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Chapter 4

TIME-VARYING FADING
CHANNELS 1
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The increasing demand of multimedia communications among mobile users is one
of the main motivations for the study of time-varying channels. Examples of mo-
bile communications include cellular communications among users located in cars,
trains or airplanes, and digital broadcasting from low Earth orbit (LEO) satellites.
Of course, relative motion between transmitter and receiver is one of the most
common sources of channel variability, but it is not the only one. Channel fluc-
tuations are also induced by instabilities of the transmit/receive equipments, such
as oscillators’ phase noise, frequency drifts and sampling jitter, or by the motion
of the scatterers composing the transmission medium (especially evident in under-
water acoustic links or in radio links involving refraction from the ionosphere, for
example). The Doppler effect, which is one of the main causes of channel variabil-
ity, is directly proportional to both carrier frequency and relative velocity between
transmitter and receiver. Hence, both current trends towards higher carrier frequen-
cies and mobility induce higher Doppler shifts and thus faster channel fluctuations.
Nonetheless, channel variations can be classified as slow or fast only with respect

1THIS RESEARCH WAS SUPPORTED BY NSF WIRELESS INITIATIVE GRANT NO. 99-
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1
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to the transmission rate. Considering that bit rates already in use or foreseen for
near future services range from a few hundreds of Kbps up to a few hundreds of
Mbps (see, e.g., the Universal Mobile Telecommunication System where the chip
rate is 2048 Kbps or the future Mobile Broadband Systems targeting data rates up
to 155 Mbps), the channel fluctuations are usually much slower than the transmis-
sion rates. However, the situation is more complicated because of coding, spreading
or scrambling, which are inevitably required to provide an efficient and reliable use
of the transmission resources. In fact, several current systems use spreading codes
to combat channel dispersiveness, as in orthogonal frequency division multiplexing
(OFDM) for example, or for allowing multiple transmissions over a shared medium,
as in cellular systems adopting code division multiple access (CDMA). For exam-
ple, in the European standard for the Digital Terrestrial Television Broadcasting
(DTTB) system that adopts OFDM, the coded symbol has a duration that may
be 2, 048 or 8, 192 times greater than the duration of the input information symbol
(see, e.g., the so called 2K and 8K modes of DTTB [27]). Furthermore, in cellular
networks based on CDMA, each user has a specific spreading code and each base
station has a unique scrambling code. Both codes are composed of several chips.
Moreover, in single-rate systems, the number of chips of the spreading code is equal
to the maximum number of active users per cell, but in variable-rate services the
system can be fully loaded also with a number of users much smaller than the
number of chips. Hence, the need of accommodating more and more users within
each cell leads inevitably to an increase of the code lengths. As a consequence
of spreading and scrambling, the duration of the coded symbol can thus be much
greater than the information bit duration. Therefore, even though a channel is slow
with respect to the transmission rate, it may be fast with respect to information
symbol rate. Under such circumstances, since recovering the information symbols
is the ultimate goal of any communication system, the channel fluctuations must
be properly taken into account.

In the design of a communication link through a time-varying channel, one may
see the channel fluctuations as a source of impairment which must be properly
counteracted. However, the most interesting strategy, whenever applicable, con-
sists in converting the channel variability into a useful source of diversity. This
approach mirrors the same paradigm shift already observed in the development
from narrowband to wideband communications through frequency-selective linear
time-invariant (LTI) channels. Narrowband LTI channels are modeled as a multi-
plicative coefficient and as such they do not introduce any intersymbol interference
(ISI). But, if that coefficient is very low the received signal is highly attenuated and
the only possibility to counteract this shortcoming is to resort to space diversity.
Conversely, wideband links over channels affected by multipath propagation are
prone to ISI. However, if the transmission bandwidth is large enough to resolve a
certain number of paths, the linear combination of the resolved path yields an SNR
gain, without requiring any space diversity. This is indeed the basic idea underlying
spread-spectrum systems, which use a bandwidth B much greater than the infor-
mation symbol rate, and then employ a rake receiver to combine the resolved paths
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[71]. In this way, the channel time dispersiveness is turned into a useful source of
diversity, using a simple receiver scheme.

Extending the same arguments to linear time-varying (LTV) channels exhibit-
ing dispersiveness possibly along both time and frequency axes, we can exploit
advantageously the time and frequency diversity of the channel. This requires i)
transmission of signals with sufficient time-bandwidth product to allow us to re-
solve a sufficient number of paths in both time and frequency domains; ii) accurate
estimate of the channel fluctuations; iii) coherent combination of the resolved paths
to increase the SNR using, for example, a 2-D RAKE filter [77].

An even more interesting situation arises when the transmitter is able to pre-
dict the evolution of the channel on the basis of the past channel behavior, at
least within a finite interval. This is possible whenever the transmitter can acquire
channel status information (CSI) through feedback channels or exploiting channel
reciprocity in time-division duplexing (TDD) links. In the first case, ad hoc low
bit rate channels are reserved to exchange system informations such as power, rate,
link properties and so on; in the second case, we exploit the simple property that
the channel between two users is necessarily the same, irrespective of which user is
transmitting or receiving. In both cases it is possible to precode the signal to be
transmitted in order to optimize the use of the available resources and thus exploit
the inherent channel diversity. Optimal coding strategies, maximizing the informa-
tion rate for transmissions over flat fading time-varying channels were investigated
in [37], [42], [15], for example, whereas time and frequency selective channels were
analyzed in [64], [63], [9].

In this chapter, far from providing a tutorial presentation of the transmission
over time-varying channels which would require much more space, we wish to high-
light a few aspects of the problem with the hope of stimulating further develop-
ments in this challenging field. Two peculiar aspects of the approach followed in
this presentation are: i) analytic (approximate) modeling of the eigenfunctions of
underspread LTV channels, and ii) parametric modeling of the channel impulse re-
sponse. The analytic modeling, even though approximate, has been fundamental
to provide physical insight into the optimal coding strategies and to devise simple
sub-optimal coding structures. The parametric modeling has been instrumental in
quantifying the channel estimation and prediction errors.

The chapter is organized as follows. In Section 4.1 we introduce the channel
model describing how different perspectives, i.e. deterministic versus stochastic or
parametric versus non-parametric modeling, can all coexist as they shed light on
different, yet equally important, aspects of the same problem. A special atten-
tion is devoted to modeling the eigenfunctions of underspread channels, as they
provide a good model for wireless communication links. In Section 4.2 we derive
the optimal linear precoding strategies according to different criteria, such as max-
imum information rate or minimum mean square error between transmitted and
estimated symbols, subject to zero-forcing or average transmit power constraints.
Capitalizing on the analytic model of the underspread channel’s eigenfunctions, we
derive closed form expressions that show how power and bits are distributed as a
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function of time and frequency, according to different optimization criteria. The
analytic model is also instrumental to devise sub-optimal ways to implement the
coding strategy using, for example, the adaptive OFDM system, described in Section
4.2.3, that allocates power and bits jointly as a function of both frequency bins and
blocks. The channel is initially assumed to be perfectly known. Then we assume,
more realistically, that only partial informations are available and we show how it is
possible to incorporate the uncertainties about our knowledge on the channel status
into the precoding strategy. In particular, in Section 4.2.4 we evaluate the effects of
channel prediction errors on the optimal power/bit allocation. Channel estimation
and prediction are then analyzed in Section 4.3 where we provide the lower bound
on the accuracy of the channel parameters estimates and show how the estimation
accuracy depends on number of samples, SNR and channel order estimation.

4.1 Channel model

The most general form for the input/output relationship of a continuous-time (CT)
LTV channel with additive noise is [10], [44]:

y(t) =
∫ ∞

−∞
h(t, τ)x(t− τ)dτ + v(t) (4.1.1)

where x(t) and y(t) are the channel input and output functions, h(t, τ) is the chan-
nel impulse response and v(t) is the noise. In general, given the high complexity
of the physical interactions characterizing the transmission through a real channel
(e.g. reflections, scattering, refraction or diffractions), the most appropriate model-
ing of the impulse response is probabilistic, so that h(t, τ) is a 2D random process.
However, in several cases of practical interest, the realizations of this random pro-
cess can be described very accurately by a parametric model whose parameters
represent physically meaningful quantities, such as delays, Doppler frequencies and
reflection coefficients. Therefore, both deterministic and stochastic approaches are
equally useful in describing a time-varying channel, even though they embrace dif-
ferent aspects: The stochastic model is better suited for describing global behaviors,
whereas the deterministic one is more useful to study the transmission through a
specific channel realization. Modeling the parameters of a multipath channel as
random variables, for example, provides a simple yet important random channel
model. Parametric modeling is especially important in devising channel estimation
and tracking algorithms (see e.g. [34]). For all these reasons, in the next section
we start with a deterministic characterization whereas the ensuing section will be
devoted to some of the basic concepts of random modeling.

