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ABSTRACT

This paper proposes an approach to infer neural interactions
from EEG data using a James-Stein estimator of directed
information called shrinkage optimized directed information
assessment (SODA). SODA uses shrinkage regularization on
empirical histograms to deal with the high dimensionality
of multi-channel EEG signals and the small sizes of many
real-world datasets. It is designed to make few a priori as-
sumptions, and can handle both non-linear and non-Gaussian
flows across electrode sites. The use of James-Stein shrink-
age allows the SODA algorithm to achieve higher sensitivity
to directed neural interactions for a given specificity. We aug-
ment this through a central limit theorem-based approach that
can assess the statistical significance of each discovered in-
teraction. When evaluated on brain computer interface EEG
motor activity data the neural decoding obtained using SODA
outperformed several state-of-the-art approaches including
Granger causality, MI, unregularized directed information,
and spatial coherence. Our results show that SODA localizes
30% more directed interactions in regions that are consistent
with Brodmann functional areas of motor activity.

Index Terms— James Stein estimators, information flow,
small sample size, directional interaction graph

1. INTRODUCTION

An extensive body of research focuses on the goal of identify-
ing and classifying brain activity using EEG data. Central to
these efforts is developing an understanding of how the brain
coordinates information processing to achieve specific tasks.
Multiple studies have shown that neural activations in certain
regions of the human brain have strong interactions [1][2][3].
In recent years, directed information (DI) has grown to be a
popular approach to study these interactions. DI provides a
decomposition of the mutual information (MI) between EEG
signals into causal and anti-causal components. It can model
non-linear and non-Gaussian dependencies between different
signals [4], and differs in particular from MI by providing an
asymmetric function of the time-aggregated feature densities
extracted from pairs of measurement sites.

While DI has been demonstrated to be superior to other
approaches such as Granger causality and MI [4], it is diffi-

cult to estimate in the presence of high dimensionality and
small sample sizes; both issues commonly associated with
real-world multi-channel EEG datasets. These issues can in-
troduce severe bias into unregularized empirical estimates of
MI [5] (and correspondingly DI [6]). In this paper, we ad-
dress this issue by introducing an optimally regularized DI es-
timator. Our approach, shrinkage optimized directed informa-
tion assessment (SODA), uses a shrinkage regularization that
minimizes estimator mean square error and provides asymp-
totic expressions for estimator bias and variance. We describe
a central limit theorem (CLT) that can be used in conjunction
with our SODA approach to assess the statistical significance
of putative interactions across EEG electrode sites, and to re-
duce false discoveries (i.e., false positives). To the best of
our knowledge, this is the first time that such an approach has
been applied for interaction detection in EEG signals.

When evaluated on brain computer interface EEG motor
activity data, the directed information graph discovered by
SODA was consistent with activation of Brodmann areas of
the brain associated with motor function. Compared to un-
regularized DI by Quinn et al [4], and other state-of-the-art
approaches for interaction discovery, SODA had a substan-
tially higher sensitivity to statistically significant information
flows under identical false positive rate constraints.

2. SODA FRAMEWORK FOR EEG

We introduced the general framework underlying SODA
in a recent study on audio-video indexing in multi-modal
databases [6]. Here we cast these ideas into the context of
neural interaction discovery from EEG data, focusing in par-
ticular on the question of how to extend the SODA framework
to assess the statistical significance of each discovered neural
interaction. We start by recalling the fundamental definitions
and properties of DI. Consider two EEG electrodes, Ex and
Ey , placed at positions x and y on the scalp or intracranially,
with Mx and My time points respectively. Denote by Xm

and Ym the temporal feature variables extracted at time m for
Ex and Ey respectively, and define X(m) = {Xk}m

k=1 and
Y (m) = {Yk}m

k=1. The DI from electrode Ex to electrode Ey



is then a non-symmetric generalization of the MI defined as

DI(Ex → Ey) =
M∑

m=1

I(X(m);Ym|Y (m−1)) (1)

