adaptive sensing scenarios can be tackled

using the same framework. This is important because of the

wide variety of sensors encountered in practice. Second, the

method does not require analytical tractability; in principle,

it is sufficient to simulate a system component, whether or

not its characteristics are amenable to analysis. Third, the

framework is modular in the sense that models of individual

system components (e.g., sensor types, target motion) may be

treated as “plug-in” modules. Fourth, the approach integrates

naturally with existing simulators. Finally, the approach is

inherently nonmyopic, allowing the trade-off of short-term

gains for long-term rewards.

V. SIMULATION RESULTS

In this section, we illustrate the performance of several

of the strategies discussed in this paper on a common

model problem. The model problem has been chosen to

have the characteristics of the motivating example given

earlier, while remaining simple enough so that the workings

of each method are transparent. The defining elements and

challenges of the problem include a continuous, large state

space, a large action space when considering the multi-step

optimization, and time-varying dynamics of the sensor and

target.

In the model problem, there are two targets, each of which

is described by a one-dimensional position (see Figure 5).

The state is therefore a 2-dimensional real number describing

the target locations plus the sensor position. Targets move

according to a pure diffusion model, and the belief state

is propagated using this model. Computationally, the belief

state is estimated by a multi-target particle filter, according

to the algorithm given in [14].

The sensor may measure any one of 16 cells, which span

the possible target locations (again, see Figure 5). The sensor

is capable of making three (not necessarily distinct) measure-

ments per time step, receiving binary returns independent

from dwell to dwell. In occupied cells, a detection is received

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12 Cell 13 Cell 14 Cell 15 Cell 16

Time 1

Time 2

Time 3

Time 4

Time 5

X X

Fig. 5. The model problem. At the onset, the belief state for target 1 is
uniformly distributed across cells {2, . . . , 6} and the belief state for target
2 is uniformly distributed across cells {11, . . . , 15}. At time 1 all cells are
visible. At times 2, 3, and 4, cells {11, . . . , 15} are obscured. This is a
simple case where a target is initially visible, becomes obscured, and then
reemerges.

with probability Pd = 0.9. In cells that are unoccupied a

detection is received with probability Pf = 0.01.

At the onset, positions of the targets are known only

probabilistically. The belief state for the first target is uniform

across sensor cells {2, . . . , 6} and for the second target

is uniform across sensor cells {11, . . . , 15}. The particle

filter used to estimate the belief state is initialized with this

uncertainty.

Visibility of the cells changes with time as follows. At

time 1, all cells are visible. At times 2, 3, and 4, cells

{11, . . . , 15} become obscured. At time 5, all cells are visible

again. This time varying visibility map is known to the

sensor management algorithm and should be exploited to

best choose sensing actions.

Sensor management decisions are made by using the belief

state to predict which actions are most valuable. In the

following paragraphs, we contrast the decisions made by

a number of different strategies that have been described

earlier.

At time 1 a myopic strategy, using no information about

the future visibility, will choose to measure cells uniformly

from the set {2, . . . , 6} ∪ {11, . . . , 15} as they all have

the same expected immediate reward. As a result, target 1

and target 2 will on the average be given equal attention.

A nonmyopic strategy, on the other hand, will choose to

measure cells from {11, . . . , 15} as they are soon to become

obscured. That is, the policy of looking for target 2 at time

1 followed by looking for target 1 is best.

Figure 6 shows the performance of several of the on-line

strategies discussed in this paper on this common model

problem. The performance of each scheduling strategy is

measured in terms of the mean squared tracking error at each

time step. The curves represent averages over 10, 000 realiza-

tions of the model problem. Each realization has randomly

chosen initial positions of the targets and measurements

corrupted by random mistakes as discussed above. The five

policies are as follows.

• A random policy that simply chooses one of the 16 cells

randomly for interrogation. This policy provides a worst-case

performance and will bound the performance of the other

policies.

• A myopic policy that takes the action expected to

maximize immediate reward. Here the surrogate reward is

information gain (see [13]), so the value of an action is

estimated by the amount of information it gains. The myopic

policy is sub-optimal because it does not consider the long

term ramifications of its choices. In particular, at time 1
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Fig. 6. The performance of the five policies discussed above. Performance
is measured in terms of mean squared tracking error at each time step,
averaged over 10

4 Monte Carlo trials.

the myopic strategy has no preference as to which target

to measure because both are unobscured and have uncertain

position. Therefore, half of the time, target 1 is measured,

resulting in an opportunity cost because target 2 is about to

disappear.

• The rollout policy described in Section IV-D. The base

policy used here is to point the sensor where the target

is expected to be. This expectation is computed using the

predicted future belief state, which requires the belief state to

be propagated in time. This is done using a particle filtering.

We again use information gain as the surrogate metric to

evaluate policies. The computational burden of this method

is on the order of NH times that of the myopic policy, where

H is the horizon length and N is the number of Monte Carlo

trials used in the approximation (here H = 5 and N = 25).

• The CO-rollout policy described in Section IV-D. The

base policy here is to point the sensor where the target is ex-

pected to be, but enforces the criterion that the sensor should

alternate looking at the two targets. This slight modification

is necessary due to the delta-function representation of future

belief states. Since the completely observable policy does

not predict the posterior into the future, it is significantly

faster than standard rollout (an order of magnitude faster in

these simulations). However, it requires a different surrogate

reward (one that does not require the posterior like the

information gain surrogate metric). Here we have chosen as a

surrogate reward to count the number of detections received,

discounting multiple detections of the same target.

Our main intent here is simply to convey that, from

Figure 6, the nonmyopic policies perform similarly, and are

better than the myopic and random policies, though at the

cost of additional computational burden. The nonmyopic

techniques perform similarly since they ultimately choose

similar policies. Each one prioritizes measuring the target

that is about to dissapear over the target that is in the clear.

On the other hand, the myopic policy is “losing” the target

more often, resulting in higher mean error as there are more

catastrophic events.
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