4.1.1 Deterministic models

We recall here the basic relationships of continuous-time and equivalent discrete-
time base-band channels.
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Continuous-time model

Following the same notation introduced in the pioneering work of Bello [10], any
LTV channel can be fully characterized by its impulse response h(t, τ), introduced
in (4.1.1), or by any of the following system functions:

i) time-varying transfer function

H(t, f) :=
∫ ∞

−∞
h(t, τ)e−j2πfτdτ ; (4.1.2)

ii) delay-Doppler spread function

S(ν, τ) :=
∫ ∞

−∞
h(t, τ)e−j2πνtdt; (4.1.3)

iii) output Doppler-spread function

Q(ν, f) :=
∫ ∞

−∞

∫ ∞

−∞
h(t, τ)e−j2π(νt+fτ)dtdτ. (4.1.4)

Unless otherwise stated, in the following we will denote the function S(ν, τ) simply
as the channel spread function. The function Q(ν, f) is useful to derive the dual
input/output relationship (4.1.1) in the frequency domain:

Y (f) =
∫ ∞

−∞
Q(f − ν, ν)X(ν)dν =

∫ ∞

−∞
Q(ν, f − ν)X(f − ν)dν, (4.1.5)

where X(f) and Y (f) denote the Fourier transform (FT) of the input and output
signals, respectively. The time-varying transfer function H(t, f) is related to the
spread function S(ν, τ) by a two-dimensional Fourier Transform:

H(t, f) =
∫ ∞

−∞

∫ ∞

−∞
S(ν, τ)ej2π(νt−fτ)dτ dν. (4.1.6)

From (4.1.6), it is clear that the variability of H(t, f) can be measured by checking
the spreading of S(ν, τ), which can be quantified through its moments. In general,
since the spread function may be concentrated around a point, in the (ν, τ) plane,
different from the origin, it is more meaningful to measure its spread using the
central moments. Considering also that S(ν, τ) is complex, we measure the spread
of a channel through its normalized absolute central moments, defined as

m
(k,l)
S :=

∫∞
−∞

∫∞
−∞ |S(ν, τ)||τ − t0|k|ν − f0|ldνdτ∫∞

−∞
∫∞
−∞ |S(ν, τ)|dνdτ

(4.1.7)

The values t0 and f0 can be chosen to minimize, for example, m
(1,0)
S and m

(0,1)
S ,

separately. In such a case, t0 is equal to the median value of S(τ) :=
∫∞
−∞ |S(ν, τ)|dν,

and f0 is the median value of S(ν) :=
∫∞
−∞ |S(ν, τ)|dτ .
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In general, for any given channel input x(t), a shift of the spread function causes
a corresponding shift, in time and frequency, of the corresponding channel output.
More precisely, the following property holds true.

P0: Denoting by y(t) the output of a channel having a spread function S(ν, τ) cor-
responding to the input x(t), the output ȳ(t) of the channel having spread function
S̄(ν, τ) = S(ν − f0, τ − t0)e−j2π(ν−f0)t0 , corresponding to the same input x(t), is a
time and frequency shifted replica of y(t), i.e. ȳ(t) = y(t− t0)ej2πf0t.
Proof: Combining (4.1.1) and (4.1.3) we have

y(t) =
∫ ∞

−∞

∫ ∞

−∞
S(ν, τ)x(t− τ)ej2πνtdνdτ, (4.1.8)

and, similarly

ȳ(t) =
∫ ∞

−∞

∫ ∞

−∞
S(ν − f0, τ − t0)e−j2π(ν−f0)t0x(t− τ)ej2πνtdνdτ (4.1.9)

= ej2πf0t

∫ ∞

−∞

∫ ∞

−∞
S(ξ, θ)x(t− t0 − θ)ej2πξ(t−t0)dξdθ = ej2πf0ty(t− t0).

Therefore, we may concentrate, without any loss of generality, on channels whose
spread function is centered around the origin of the (ν, τ) plane.

We say that a channel is underspread if

m
(k,0)
S m

(0,l)
S ¿ 1,∀k, l ≥ 1. (4.1.10)

This means that the spread function of an underspread channel must be concen-
trated at least along one axis, either along ν or along τ , or along both (among
these situations, the case where the spread function is concentrated along both axes
is probably the least interesting because it corresponds to an almost flat fading
channel).

In wideband mobile communications, the channel can be modeled as the su-
perposition of a discrete number of paths [44]. When the transmitted signal has a
bandwidth B greater than the channel coherence bandwidth Bc (see, e.g. (4.1.36)
for its definition), a certain number, let us say K, of paths can be resolved in time,
thus leading to the following model

h(t, τ) =
K−1∑

k=0

hk(t)δ(τ − τk(t)), (4.1.11)

where hk(t) and τk(t) denote the temporal variations of the complex amplitude and
delay associated to the kth path, respectively. In most cases, the delays do not vary
significantly over a symbol period so that the time variations of hk(t) can be fitted
by a linear combination of sinusoids [47], [19], [34] 2:

hk(t) =
P−1∑
p=0

hk,pe
j2πfk,pt. (4.1.12)

2The model proposed in [34] is slightly different from (4.1.12) because it assumes that the
expansion basis composed of the complex exponentials is the same for all k’s. This assumption
was instrumental in [34] to devise blind channel estimation and equalization techniques.
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Using the constant delay assumption and combining (4.1.12) with (4.1.11), the
impulse response can also be written as

h(t, τ) =
Q−1∑
q=0

hqe
j2πfqtδ(τ − τq) (4.1.13)

where Q = PK. This expression models the channel as a superposition of Q paths,
each one characterized by the triplet (hq, τq, fq). We assume that there are no paths
having the same pair of delay/Doppler values (τq, fq) (otherwise the two paths are
grouped to form a single one). However, there may be different paths having the
same delay or the same Doppler shift.

The spread function and time-varying transfer functions corresponding to (4.1.13)
are:

S(ν, τ) =
Q−1∑
q=0

hqδ(τ − τq)δ(ν − fq) (4.1.14)

and

H(t, f) =
Q−1∑
q=0

hqe
j2π(fqt−fτq), (4.1.15)

respectively. Since practical values of both τq and fq are bounded, (4.1.14) reveals
the finite support nature of the channel spread function in both Doppler and delay
domains. Using (4.1.7), the normalized absolute moments of a spreading channel
are (we assume for simplicity of notation, but without loss of generality, according
to P0, that the median values t0 and f0 are equal to zero):

m
(k,l)
S =

∑Q−1
q=0 |hq||τq|k|νq|l∑Q−1

q=0 |hq|
. (4.1.16)

We say that a multipath channel is underspread if

max
p,q

{|τpνq|} ¿ 1 (4.1.17)

or if
m

(k,0)
S m

(0,l)
S ¿ 1,∀k, l ≥ 1. (4.1.18)

The two definitions are not exactly equivalent, because only the second one takes
the path amplitudes into account.

Discrete-time model

In digital communication systems using linear modulation, the baseband transmit-
ted signal can be expressed as

x(t) =
∞∑

k=−∞
x[k]gT (t− kTs), (4.1.19)

where x[k] is the (generally complex) kth transmitted symbol and gT (t) is the
transmit lowpass filter whose bandwidth is directly proportional to the symbol rate
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1/Ts. The impulse response gT (t) has a Nyquist characteristic and it is usually a
root raised cosine filter [71]. The channel output can then be written as

z(t) =
∞∑

k=−∞
x[k]

∫ ∞

−∞
h(t, τ)gT (t− τ − kTs)dτ + w(t), (4.1.20)

where w(t) is additive noise. The received signal is demodulated, low-pass filtered
and sampled. Denoting by gR(t) the impulse response of the receive low-pass filter,
the baseband received signal is

y(t) =
∞∑

k=−∞
x[k]

∫ ∞

−∞

∫ ∞

−∞
gR(t− θ)gT (θ − τ − kTs)h(θ, τ)dτdθ + v(t), (4.1.21)

where v(t) is the filtered noise. Hence, sampling y(t) at symbol period Ts, we obtain
the sequence

y[n] := y(nTs) =
∞∑

k=−∞
h[n, n− k]x[k] + v[n], (4.1.22)

where we have introduced the equivalent discrete-time impulse response

h[n, n− k] :=
∫ ∞

−∞

∫ ∞

−∞
gR(nTs − θ)gT (θ − τ − kTs)h(θ, τ)dτdθ. (4.1.23)

Equation (4.1.22) is the discrete-time counterpart of (4.1.1).
To gain better insight into the transmission through LTV channels, it is useful

to express (4.1.23) in the frequency domain. Specifically, introducing the transfer
functions GT (f) and GR(f) of the transmit and receive filters and using the output
Doppler-spread function (4.1.4), we may rewrite (4.1.23) as

h[n, n− k] :=
∫ ∞

−∞

∫ ∞

−∞
GR(f)GT (ν)Q(f − ν, ν)ej2π(nf−νk)Tsdνdf. (4.1.24)

Using now the multipath channel model (4.1.13), we get

h[n, n− k] =
L∑

q=0

hqe
j2πfqnTs

∫ ∞

−∞
GR(ν + fq)GT (ν)ej2πν((n−k)Ts+τq)dν. (4.1.25)

Substituting the transmit and receive transfer functions GT (f) and GR(f) in (4.1.25),
we obtain the equivalent discrete-time impulse response in the most general case.
To comprehend some of the basic features of the discrete-time equivalent channels,
it is useful to analyze the simple case where both transmit and receive shaping filters
are ideal lowpass filters. In particular, setting GT (f) = GR(f) =

√
Tsrect(fTs),

where the rectangular function rect(f) is equal to one for |f | < 1/2 and is null
otherwise, (4.1.25) gives rise to the following DT impulse response

h[n, k] =
L∑

q=0

hq[1− |fq|Ts]+ejπνq(2n−k+θq)sinc[π(1− |νq|)(k − θq)], (4.1.26)
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where [x]+ ≡ max(x, 0) and we have introduced the normalized delay θq := τ/Ts

and Doppler νq := fqTs. Since maxq |νq| < 1, it is clear from (4.1.26) that the
components corresponding to higher Doppler shifts νq are more attenuated. This
happens because part of their energy falls outside of the receive filter bandwidth.
In fact, since the transit through an LTV channel increases the bandwidth of the
signal, the receive filter should have a bandwidth greater than 1/Ts to keep all
the useful energy and, consequently, the sampling rate should also be higher than
1/Ts, to avoid any loss of information. However, in practice fqTs ¿ 1, so that
usually the receive filter bandwidth and sampling rate can be maintained equal to
1/Ts, without any appreciable loss. As a simple numerical example, using a carrier
frequency of 2 GHz in a link of 1 Mbps between terminals in relative motion at a
velocity of v = 150 Km/hr, the maximum normalized Doppler shift is approximately
2.8 · 10−4. This explains why in most practical systems the receiver bandwidth and
sampling rates are not higher than 1/Ts, for the gain obtainable otherwise is not
worth of the extra complications related to re-sampling. Therefore, (4.1.26) can be
approximated with negligible error as

h[n, k] '
L∑

q=0

hqe
jπνq(2n−k+θq)sinc[π(k − θq)]. (4.1.27)

A convenient form for expressing the I/O relationship in the DT case is the matrix
form. Specifically, in the transmission over an FIR channel of order L, each block of
P received symbols y(n) := (y(nP ), . . . , y(nP + P − 1)T ) is linearly related to the
corresponding block of R transmitted symbols x(n) := (x(nR), . . . , x(nR+R−1))T

through the matrix relationship

y(n) = H(n)x(n) + v(n), (4.1.28)

where Q = P+L, H(n) is the P×R channel matrix whose (i, j) entry is {H(n)}i,j =
h[nP + i, i− j] and v(n) := (v(nP ), . . . , v(nP + P − 1)T ) is additive noise.