where M = min{Mx,My}, and I(X(m);Ym|Y (m−1)) is the
conditional MI between X(m) and Ym given the past Y (m−1).
The conditional MI can be expressed in terms of joint en-
tropies as H(Xm, Y m−1) − H(Y m−1) − H(Xm, Y m) +
H(Y m). The maximum likelihood (ML) estimator of the
DI is obtained by quantizing the Mx + My dimensional fea-
tures {XMx , Y My and computing estimates of these joint en-
tropies from the empirical histogram {z1, . . . , zpm}, where
p is the number of levels per dimension, zi represents the
frequency within the ith histogram, and m = Mx + My .
Under general conditions, the histogram count vector Z is
multinomial distributed Pθ(Z1 = n1, . . . , Zpm = npm) =

n!∏pm

k=1 nk!

∏pm

k=1 θnk

k , where θ = E[Z]/n = [θ1, . . . , θpm ] is a

unknown vector of cell probabilities and
∑pm

k=1 nk = n with
n corresponding to the number of samples and

∑pm

k=1 θk = 1.
Since the number pm of quantization cells is larger than the
number of trials n, we must compensate for the overfilling
error of the ML estimates of θ. To do this, we apply a James-
Stein shrinkage approach based on shrinking the ML esti-
mator of θ towards a target distribution t = [t1, . . . , tpm+1 ],
which in our work is chosen to be the uniform distribution
consistent with [5]. This results in the regularized ML es-
timator θ̂λ

k = λtk + (1 − λ)θ̂ML
k , where λ ∈ [0, 1] is a

shrinkage coefficient. Following [5], for a given λ, the en-
tropy estimator for a single sample S of an EEG electrode
EX is defined as:Ĥθ̂λ(S) = −n

∑p
k=1 θ̂λ

k log(θ̂λ
k ). However,

unlike the James-Stein entropy estimator [5], for the proposed
James-Stein DI estimator, λ is selected to minimize the MSE
of the estimated DI, denoted by D̂I

λ
= DIθ̂λ(Ex → Ey),

which is expressed as sums and differences of estimated en-
tropies. The following is proven in [6].
Definition: The optimal DI shrinkage parameter λ that mini-
mizes estimator MSE is: λ◦ = arg minλ{

C2
1 + (2C1C2 + T2Σ2T

′

2)/n + O(n−2)
}

.
In the above, C1, C2, T2 and Σ2 are constants that can be es-
timated from the EEG data. The resultant James-Stein DI es-
timator, D̂I

λ◦
(XM → Y M ), is called the SODA estimator.

The SODA estimator satisfies a CLT:
Theorem: Let Φ(x) be the standard normal distribution func-
tion. Then asymptotically in the number of samples, the stan-
dard normal random variable

Pr(
D̂I

λ
− E[D̂I

λ
]√

V ar(D̂I
λ
)
≤ α) → Φ(α) . (2)

Due to space limitations, the expressions for the mean and
variance of D̂I

λ
in the theorem are not given here. The theo-

rem will be used to perform significance testing of discovered
directional interactions in the EEG.

In [6], a local version of DI was introduced for tempo-
ral interaction localizations. This is an important step while
studying physiological signals such as the EEG, due to is-
sues related to time warping inherent in these data. Here we
describe this algorithm in the context of EEG. The local DI
is defined similarly to the DI except that for a pair of EEG
signals X and Y , the signals are time shifted and windowed
prior to DI computation. Specifically, let τx ∈ [0,Mx − T ]
and τy ∈ [0,My − T ] be the respective time shift param-
eters, where T is the sliding window width, and denote by
XMx

τx
and Y

My
τy the time shifted sequences. Then the local

DI, DI(XMx
τx

→ Y
My
τy ), defines a surface over τx and τy , and

summation indices range over smaller sets of T time samples.
We use peaks of the local DI surface to detect and localize the
spatial-temporal interactions in pairs of EEG signals.