Usually the information symbols are precoded before transmission, to make the
received data more resilient against channel dispersiveness and allow multi-user
communications over a shared medium. In this chapter we will only consider lin-
ear encoding. To simplify synchronization and symbols decoding, we also adopt a
block encoding and insert guard intervals to avoid inter-block interference (IBI).
Specifically, if the DT channel has an impulse response of finite order L, this is
achieved by parsing the input sequence into consecutive blocks of length M and
padding guard intervals between consecutive blocks of length at least equal to L.
At the receiver, discarding the guard intervals we get rid of the IBI. Of course
Inter-Symbol Interference (ISI) is still present. However, redundant linear precod-
ing allows for zero-forcing symbol recovery, regardless of the FIR channel parameters
[80]. Linear block coding with null guard intervals can be described through the
encoding and decoding matrices F (n) and G(n), so that the nth transmitted block
is x(n) = F (n)s(n), whereas the nth decoded symbols block is

ŝ(n) = G(n)H(n)F (n)s(n) + G(n)v(n). (4.1.29)
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In Section 4.2 we will show how to optimize the choice of both F (n) and G(n),
depending on the amount of channel status information (CSI) available at the trans-
mitter side and on the adopted optimization criterion.

4.1.2 Stochastic models

The deterministic models are useful to describe the properties of specific channel
realizations, but are too simple to provide a global characterization of practical
time-varying channels. Modeling the channel impulse response as a 2D stochastic
process gives many more degrees of freedom which can provide a better matching be-
tween mathematical models and experimental results. Furthermore, only stochastic
modeling allows the computation of global performance parameters such as outage
probability or information outage probability, defined respectively as the probabil-
ity that the bit error rate exceeds a prescribed value and the probability that the
mutual information exceeds a certain rate.

In general, the full characterization of a time-varying random channel requires
the joint probability density function (pdf) of any set of random variables extracted
from the channel impulse response. However, the determination of such a pdf may
be a too difficult task, especially when the channel’s probabilistic behavior departs
from the Gaussian model. A less stringent, but still meaningful approach involves
the determination of the correlation of the system functions introduced in the previ-
ous section. We recall a few basic definitions here, which will be used later on. The
interested reader may refer to [10], [45], [44] or [70] for more details. Introducing
the correlation of the impulse response Rh(t1, t2; τ1, τ2) := E{h∗(t1, τ1)h(t2, τ2)}
and using Bello’s system functions and terminology [10], a channel is wide sense
stationary (WSS) if

Rh(t1, t2; τ1, τ2) = Rh(∆t; τ1, τ2) (4.1.30)
with ∆t = t2 − t1. This implies that signals arriving with different Doppler shifts
are uncorrelated [44]. By duality, a channel is with uncorrelated scattering (US) if
signals arriving with different delays are uncorrelated. In formulas

Rh(t1, t2; τ1, τ2) = Ph(t1, t2; τ2)δ(τ2 − τ1). (4.1.31)
Combining the two properties, a channel is wide sense stationary with uncorrelated
scattering (WSSUS) if

Rh(t1, t2; τ1, τ2) = Ph(∆t; τ2)δ(τ2 − τ1). (4.1.32)
A practical wireless channel cannot be assumed to be stationary. However, the
stationary model is well suited for a small scale characterization, i.e. for short
periods of time or, equivalently, for motions over a small geographical area. The
large scale behavior can then be captured by examining the small scale statistics
across consecutive time intervals (geographical areas). This class of channels has
been denoted as quasi- WSSUS (QWSSUS) [10] and is a fairly good model for
practical channels.

From a practical point of view, it is better to quantify the main channel char-
acteristics with a few numbers, rather than with functions. Two particularly im-
portant parameters are the channel coherence time and bandwidth. Dealing with
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WSSUS channels and introducing the function Ph(τ) := Ph(0; τ), the channel av-
erage delay and delay spread are defined as

D :=

∫∞
0

τPh(τ)dτ∫∞
0

Ph(τ)dτ
, σt :=

√∫∞
0

(τ −D)2Ph(τ)dτ∫∞
0

Ph(τ)dτ
, (4.1.33)

respectively. In [45] it was proved that the correlation coefficient between signals
separated by ∆f Hz and ∆t sec is

ρ(∆f, ∆τ) =
J2

0 (2πfm∆t)
1 + (2π∆fσt)2

(4.1.34)

where J0(x) is the zero order Bessel function of the first kind and fm = v/λ is the
maximum Doppler frequency (v is the relative transmit/receive velocity along their
line of sight and λ is the transmit wavelength). The channel coherence time and
bandwidth quantify the spread of ρ(∆f, ∆τ) around the origin. Specifically, the
coherence time is

Tc =
9

16πfm
(4.1.35)

and the coherence bandwidth is
Bc =

1
2πσt

. (4.1.36)

A channel is said to be frequency-selective if the transmission bandwidth is greater
than the coherence bandwidth and it is time-selective if the coded symbol duration
exceeds the channel coherence time.

Over a relatively small scale, the amplitude of the dominant paths can be often
characterized statistically by a Gaussian pdf, by virtue of the central limit theorem.
In fact, given a finite receiver bandwidth B and symbol duration Ts, each dominant
path having complex amplitude hq, delay τq and Doppler shift fq, is equal to the
sum of all the components having delays that differs from τq by an amount smaller
than 1/2B and a Doppler differing from fq by less than 1/2Ts, in absolute sense.
If the number of such components is sufficiently high, we may invoke the central
limit theorem to model hq as a complex Gaussian random variable. Depending
on whether or not there are line-of sight paths, the modulus of each hq is then
a Rice or a Rayleigh random variable. However, especially in the presence of a
few dominant scatterers or of shadowing effects, the Gaussian model becomes less
appropriate and the pdf of the amplitudes of each path component is better fitted
by Nakagami, Weibull or log-normal laws. In an effort to conjugate small and large
scale properties to better characterize a QWSSUS channel, an appropriate model
for the amplitude of the dominant reflections is the product model z(t) = x(t)y(t),
where x(t) is the fast fading envelope, whereas y(t) is the slow fading envelope. An
example of such a model is the Suzuki’s distribution where x(t) is Rayleigh and
y(t) is log-normal [89]. An interesting further development could be based on the
use of complex correlated non-Gaussian processes, such as the spherically invariant
random processes [99] or the complex correlated Weibull process [30], for example.

Before concluding this section, it is worth recalling that (4.1.13) can also pro-
vide a simple, yet effective, model for the simulation of a real time-varying channel.
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In fact, if measurements of the spread function are available, we can generate an
LTV channel fitting the real data in the following way: Starting from a certain
number of paths Q, we generate Q pairs as random variables (τq, fq) whose joint
pdf is proportional to the modulus of the measured spread function [97]. Each pair
is then associated to a complex coefficient hq whose modulus is Rayleigh, Rice or
Nakagami, and whose phase is uniform in [−π, π). This simulation model, while
preserving the parametric structure, can provide a fairly good fit with the experi-
mental measurements. Another useful approach for the simulation of LTV channels
consists in modeling the time-varying amplitudes hk(t) in (4.1.11) as autoregressive
(AR) processes [91], [92]. Both superposition of complex exponentials or AR model
provide a finite parameterization of the channel impulse response that can be used
not only for channel simulation but, more interestingly, also for channel estimation
and equalization [36], [34].

4.1.3 Channel singular functions

Since in general the operator describing an LTV channel is not self-adjoint, we
cannot define the eigenfunctions of an LTV channel but we can guarantee the ex-
istence of right (input) and left (output) channel singular functions under proper
conditions on the impulse response. The singular functions are the continuous-time
counterparts of the left and right singular vectors resulting from the singular value
decomposition (SVD) of the channel matrix. In the following we will use Gallager’s
notation [33], slightly modified to make it coherent with (4.1.1). In particular, we
will assume as in [33] that the channel impulse response is square integrable. In this
case, it is known [33] that there exists a sequence of non negative real numbers λi

and two sets of orthonormal functions uλ(t) and vλ(t) such that the following pair
of integral equations hold true 3:

λuλ(t) =
∫ ∞

−∞
h(t, t− τ)vλ(τ)dτ (4.1.37)

and
λvλ(τ) =

∫ ∞

−∞
h∗(t, t− τ)uλ(t)dt. (4.1.38)

Inserting (4.1.37) in (4.1.38), we also get

λ2vλ(τ) =
∫ ∞

−∞

∫ ∞

−∞
h∗(t, t− τ)h(t, t− θ)vλ(θ)dθdt (4.1.39)

so that vλ(τ) is the eigenfunction of the system whose kernel is

h̃(τ, θ) :=
∫ ∞

−∞
h∗(t, t− τ)h(t, t− θ)dt. (4.1.40)

Similarly, substituting (4.1.38) in (4.1.37), uλ(t) is an eigenfunction of the system
with kernel

h̄(t, θ) :=
∫ ∞

−∞
h(t, t− τ)h∗(θ, θ − τ)dτ. (4.1.41)

3We can assume without any loss of generality that λ is real and non-negative.



Section 4.1. Channel model 13

In practice, there are at least two quite common situations where h(t, τ) is not
square-integrable: i) LTI channels, where h(t, τ) is constant along t; and ii) multi-
path channels with specular reflections, where h(t, τ) contains Dirac pulses. Both
situations are considered as limiting cases, as in [33].

The discrete time counterpart of (4.1.37) and (4.1.38) is the SVD that allows us
to factorize the channel matrix H(n) in (4.1.28) as

H(n) = U(n)Λ(n)V H(n), (4.1.42)

where the columns of U(n) and V (n) are the left and right channel singular vectors
associated to the singular values contained in the diagonal matrix Λ(n), relative
to the channel status corresponding to the nth transmitted block. Dealing with
LTV channels, we find useful to extend the concept of system eigenfunction as
follows. It is well known that the eigenfunctions of LTI systems are complex ex-
ponentials exp(j2πf0t) that remain unaltered after passing through the channel,
except for a change of amplitude and for a delay. Generalizing this concept to the
LTV case, we name generalized eigenfunctions (or G-eigenfunctions) those input
signals wλ(t) whose corresponding output is proportional, through the correspond-
ing eigenvalue, to a shifted replica in time and frequency of the input. In formulas,
a G-eigenfunction wλ(t), if it exists, must satisfy the following identity:

λwλ(t− t0)ejψ0ej2πf0t =
∫ ∞

−∞
h(t, τ)wλ(t− τ)dτ. (4.1.43)

We are now able to state the following properties valid in approximate form for
underspread channels, with an approximation error directly proportional to the
moments of the channel spread function and inversely proportional to the corre-
sponding eigenvalue (see App.4.5.1 for the details).

P1: The right singular function vλ(t) corresponding to the singular value λ of an
LTV channel with small frequency spread, i.e. maxq |νq| ¿ 1, can be approximated
by the multicomponent signal

vλ(t) =
{ ∑Kλ

k=1 A
(λ)
k ejφ

(λ)
k (t), t ∈ I

(λ)
k

0 elsewhere
(4.1.44)

whose components have a constant amplitude, within a certain time interval, and
an instantaneous frequency f

(λ)
k (t) = φ̇

(λ)
k (t)/2π resulting from the solution of the

following equation ∣∣∣ H
(
t, f

(λ)
k (t)

)∣∣∣
2

= λ2, (4.1.45)

where H(t, f) is the channel time-varying transfer function, φ̇
(λ)
k (t) is the time

derivative of φ
(λ)
k (t), I

(λ)
k denotes the support over t where (4.1.45) admits the k-th

real solution, Kλ denotes the number of solutions of (4.1.45) and the amplitudes
A

(λ)
k are chosen to enforce the unit norm of the singular functions. Similarly, the

right singular function vλ(t) corresponding to the singular value λ of an LTV chan-
nel with small delay spread, i.e. with maxq |τq| ¿ 1, can be approximated by the



14 Time-varying fading channels Chapter 4

multicomponent signal whose spectrum is

Vλ(f) =
{ ∑Kλ

k=1 C
(λ)
k ejΦ

(λ)
k (f), f ∈ I

(λ)
k

0 elsewhere
(4.1.46)

whose components have a spectrum with a constant amplitude |Ck|, within a certain
frequency interval, and a group delay t

(λ)
k (f) = −Φ̇(λ)

k (f)/2π resulting from the
solution of the following implicit equation

∣∣∣ H
(
t
(λ)
k (f), f

)∣∣∣
2

= λ2. (4.1.47)

P2: The existence of a real solution for (4.1.45) requires that the modulus of the
channel singular values λ be bounded between the following limits:

min
t,f

|H(t, f)| ≤ λ ≤ max
t,f

|H(t, f)|. (4.1.48)

P3: The left singular functions are approximately proportional to a time and fre-
quency shifted version of the right singular functions, i.e.

uλ(t) = ejΨ0ej2πν0tvλ(t− τ0). (4.1.49)

P4: The channel G-eigenfunctions wλ(t) exist and have a Fourier Transform Wλ(f)
which has approximately the same form as wλ(t), except for a change of amplitude
and scale.

Remarks: i) adopting our definition of G-eigenfunctions, (4.1.49) states that vλ(t)
is a G-eigenfunction of the channel; ii) from (4.1.44) and (4.1.45) it turns out that the
functions vλ(t) associated to different eigenvalues have components whose instanta-
neous frequencies are non-overlapping curves f = fλ(t) of the time-frequency plane
(t, f). Since the components of vλ(t) have also a constant amplitude (at least in a
certain time interval), the Wigner-Ville Distribution (WVD) of functions vλ(t) (see
section tf-analysis for the time-frequency analysis of the channel eigenfunctions))
corresponding to distinct eigenvalues are non-overlapping. As a consequence, using
Moyal’s formula (4.5.19), the class of functions given by (4.1.44) and (4.1.45) is a
class of orthonormal functions.

In the technical literature there are two important classes of contributions to the
theoretical analysis of the eigenfunctions of slowly-varying operators: [50], [51], [61]
on one side and [85] on the other side. In the first class of works, it was proved that
the eigenfunctions of underspread operators can be approximated by well localized
functions in the time-frequency plane, with an error upper bounded by the spread
function moments; however there was not a direct link between the shape of the
eigenfunctions and the time-varying transfer function. In [85] there is an analytic
result very close to P1, but valid only for hermitian operators and for slowly-varying
operators. Conversely, it is important to remark that P1 is valid also for channels
exhibiting fast fluctuations, provided that |H(t, f)| does not vary too fast along both
time and frequency axes or, equivalently, provided that S(ν, τ) is not too spread
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in both directions ν and τ . Furthermore, even though we have not addressed this
case here, the analytic model described here can be generalized to channels whose
spread function is concentrated around a curve in the delay-Doppler domain.

We verify now the validity of properties P1÷P4 analytically for a few simple
channels whose eigenfunctions can be derived in closed form and then we will analyze
the most general case numerically.

Two-ray multipath channel

Let us consider a multipath channel composed of two rays, i.e. (4.1.13) with Q = 2.
We assume that the delays τk are not equal to each other (this situation will be
considered in the example referring to the multiplicative channel). In such a case,
the channel G-eigenfunction must be a solution of

λejψ0wλ(t− td)ej2πfdt = h0wλ(t− τ0)ej2πf0t + h1wλ(t− τ1)ej2πf1t. (4.1.50)

Setting td = τ0 and fd = f0, we may rewrite (4.1.50) as

λwλ(t− τ0) = h0wλ(t− τ0) + h1wλ(t− τ1)ej2π(f1−f0)t. (4.1.51)

Setting θ = t− τ0, we have

λwλ(θ) = h0wλ(θ) + h1wλ(θ −∆τ)ej2π∆f(θ+τ0), (4.1.52)

where ∆f := f1 − f0 and ∆τ := τ1 − τ0. It is straightforward to verify, by direct
substitution, that the solution of (4.1.52) is given by the functions

wλ(t) = ej2π α
∆τ tejπ ∆f

∆τ t2 (4.1.53)

parameterized with respect to the variable α, which is related to λ by

λejψ0 = h0 + h1e
j2παe−jπ∆f(τ1+τ0), (4.1.54)

where the phase ψ0 is chosen in order to have a real non-negative value for λ.
Therefore, the G-eigenfunctions of 2-rays channels are chirp signals whose sweep
rate is ∆f/∆τ . Furthermore, the eigenvalues are related to the channel parameters
by (4.1.54). We can now verify P1÷P3. In fact, the channel transfer function is

H(t, f) = h0e
j2π(f0t−fτ0) + h1e

j2π(f1t−fτ1) = ej2π(f0t−fτ0)(h0 + h1e
j2π(∆ft−∆τf))

(4.1.55)
and the contour lines of |H(t, f)| relative to the level λ are described by the equation

∆τ f −∆f τ = α, (4.1.56)
where the parameter α is related to λ by

λejϕ0 = h0 + h1e
j2πα, (4.1.57)

where ϕ0 is any constant phase. Solving (4.1.56) for f and using (4.1.45), the
instantaneous frequency of the channel eigenfunctions components is

f = fλ(t) =
∆f

∆τ
t +

α

∆τ
(4.1.58)
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so that, according to (4.1.44), the channel eigenfunctions are

vλ(t) = ej2π α
∆τ tejπ ∆f

∆τ t2 . (4.1.59)

Notice that this expression coincides with (4.1.53). Furthermore, if the channel is
underspread, i.e. (τ1+τ0)∆f ¿ 1, the channel eigenvalue obtained through (4.1.54)
or (4.1.57) coincide by simply setting ϕ0 = ψ0.

We can also verify the validity of P4 in this case, by recalling that the Fourier
Transform (FT) of chirp signals has also approximately a chirp-like behavior [69].

LTI channels

The property that the eigenfunctions of LTI systems assume the form exp(j2πft)
can be deduced as a particular case of P1. In fact, the time-varying transfer function
of an LTI channel is constant along t and thus (4.1.44) and (4.1.45) predict that
the instantaneous frequency of the channel eigenfunctions must be constant.

Multiplicative channel

A multiplicative channel is characterized by the following input-output relationship

y(t) = m(t)x(t) (4.1.60)
or, incorporating a possible delay, y(t) = m(t)x(t − t0). The impulse response of
a multiplicative channel assumes the form h(t, τ) = δ(τ − τ0)m(t) and its transfer
function is H(t, f) = e−j2πτ0fm(t). As an example, the multipath model (4.1.13)
degenerates into a multiplicative channel when the delays are all equal to each other,
e.g. τk = τ0, ∀k. In such a case,

h(t, τ) = δ(τ − τ0)
Q−1∑
q=0

hqe
j2πfqt. (4.1.61)

Since |H(t, f)| is constant along f , according to (4.1.46) and (4.1.47), the group
delay is constant and thus the spectrum of the channel eigenfunctions has constant
amplitude and linear phase and thus the eigenfunctions are Dirac pulses. In fact, if
the input is x(t) = δ(t − τ0), the corresponding output y(t) is proportional to the
input and it is y(t) = m(τ0)δ(t− τ0) = m(τ0)x(t).