The overall process for SODA-based interaction discov-
ery in EEG data is as follows: (1) Temporal Alignment:
Align the EEG signals temporally by segmenting the EEG
data according to local DI peak locations. (2) Pairwise DI
and p-value computation: After alignment, calculate the
K × K matrices of SODA estimated DIs and p-values 1 −
Φ

(
D̂ij−µij

σij

)
on these DI estimates. (3) False Discovery

Rate Control: Threshold the DI and p-value matrices to find
interaction regions exhibiting large and statistically signifi-
cant DI. The construction of the interaction graph over the
K EEG electrodes is performed by testing the K × (K − 1)
hypotheses that there is a significant interaction (both direc-
tions) between pairs of electrodes. This is a multiple hypothe-
sis testing problem and we control false discovery rates using
the corrected Benjamini- Hochberg (BH) procedure [7].

3. EXPERIMENTAL RESULTS

The SODA algorithm was applied to a publicly available BCI
EEG motor activity dataset [8]. The EEG consisted of ran-
dom movements of the left and right hand recorded with eyes
closed. The data consisted of multiple data matrices corre-
sponding to multiple activities, where each column of a data
matrix represented one electrode and there were a total of 19
electrodes and 3008 samples in each row. The motor activity
lasted about 6 seconds. The sample rate of the recording was
500Hz. The subject executed 10 classes of movements where
each class contained different trials of the same movement
(e.g., three trials of left hand forward movement, three trials
of left hand backward movement, etc.) The performance of
the SODA-based interaction detected was compared to four
state-of-the art approaches: Granger causality [3], coherency
measure [2], MI [1] and unregularized DI by Quinn et al. [4].
In [2], coherency was defined as normalized cross-spectrum
between two EEG signals, where only the imaginary part of
the signal was employed. In [1], mutual information was



applied to feature selection for EEG signal classification. In
[4], Quinn et al. utilized unregularized directed information
to capture the non-linear and non-Guassian dependency struc-
ture of spike train recordings. The time sequences were first
divided into segments of 200ms length for feature extraction.
There was 100ms overlap between neighboring segments. We
estimated the joint probability density functions for each seg-
ment of EEG data by first mapping the features to a codebook
by quantization as described in Sec.2. Then we applied the
proposed shrinkage method to the ML estimator. Here the
number of samples n was the total number of trials for all the
subjects performing the same task, and the Lloyd-max quan-
tization level in the scalar quantizer was selected to be 10 for
multinomial distribution.
Interaction Detection and Comparison: Fig. 1 presents a
visual illustration of the DI matrices (expressed as heatmaps)
obtained through SODA for left hand forward movement, left
hand backward movement, and right hand forward movement
respectively. Colors in the heatmaps indicate the magnitudes
for different strengths of interactions between the 19 elec-
trodes. In the interest of space, we discuss the results for
left hand forward movement in more detail below (these re-
sults are representative of other movements). We utilized a
heat kernel to transform the (symmetrized) pairwise DI ma-
trix into the distance matrix and applied K-means clustering
with the number of clusters (3) chosen by setting a thresh-
old to within-cluster sums of point-to-centroid distances. For
left hand forward movement, the three clusters discovered
were (C3, C4, T3, T5), (F4, FP1, FP2) and the rest of elec-
trodes. Mapping the EEG channels into Brodmann areas [9],
we identified cluster (C3, C4, T3, T5) as reflecting auditory
processing such as that associated with detecting a cue to
start motion (Brodmann area 21) and the execution of motor
function (Brodmann area 4). Similarly, we identified cluster
(F4, FP1, FP2) as corresponding to the planning of com-
plex movements (Brodmann area 8) and cognitive branching
(Brodmann area 10). The third cluster corresponded to elec-
trodes that were not very active. The localization accuracy
was highlighted for each heatmap with red numbers in Fig. 1.
In Fig. 1, the order of the electrodes by clustering is T3, T5,
C3, C4, T4, F8, CZ, F7, F3, T6, PZ, P3, P4, O1, O2, FZ,
F4, FP1, FP2 from left to right and from top to bottom.