Before concluding this section, we wish to remark that even though the LTI
and multiplicative channels are characterized by impulse responses which are not
square-integrable, the models (4.1.44) and (4.1.46) in these two cases hold exactly.

4.1.4 Time-frequency analysis of LTV channels’ eigenfunctions

In general, besides the few examples considered so far, it is not easy to derive the
eigenfunctions of a general LTV channel analytically. Given the central role played
by the instantaneous frequency in (4.1.44) or by the group delay in (4.1.46), the
analysis in the separate time or frequency domains is not sufficient to reveal the basic
structure of the eigenfunctions, except for the simple cases of LTI or multiplicative
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channels. It is thus understandable that a more appropriate tool for analyzing the
channel eigenfunctions is provided by the joint time-frequency representations (in
App.4.5.2 we recall a few fundamental properties of time-frequency distributions
(TFD) and the interested reader can refer to [18] or [32], for more details). The
basic TFD that we use here is the Wigner-Ville Distribution (WVD). However, the
WVD alone would exhibit high inner and outer interference terms, due to its non-
linear nature. To reduce the interference terms and still preserve a good resolution
in time and frequency, we have used the so called Smoothed Pseudo-WVD with
reassignment, or RSPWVD for short, introduced in [6]. The basic property that we
wish to exploit here is that, if the signal has a constant amplitude within a certain
time interval and it is zero outside, its RSPWVD is mainly concentrated along the
instantaneous frequency curve f = f(t) [6]. This property is then particularly useful
to test the validity of P1 ÷ P3. More specifically, to verify (4.1.44) and (4.1.45) we
proceed numerically through the following steps: i) build the matrix H(n) of the
equivalent DT channel, as in (4.1.28); ii) compute the singular value decomposition:
H(n) = U(n)Λ(n)V H(n); iii) compute the RSPWVD of the singular vectors vk(n)
and uk(n); iv) compare the contour lines of the RSPWVD of vk(n) with the con-
tour lines of |H(t, f)| corresponding to the level λk(n). If the Nyquist’s sampling
criterion is respected, the TFD of the singular vector is sufficiently representative
of the corresponding continuous time eigenfunction.

Three-ray multipath channel

Let us consider a three-ray channel with amplitudes [1, 0.9j, 0.8], delays [2.25, 4.875,
6.125]Ts and Doppler shifts [8, 8.325, 6.25]/MTs, with M = 128. The modulus of
the time-varying transfer function is sketched in Fig. 4.1 (a). To check the validity
of (4.1.44) and (4.1.45), we report in Fig. 4.1(b) the contour lines of the function
|H(t, f)|, cut at levels λ17 and λ25, and in Fig. 4.1(c) the RSPWVD of the singular
vectors associated to the eigenvalues λ17 and λ25. Comparing Figs. 4.1(b) and
4.1(c), we observe that indeed, as predicted by P1 and P3: i) the TFD’s of the
right singular vectors vk associated to the singular values λk (right column) are
mainly concentrated along the curves where |H(t, f)|2 = λ2

k; ii) the TFD’s of the left
singular vectors uk are shifted replicas of the TFD’s of the right singular vectors vk.
Interestingly, even though in this example maxp,q |τpνq| ' 0.4, the analytic model
(4.1.44)-4.1.45) predicts the behavior of the channel eigenfunctions very well.

LTV bandpass channels in time and frequency

Let us now consider the time-varying channel described by the following input-
output relationship

y(t) =
∫ T

−T

x(τ)sinc(2πB(t− τ))dτ. (4.1.62)

This channel stops all the time components outside the window [−T, T ] and all the
frequency components outside the window [−B, B]. It is known that the eigen-
functions of this channel are the prolate spheroidal wave functions [87], [55], which
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Figure 4.1. |H(t, f)|2 of a 3-rays channel; (a) mesh plot; (b) contour plot of two
different levels (singular values) of H: λ17 (solid line) and λ25 (dashed line); (c)
contour plot of the TFD of the left (left column) and right (right column) singular
vectors associated to the singular values λ25 (upper row) and λ17 (lower row) of the
matrix H describing the channel of Fig. 4.1.
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Figure 4.2. TFD’s of the eigenfunctions of the channel (4.1.62) associated to the
eigenvalues λ1, λ2, λ4 and λ8 (the reading order is from left to right, from top to
bottom)
.

remarkably exhibit the same structure in time and frequency [69]. Hence, in this case
the validity of P4 can be proved analytically. Interestingly, the prolate spheroidal
functions are also characterized by a behavior in the time-frequency domain similar
to that observed in the previous example. As an example, let us assume that the
channel allows only the transit of the components belonging to the time interval
[−24Ts, 24Ts] and to the frequency interval [−0.25/Ts, 0.25/Ts]. The RSPWVD’s
of some of the channel singular vectors (discrete-time prolate spheroidal functions),
corresponding to the eigenvalues λ1, λ2, λ4, and λ8 are reported in Fig. 4.2. It is
interesting to notice that the instantaneous frequencies (IF) are again closed curves
in the time-frequency domain and the TFD’s are highly concentrated along the IF
curves, as in the previous example. In this example, the TFD’s tend to fill the region
between −24Ts and 24Ts in time and between −0.25/Ts and 0.25/Ts in frequency,
i.e. the time and frequency passband of the system.
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In these last two examples we observed that the instantaneous frequency de-
scribes a closed curve in the time-frequency plane giving rise to the rather peculiar
bubble structure shown in Figs. 4.1 and 4.2. Interestingly, the bubble structure
characterizes also the Hermite functions of high order. In fact, prolate spheroidal
functions and Hermite polynomials are related by the following properties [31], [20]:
i) the prolate spheroidal functions are the eigenfunctions of linear operators that
maximize the signal energy concentration within rectangular regions of the time-
frequency plane; ii) the Hermite functions are the eigenfunctions of linear operators
that maximally concentrate the signal energy within a disk-shaped region of the
time-frequency plane. Indeed, the bubble structure observed in the last examples,
instead of being an exception, is rather the usual case because in general the contour
lines of |H(t, f)| are closed curves. Important exceptions arise though in very simple
cases of LTV channels, such as: i) LTI channels, where the concentration curves are
lines parallel to the time axis; ii) multiplicative channels, where the curves degen-
erate into lines parallel to the frequency axis; iii) the two-ray channel model where
the curves become lines having an orientation depending on the channel delays and
Doppler shifts. However, all these examples can be seen as ellipses degenerating
into straight lines.

Before concluding this section, it is important to remark that, besides the ex-
pected greater complexity resulting from the derivation of the eigenfunctions of LTV
channels, the eigenfunction of LTV channels do not share some of the fundamental
properties of the eigenfunctions of LTI channels. Namely, i) except for the two limit
cases of LTI and multiplicative channels, the behavior of the channel eigenfunctions
is channel-dependent, as opposed to LTI systems whose eigenfunctions are always
complex exponentials with constant amplitude and linear phase, irrespective of the
channel; ii) furthermore, two cascaded LTV systems in general do not commute and
the eigenfunctions of an LTV system composed of the cascade of two LTV subsys-
tems are not simply related to the eigenfunctions of the two subsystems. However,
the greater complexity of LTV systems is not necessarily a drawback, as long as
their properties are properly taken into account and exploited advantageously, as
we will see in the next sections.

4.2 Coding strategies for transmissions over LTV channels

In this section we show how to select the coding matrices F (n) and G(n) in (4.1.29)
as a function of the channel status information (CSI), in order to optimize some
performance parameter, such as output SNR or information rate. The general
formulation provides a solution valid for any structure of the channel matrix H(n),
so that the results have wider applicability than linear precoding for transmission
over LTV channels. Specifically, we start in Section 4.2.1 assuming perfect CSI
available at both transmit and receive sides. Then, exploiting the relationship
between channel singular values and time-varying transfer function, established by
P1 ÷ P3, in Section 4.2.2 we show how different optimization strategies distribute
the available transmit power (bits) as a function of time and frequency. In Section
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4.2.3, we discuss some possible sub-optimal coding schemes resulting from a trade-
off between performance and system complexity. Finally, in Section 4.2.4 we remove
the assumption about perfect knowledge of the CSI and show how the uncertainties
in our channel knowledge can be incorporated in the coding strategy design.

4.2.1 Perfect CSI available at both transmit and receive sides

In this section we assume perfect knowledge of the channel at both transmitter and
receiver sides. Starting from the DT matrix model (4.1.29), we derive the optimal
linear coding strategy according to different optimization criteria and constraints.
We anticipate that all the solutions lead to a joint precoding/decoding strategy
that decomposes the possibly time and frequency dispersive channel into multiple
parallel uncorrelated non-dispersive subchannels. The distinction among the criteria
is reflected only through the way power and bits are distributed across subchannels
and blocks. Furthermore, in all cases, the columns of the coding matrix F (n)
in (4.1.29), pertaining to the n-th transmitted block, are simply proportional to
the right singular vectors of the channel matrix. This result generalizes the result
obtained for LTI channels, analyzed in greater detail in Chapter 9 of Vol. I. However,
besides the obvious difference due to the block-to-block variability of H(n), there is
one more basic difference which is worth pointing out. The difference concerns the
joint power/bits allocation across both subchannels and successive blocks, which is
a unique degree of freedom offered by the channel variability.

In general, the transmitters operate with a prescribed average transmit power so
that it is necessary to incorporate the average power constraint in the optimization
strategy. With reference to (4.1.29), assuming that the information symbols are
i.i.d. with zero mean and unit variance, the power constraint corresponds to

1
Nb

n+Nb−1∑

i=n

tr(F (i)HF (i)) = P0, (4.2.1)

where Nb is the number of blocks over which power allocation is optimized. Taking
Nb = 1, we follow a short-term power allocation, whereas increasing Nb we have the
possibility of distributing the power along successive blocks better by adopting a
long-term allocation policy. The distinction between short and long term strategies
has been analyzed in great detail in [15] for random channels exhibiting flat fading
within each block, but varying from block to block. In principle, the best allocation
of resources, i.e. power and bits, would require a high value of Nb (ideally infinite).
In practice, Nb must result from a trade-off between system performance, maximum
decoding delay and complexity.

Starting from the SVD of the channel matrix H(n) := U(n)Λ(n)V H(n) [c.f.
(4.1.42)] and assuming that the symbols are uncorrelated and the noise is white and
Gaussian, we show next that the matrices F opt(n) and Gopt(n) resulting from all
optimization criteria, can always be expressed as (see also Chapter 9 of Vol. I):

F opt(n) = V (n)Φ(n) , Gopt(n) = Γ(n)Λ−1(n)UH(n) (4.2.2)
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where Φ(n) and Γ(n) are diagonal matrices. Specifically, Φ(n) determines the opti-
mal power loading across subchannels in the nth block, whereas Γ(n) depends on the
adopted equalization strategy. As an immediate consequence of (4.2.2), the channel
linking the information symbol vector s(n) with the estimated vector ŝ(n) is charac-
terized by the diagonal matrix G(n)H(n)F (n) = Γ(n)Φ(n). Furthermore, the out-
put noise vector w(n) = G(n)v(n) is composed of uncorrelated, and thus indepen-
dent, samples because its covariance matrix G(n)GH(n)σ2

v = Γ(n)Λ−2(n)ΓH(n)σ2
v

is also diagonal. Hence the overall I/O relationship is equivalent to a set of M
independent flat fading subchannels:

ŝm(n) = γm(n)φm(n)sm(n) + γm(n)βm(n) (4.2.3)

where γm(n) and φm(n) denote the diagonal entries of Γ(n) and Φ(n), whereas
βm(n) is additive noise with variance σ2

vλ−2
m (n).

In the following, we specialize (4.2.2) to the following optimization criteria: i)
minimum mean square error (MSE) between information symbols s(n) and esti-
mated symbols ŝ(n) under a zero-forcing (ZF) or an average transmit power (AP)
constraint and ii) maximum information rate, subject to the AP constraint.

Theorem 4.2.1 (MMSE-ZF). The pair F opt(n) and Gopt(n) that yields mini-
mum MSE (MMSE) with a ZF receiver results from the solution of

min
F (n), G(n)

E{||ŝ(n)− s(n)||2} subject to G(n)H(n)F (n) = I, (4.2.4)

and has the same structure as (4.2.2), with

Φ(n) = ϕnΛ−1(n) Γ(n) = Φ(n)†. (4.2.5)

Imposing the constraint (4.2.1), ϕn is such that

|ϕn|2 =
NbP0∑n+Nb−1

i=n

∑M
k=1 λ−2

k (i)
. (4.2.6)

Theorem 4.2.2 (MMSE-AP). The pair F opt(n) and Gopt(n) that yields MMSE
between the transmitted symbols and estimated symbols, subject to the average power
constraint (4.2.1), is the solution of

min
F (n), G(n)

E{||ŝ(n)−s(n)||2} subject to
1

Nb

n+Nb−1∑

i=n

tr(F (i)HF (i)) = P0, (4.2.7)

and is given by (4.2.2) with

|φm(n)|2 =

[
N̄bP0 + σ2

v

∑n+N̄b−1
i=n

∑M(n)
k=1 λ−2

k (i)
∑n+N̄b−1

i=n

∑M(n)
k=1 λ−1

k (i)

1
λm(n)

− σ2
v

λ2
m(n)

]+

(4.2.8)
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where N̄b indicates the number of blocks where there is at least one value |φm(n)| >
0, whereas M̄(n) indicates the number of active subchannels in the nth block, i.e. the
number of channels with φm(n) > 0, as a function of n; Γ(n) = ΦH(n)(Λ−2(n) +
ΦH(n)Φ(n))−1.

Introducing the matrix T (n) := G(n)H(n) and the noise vector w(n) := G(n)v(n),
the mutual information between the n-th transmitted data block u(n) = F (n)s(n)
and decoded symbols block ŝ(n) blocks, conditioned to the channel H(n), is maxi-
mized for u(n) Gaussian and can be written as [2]:

I(u, ŝ; n) =
1
P

log2 |(R†
uu + T H(n)R−1

wwT (n))Ruu| . (4.2.9)

where Ruu = F (n)RssF
H(n) and Rww = G(n)RvvGH(n) are the covariance ma-

trices of u(n) and w(n) respectively. The maximum information rate (MIR) is
achieved using the following (see also [64])

Theorem 4.2.3 (MIR-AP). The pair F (n) and G(n) that maximizes the average
information rate subject to the average power constraint solves

max
F (n), G(n)

n+Nb−1∑

i=n

I(u, ŝ; i) subject to
1

Nb

n+Nb−1∑

i=n

tr(F (i)HF (i)) = P0,

(4.2.10)
and is given by (4.2.2), where φm(n) is

|φm(n)|2 =

[
N̄bP0 + σ2

v

∑n+N̄b−1
i=n

∑M(n)
k=1 λ−2

k (i)
M(n)N̄b

− σ2
v

λ2
m(n)

]+

. (4.2.11)

Γ(n) is diagonal and it can be either Γzf (n) = Φ†(n), to insures the zero-forcing
condition, or Γmmse(n) = ΦH(n) (Λ−2(n)+ΦH(n)Φ(n))−1, to provide the MMSE
solution. As in (4.2.8), M(n)is the number of active subchannels used in the trans-
mission of the nth block.

We derive now the expressions for the main system performance parameters, i.e.
SNR, information rate, MSE and bit error rate (BER), resulting from the above
optimization criteria. From (4.2.3), the output SNR on the mth subchannel of the
nth block is always equal to

SNRm(n) = |φm(n)|2 λ2
m(n)
σ2

v

. (4.2.12)

Then, depending on the adopted optimization criterion, the SNR assumes different
distributions across subchannels and blocks. Specifically, we have

{SNRm(n)}MMSE−ZF =
|ϕn|2
σ2

v

=
N̄bP0

σ2
v

∑n+N̄b

i=n

∑M
k=1 λ−2

k (i)
,
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{SNRm(n)}MMSE−AP =
N̄bP0/σ2

v +
∑n+N̄b

i=n

∑M̄(n)
k=1 λ−2

k (i)
∑n+N̄b

i=n

∑M̄(n)
k=1 λ−1

k (i)
λm(n)− 1,

{SNRm(n)}MIR−AP =
N̄bP0/σ2

v +
∑n+N̄b

i=n

∑M̄(n)
k=1 λ−2

k (i)
M̄(n)N̄b

λ2
m(n)− 1. (4.2.13)

The average mutual information pertaining to Nb blocks (4.2.9) is

I(u; ŝ) =
1

PNb

n+Nb−1∑

i=n

M(i)∑
m=1

log2(1 + SNRm(i)) . (4.2.14)

Similarly, the output MSE can be derived as follows. Adopting the ZF solution
Γzf = Φ†(n), the MSE relative to the nth block is

EZF (Φ(n)) =
1

PNb

n+Nb−1∑

i=n

M(i)∑
m=1

1
SNRm(i)

. (4.2.15)

Otherwise, opting for the MMSE solution Γmmse = ΦH(n)(Λ−2(n)+ΦH(n)Φ(n))−1,
the MSE is

EMMSE(Φ(n)) =
1

PNb

n+Nb−1∑

i=n

M(i)∑
m=1

1
1 + SNRm(i)

. (4.2.16)

Finally, even though a closed form expression for the BER is complicated, we
can provide a simple upper bound. Because of the independence among subchannels
guaranteed by the optimal coding, symbol decision on each subchannel is optimal
and the overall BER is P̄b = 1−∏n+N̄b−1

i=n

∏M
m=1[1−Pm(i)], where Pm(i) is the BER

on the mth subchannel of the ith block. Assuming that Pm(i) ¿ 1, ∀m, i, we have
P̄b ≈

∑
m

∑
i Pm(i). Furthermore, using a QAM constellation of size Qm(i) on the

mth subchannel of the ith block and Gray encoding, the BER on each subchannel
can be upper bounded as

Pm(i) <
2

log2 Qm(i)
erfc

(√
3SNRm(i)

2(Qm(i)− 1)

)
. (4.2.17)

It is worth noticing how, differently from the MMSE/ZF strategy, the two strate-
gies incorporating the average power constraint in the optimization prevent the
transmission over the most attenuated subchannels, by setting the corresponding
φm(n) = 0 and distributing that power over the other subchannels. Further insight
into the different power allocation strategies will be given in the ensuing section.

4.2.2 Comparisons and asymptotic bounds

In this section we evaluate the asymptotic expressions, valid as the block length
M tends to infinity, of all the optimal power allocation strategies described in the
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previous section. This formulation, even though approximate, is particularly im-
portant to shed light on the basic mechanisms controlling power and bit allocation
as a function of time and frequency followed by each optimization strategy. It also
suggests simpler sub-optimal implementations of the encoder, as shown in Section
4.2.3.