Fig. 2 compares the neural interaction graph obtained
through SODA with other state-of-the-art approaches. The
interactions shown for SODA are significant at the 5% level
after accounting for multiple hypotheses as described above.
The regions in the brain for Fig. 1 that exhibited the highest
activity match perfectly with the regions in Fig. 2 that have the
densest number of links. Fig. 2 indicates that SODA discov-
ers significantly more new interactions than other approaches,
and that these interactions are significant accordion to statis-
tical tests. For instance, the edges between (FP1 → F4)
and (FP1 → F7) corresponded to adjusted p-values of 0.026
and 0.036 respectively. The results of applying SODA to the

replicates of EEG signals with different trials also indicated
that during these periods, the electrodes FP1, F4 and F7 are
highly interactive and therefore can serve as strong evidence
that the activity was indeed being localized to these elec-
trodes in the brain associated with motor control. Compared
to the unregularized DI [4], SODA has the advantage that it
can control false positive rate more accurately with optimal
shrinkage regularization and its predictions are validated by
neural pathway locations as determined by Brodmann areas.

Consistency Measure: To study the ability of SODA to
uncover interactions that were consistently observed during
the same class of activity, we randomly divided the data into
equal sized training and test sets. SODA was applied to the
training set and the localization consistency was computed by
mapping the detected interactions to the testing set. Table 1
compares the different algorithms for varying false discovery
rates (FDR) including MI, Granger causality where the co-
variance matrix was regularized with Ledoit Wolf shrinkage
method, coherence measure, unregularized DI and SODA.
A localization consistency of 100% means that all interac-
tions discovered on the training set were observed in the test
set. As shown in Table 1, SODA consistently outperformed
other methods over a range of practical FDR thresholds (0.1
to 0.05), with this improvement increasing in particular as
the FDR threshold was lowered. Since the weak dependen-
cies were filtered out and strong dependencies remained with
a lower threshold, false positives were significantly reduced
with SODA. This explains the fundamental reason that SODA
achieved the best performance with the threshold for declar-
ing an edge present corresponding to FDR of level 0.05. Com-
pared to the next best performing method for interaction local-
ization (unregularized DI), SODA improved the localization
consistency by about 5%.

We also assessed localization consistency in terms of in-
teractions within regions of the brain coordinating similar
task related behavior (i.e., as opposed to between all EEG
electrode sites). For an FDR of 0.1, SODA discovered 36
interactions, while 23, 27 and 31 interactions are detected us-
ing MI, CM and unregularized DI. Together, the set of results
presented here demonstrate that SODA is able to both dis-
cover more statistically significant neural interactions from
EEG data, and to discover interactions that are consistent
across multiple observations of the same behavior.

4. CONCLUSIONS

We proposed applying a James-Stein estimator of directed in-
formation, called SODA, for EEG signal interaction detection
and classification based on directed information. We illus-
trated the SODA estimator for EEG signals interaction detec-
tion/localization using a publicly available brain computer in-
terface EEG motor activity database. Our results, relative to
other state-of-the-art algorithms, show that SODA provides
interaction estimates that are consistent with neural pathway



Fig. 1. Visual illustration of SODA heatmaps with Project
BCI dataset for left hand forward/backward movement and
right hand forward movement, where colors indicate the mag-
nitudes for different strengths of interactions calculated by
SODA between 19 electrodes. SODA is able to detect more
interactions than MI, such as the interactions between FP1
and F7, FP1 and FZ. The red number indicates localiza-
tion accuracy computed by mapping the detection results us-
ing SODA on different replicates of the same class of activity.

FDR 0.1 0.07 0.05
MI 0.641 0.657 0.676
GC 0.653 0.705 0.728
CM 0.657 0.694 0.726
uDI 0.669 0.721 0.743

SODA 0.698 0.755 0.809

Table 1. Comparison of EEG localization consistency for
different levels of significance (FDR thresholds). The con-
sistency is computed by mapping the detection results using
SODA on different replicates and the number of these elec-
trodes that are connected in the MI, GC, CM, uDI and SODA
interaction graphs, determined by thresholding these quanti-
ties at the same FDR level. uDI, CM and GC represents un-
regularized DI, coherence measure and Granger causality.

locations of motor activities as determined by Brodmann area.
We demonstrate that SODA provides better performance as
compared to unregularized DI, MI and coherence measure.
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