The asymptotic behaviors are derived by exploiting the relationship between
the channel matrix singular values and the channel time-varying transfer function
established by (4.1.45). As the blocklength M tends to infinity, the sequence λm of
the multipath channel singular values converges towards a continuous function λ(x)
bounded between finite limits λmin and λmax. Since, according to (4.1.45), different
values of λ map onto disjoint curves in the time-frequency plane, the integral of any
function F(λ) over all values of λ can be computed, equivalently, as the integral of
F(|H(t, f)|) over the time-frequency plane. In formulas, denoting by λ

(M)
m the mth

channel singular value in a block of length M (we drop the dependence on the block
index n because, as M tends to infinity, there is only one block), asymptotically we
have

lim
M→∞

1
M

M∑
m=1

F(λ(M)
m ) '

∫ 1

0

F(λ(x)) dx ' lim
T→∞

1
T

∫ T
2

−T
2

∫ 1
2

− 1
2

F (|H(t, f)|) dt df,

(4.2.18)
where x has been normalized so that x ∈ [0, 1] and f has been normalized to the
transmission bandwidth B.

Using the relationship (4.1.45), we can thus express all the basic system pa-
rameters, namely transmit power distribution, SNR, information rate and BER as
a function of time and frequency. Specifically, substituting |H(t, f)| to λm(n) in
(4.2.12), the SNR can be expressed as

SNR(t, f) = |Φ(t, f)|2|H(t, f)|2/σ2
v , (4.2.19)

where |Φ(t, f)|2 depends on the adopted optimization criterion. In particular, from
(4.2.5) the MMSE/ZF design leads to

|Φ(t, f)|2MMSE/ZF =
P0

σ2
v

|H(t, f)|−2

∫ ∫ |H(ξ, ϕ)|−2 dξdϕ
=

KZF

|H(t, f)|2 , (4.2.20)

so that the final SNR turns out to be constant over the time-frequency plane:

SNR(t, f) ≡ KZF . (4.2.21)

Hence the power loading that yields the minimum MSE under the ZF constraint
tends to equalize the SNR. However, this strategy may be highly inconvenient if the
channel is strongly selective in time and/or in frequency, for most of the power would
be wasted to compensate for the deepest channel nulls. Conversely, incorporating
the average power constraint in the optimization method prevents such a potential
waste of energy. In fact, according to both MMSE-AP or MIR-AP criteria, some
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subchannels may be inactive, if P0 is insufficient to have all |φm(i)|2 > 0, for
m = 1, . . . , M and i = n, . . . , n + N̄b − 1. Equivalently, for M À 1 and using again
(4.1.45), the inactive channels can be interpreted as regions of the time-frequency
plane where no transmit power is allocated. These regions correspond to the (t, f)
values where λ2 = |H(t, f)|2 falls below a certain value T (P0) which is the minimum
value such that the function |Φ(t, f)|2 is strictly positive. Let us denote by D(P0)
the region

D(P0) := {(t, f) : |H(t, f)|2 ≥ T (P0)}, (4.2.22)

with D(P0) depending on P0 and on the optimization criterion. We are now able to
write the power allocation laws for both MMSE/AP and MIR/AP criteria. Specifi-
cally, substituting |H(t, f)| to λ in (4.2.8), the MMSE criterion loads power accord-
ing to

|Φ(t, f)|2MMSE/AP |(t,f)∈D(P0) =
P0/σ2

v +
∫ ∫

D(P0)
|H(ξ, ϕ)|−2 dξdϕ∫ ∫

D(P0)
|H(ξ, ϕ)|−1 dξdϕ

1
|H(t, f)| −

σ2
v

|H(t, f)|2

:=
KMMSE

|H(t, f)| −
σ2

v

|H(t, f)|2 . (4.2.23)

Similarly, from (4.2.11), the MIR-AP design leads to

|Φ(t, f)|2MIR/AP

∣∣∣
(t,f)∈D(P0)

=
P0/σ2

v +
∫ ∫

D(P0)
|H(ξ, ϕ)|−2 dξdϕ∫ ∫

D(P0)
dξdϕ

− σ2
v

|H(t, f)|2

:= KMIR − σ2
v

|H(t, f)|2 . (4.2.24)

Interestingly, the MIR design implements the water-pouring strategy [33], extended
to the time-frequency domain. A similar result was already suggested in [37], even
though without an explicit analytic model of the channel eigenfunctions which,
conversely, has been fundamental here to derive (4.2.24).

Observing the power allocation in (4.2.23), we may notice how the MMSE-
AP criterion yields a power allocation which is in some way intermediate between
the MMSE-ZF and the MIR-AP criteria, thus avoiding the two extreme behaviors
(excessive power waste over the channel nulls for the MMSE-ZF method or most of
the power allocated only over the best subchannels for the MIR-AP method).

Finally, recalling that the capacity of a deterministic channel is

C := lim
P→∞

1
P

max
Ruu

I(ŝ, u), (4.2.25)

where Ruu is the covariance matrix of the transmitted data vector u(n), the asymp-
totic optimal loading in (4.2.24) allows us to evaluate the channel capacity. From
(4.2.14), (4.2.19) and (4.2.24), the capacity of a deterministic channel with additive
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Gaussian noise is

C ≈
∫ ∫

D(P0)

log(1+SNR(t, f))dtdf =
∫ ∫

D(P0)

log
(
KMIR

σ2
v

|H(t, f)|2
)

dtdf

(4.2.26)
This result confirms the validity of the expressions given in [63], [37].

Since the previous expressions are valid only asymptotically, as the block length
tends to infinity, it is important to assess via numerical examples the block length
beyond which the asymptotic limit is close to the result obtained with a finite
block. In the next example we consider the information rate, but the same kind of
conclusions can be drawn for the other cases as well. In particular, the asymptotic
results are approached rather closely as soon as the block length exceeds the channel
coherence time.

Example 4.2.1 (Capacity of deterministic LTV channels). To verify the validity
of (4.2.26), we compared the bound with the maximal information rate as a function
of the block length. We considered the transmission with symbol rate 1/Ts over a
three-ray channel, with amplitudes h0 = 1, h1 = 0.9ejπ/4, h2 = 0.9e−jπ/4, Doppler
frequencies f0 = 0, f1 = 2.3/(64Ts), f2 = 1.4/(64Ts) and delays τ0 = 0, τ1 = Ts,
τ2 = 2Ts. The SNR is 10 dB. The maximum mutual information given by (4.2.14),
after power loading, is reported in Fig. 4.3 as a function of the block size. In par-
ticular, solid line refers to the LTV channel described above whereas the dashed line
refers to the equivalent LTI channel, defined as the channel having the same param-
eters as the LTV channel, except for the Doppler frequencies which are equal to zero.
The dotted line reports the capacity bound computed with (4.2.26). From Fig. 4.3
we can make the following remarks: i) the maximum average mutual information
tends to a horizontal asymptote, which can be referred to as the channel capacity;
ii) the maximum mutual information is approximately the same for the two equiva-
lent LTI and LTV channels; iii) the bound (4.2.26) is rather close to the maximum
information rate. Remark ii) indicates that the channel variability does not imply
any loss on the maximum information rate, provided that proper coding is applied
to the transmitted sequence or, in other words, that the transmitter is able to predict
the channel evolution exactly on the basis of the CSI. In Fig. 4.4 we show the same
quantities as in Fig. 4.3 obtained after averaging over 100 independent channel re-
alizations (SNR = 4 dB). We considered a Rayleigh fading multipath channel with
4 rays (K=3) whose amplitudes hk are generated as independent complex Gaussian
random variables (normalized to have unit norm:

∑
k |hk|2 = 1). The sets of delays

and Doppler frequencies are (0, Ts, 2Ts, 3Ts) and (0,−1.3/64, 3.5/64, 0.54/64)/Ts,
respectively. Also in this case, we observe a clear asymptotic behavior of the maxi-
mum information rate and the closeness of the capacity bound with the asymptote of
the maximum information rate. We also observe that the information rate is very
close to the capacity for block durations greater than the channel coherence time Tc

(in this example Tc ≈ 26.6Ts).
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Figure 4.3. Capacity bound (dotted line) and maximum mutual information vs.
block length for LTV (solid line) and LTI (dashed line) channels.
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Figure 4.4. Capacity bound (dotted line) and maximum mutual information for
LTV (solid line) and LTI (dashed line) channels, averaged over 100 channels.



Section 4.2. Coding strategies for transmissions over LTV channels 29

2.8 2.9 3 3.1 3.2 3.3 3.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (b/s/Hz)

P
{R

<
C

}

Figure 4.5. Sample cumulative distribution function of the maximal mutual infor-
mation (solid line) and channel capacity (dotted line).

Information outage probability

As already mentioned in Section 4.1.2, a global characterization of the channel re-
quires a stochastic channel modeling. As a consequence, interpreting every channel
impulse response as a realization of a random process, the corresponding mutual
information derived in (4.2.14) is a particular outcome of a random variable. Hence,
a full channel characterization requires the computation of the pdf of the informa-
tion rate. The so called information outage probability (IOP) has been proposed
as a meaningful parameter for assessing the performance of link through a random
LTV channel (see, e.g. [15]). The IOP is the probability that the mutual informa-
tion exceeds a certain rate R. More specifically, in [15] the IOP was derived for
flat fading block channels, where the channel is constant over a block, but varies
randomly from block to block. The IOP was then minimized under different con-
straints on the transmitted power. The generalization of the results of [15] to a
more general class of LTV channels is rather complicated. However, we will show
next by means of a numerical example that the link between the singular values
and the time-varying transfer function, established by (4.1.45) can be very helpful
to find out an approximate behavior for the IOP’s pdf.

Example 4.2.2. : We assumed a multipath channel model, as in (4.1.13) with
Q = 3, where the amplitudes hq are complex uncorrelated Gaussian random vari-
ables with zero mean and unit variance, whereas the delay and Doppler values are
fixed. In particular, the normalized delay vector is θ = [0, 1, 2] and the normalized
Doppler shift vector is ν = [0, −0.735/64, 0.375/64]. For each channel realization,
we derived the DT channel model using (4.1.26), computed the SVD of the chan-
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nel matrix H(n) and the maximal information rate using (4.2.14). For the same
realization, we computed the approximate channel capacity resulting from the CT
model, using (4.2.26). We used long blocks (i.e. P = 100) so that the maximum
information rate is very close to the channel capacity. In Fig. 4.5 we plot the sam-
ple cumulative distribution functions (cdf) of the information rate (solid line) and
of the capacity (dotted line), estimated over 200 independent channel realizations.
From Fig. (4.5) we can see that indeed the approximate relationship (4.1.45) be-
tween the channel singular values and the channel time-varying transfer function is
very useful in deriving an approximate behavior of the information rate probability
density function, without computing any SVD, but using only the function |H(t, f)|.

4.2.3 Adaptive OFDM

The implementation of the optimal coding may be problematic from the computa-
tional point of view because it requires the computation of an SVD for each block.
Of course, due to the slow fluctuations of most practical channels, several simpli-
fications are possible. However, it is clearly important to devise simple and fast
sub-optimal coding schemes which do not require any SVD, to make the coding
strategy appealing for practical applications, especially for services with a strict
bound on the maximum decoding delay. For this reason, we suggest two possible
suboptimal strategies.

a) Block time-varying OFDM (BTV-OFDM)

In the previous section we noticed that the optimal precoder’s task is to dis-
tribute the available power (bits) as a function of both time and frequency. A
simple sub-optimal way to implement this strategy is block time-varying OFDM
(BTV-OFDM), where the channel is supposed to be (practically) time-invariant
within a block, but it is time-varying from block to block. Intuitively speaking,
BTV-OFDM assumes that the time-varying transfer function H(t, f) is a piecewise
constant function, constant over rectangles of dimension PTs× 1/MTs in the time-
frequency plane. In such a case the channel matrix H(n) corresponding to each
block is approximately Toeplitz and thus its SVD is

H(n) ≈ V Λ(n)UH (4.2.27)

where the columns of V and U are orthonormal complex exponentials , irrespective
of the channel status in block n. As a consequence, from (4.2.2) the columns of
the optimal encoding matrix F are complex exponentials and thus the optimal
coding strategy becomes equivalent to OFDM, except that the power loading varies
from block to block. Clearly, the validity of this statement requires that the OFDM
symbol duration PTs = (M +L)Ts is sufficiently smaller than the channel coherence
time. Therefore the choice of P is critical because it is the only degree of freedom
that we have to make this approximation more or less accurate. On one hand, if
P is small, the approximation is good, but there is no advantage in using OFDM,
because of the information rate loss due to the guard intervals; on the other hand,
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larger values of P yield a better system efficiency, but make the assumption of
H(t, f) constant over PTs seconds less accurate. Adaptive modulation schemes
were proposed to achieve optimality using different criteria (see e.g. [16],[96],[4]),
under a transmit power constraint and assuming the channel perfectly known at
both receiver and transmitter sides. Here we consider the general case of channels
dispersive in both time and frequency.

In OFDM, information symbols are parsed into consecutive M -long blocks s(n) :=
(s(nM), . . . , s(nM + M − 1))T , and mapped through a precoding matrix F onto
the vector u(n) = Fs(n) whose entries are modulated and transmitted through the
channel. The columns of F are complex exponentials, {F }n,m := φm(n)ej 2π

M m(n−L)

m ∈ [0,M − 1], with M > L, n ∈ [0, P − 1]. Differently from standard OFDM,
where φm(n) does not vary with n, in adaptive OFDM φm(n) is allowed to vary to
load different powers across subchannels and blocks. Matrix F is tall ((M+L)×M),
for the rows of F are increased by the addition of a prefix or suffix of length L,
greater than or equal to the channel order. Thus u(n) := (u(nP ), . . . , u(nP + P −
1))T . Cyclic prefix or null guard intervals can be adopted. For the sake of clarity,
here we assume the use of a cyclic prefix, but all the conclusions drawn in the fol-
lowing apply to the null guard interval case as well. At the receiver, after discarding
the guard interval, IBI-free data blocks y(n) := (y(nP +L), . . . , y(nP +P−1))T are
obtained. Since the basic assumption of BTV-OFDM is that the channel impulse
response does not vary within one OFDM symbol, we set h[nP + k, l] ≈ h[nP, l],
for k = 0, . . . , P − 1. Thus, the kth entry of y(n) is

y(nP + k) ≈
L∑

l=0

h[nP, l]
M−1∑
m=0

{F }k−l,m{s(n)}m + v(nP + k) (4.2.28)

=
M−1∑
m=0

H(nP, fm)ej 2πm
M (k−L)φm(n)sm(nM) + v(nP + k),

for k = L, . . . , P − 1 where fm = m/M , m = 0, . . . , M − 1, indicates a specific
normalized frequency and sm(nM) := s(nM + m). Subsequently, an M point FFT
is performed over y(n) and the µth FFT output sample is

Y (nP, fµ) :=
P−1∑

k=L

e−j 2π
M µky(nP + k) ≈ H(nP, fµ)φµ(n)sµ(nM) + V (nP, fµ),

(4.2.29)
where V (nP, fµ) :=

∑P−1
k=L exp(−j 2π

M µk)v(nP + k) are also AWGN samples for
µ ∈ [0,M−1]. The coefficients |φm(n)| control the power allocation across subchan-
nels and along successive time blocks and can be evaluated according to different
criteria. A simple yet effective way to compute |φm(n)|, even though only approx-
imately valid for underspread channels, consists in using the formulas derived in
Section 4.2, substituting λm(n) with |H(nPTs, m/MTs)|, as suggested by (4.1.45).
In this way, no SVD’s are required, and the only necessary information concerns
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H(t, f).

b) Chirped-OFDM

In BTV-OFDM, |H(t, f)| is assumed to be constant within each block and varies
from block to block. The validity of this assumption requires the selection of small
values of the block size M , and this may induce considerable efficiency loss. To
improve the efficiency it is thus necessary to increas M , but then the channel in-
troduces inter-symbol interference (ISI). As we know from the previous sections,
the only way to avoid ISI is to use the channel eigenfunctions instead of the com-
plex sinusoids, but this requires SVD. However, exploiting (4.1.44) and (4.1.45),
we can get an estimate of the channel eigenvectors, without taking any SVD. In
fact, given H(t, f), we can use (4.1.44) and (4.1.45) to derive the eigenfunctions and
then, by sampling, the singular vectors of H(n). For small fluctuations of H(n),
the instantaneous frequency fλ(t) is very slowly varying, so that the eigenfunctions
are approximately sinusoids with a small frequency modulation (chirping), whose
behavior follows the shape of |H(t, f)|. Using these chirp signals, matched to the
channel time-varying transfer function, we can thus use longer blocks, to improve
the efficiency, without computing any SVD and still avoiding ISI.

4.2.4 Coding with partial CSI

While in the previous sections the channel was assumed to be deterministic and
perfectly known, here we assume, more realistically, that the channel is random
and it is known only with a certain accuracy (estimation of the channel parameters
is considered in the next section). Partial knowledge of the channel was included
in [43], where the proposed adaptive modulation assumed that the channel was a
Gaussian process (Rayleigh fading), so that the pdf of the channel at a certain in-
stant, conditioned on its past, followed a Gaussian law with mean value equal to
the MMSE channel linear prediction and variance equal to the prediction variance.
While in [43] the channel correlation was assumed to be known, in [29] a similar
approach was used for equalization but based on the channel correlation estimates,
obtained by modeling the channel taps as AR processes and using spectral esti-
mation techniques to retrieve the AR parameters. Both [43] and [29] assumed the
channel to be stationary and flat fading within blocks of data. Very recently, the
adaptive modulation idea was extended to time and frequency selective channels
using OFDM (see e.g. [98]).

In this section, unlike [98] and similarly to [43], [29],[4], the uncertainty in chan-
nel knowledge is incorporated in the encoding design. We assume that the channel
impulse response h[n, l] is composed of correlated zero mean jointly Gaussian ran-
dom variables and it is stationary both in n and l, i.e.

E{h∗[p, k]h[p + n, k + l]} = Rhh(n, l). (4.2.30)
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Assuming h[nP + k, l] ≈ h(nP, l), for k = 0, . . . , P − 1, the channel vector is

h(n) := (h[nP, 0], . . . , h[nP, L])T ∼ N (0,Rhh(0))

where N (µ, C) indicates a multivariate complex Gaussian distribution with mean
µ and covariance matrix C, where Rhh(n) is defined as

{Rhh(n)}k,l := E{h∗[qP, k]h[qP + nP, l]} (4.2.31)

Assuming that the channel impulse response h(n) is exactly known at the 0th
block, the conditional pdf of h(n) given h(0) is N (ĥLP (n), CLP (n)) where:

ĥLP (n) := Rhh(n)R−1
hh (0)h(0), (4.2.32)

CLP (n) := Rhh(0)−Rhh(n)R−1
hh (0)RH

hh(n), (4.2.33)

with ĥLP (n) indicating the linearly predicted channel impulse response and CLP (n)
its covariance. To incorporate the initial error on the knowledge of h(0), i.e.
∆h(0) := h(0) − ĥ(0), we can also assume ∆h(0) ∼ N (0, CE(0)) and indepen-
dent of h(n).

From the pdf of h(n), because H(nP, fm) = eH
mh(n) where em = (1, exp(j2πfm),

. . . , exp(j2πfmL))T , we can easily derive the pdf of H(nP, fm). In fact,

H(nP, fm) ∼ N (ĤLP (nP, fm), σ2
LP (nP, fm)) (4.2.34)

where ĤLP (nP, fm) := eH
m ĥLP (n) and σ2

LP (nP, fm) := eH
mCLP (n)em.

We derive now a closed form solution for the optimal power loading maximizing
the average SNR, subject to the average power constraint (4.2.1). In formulas, using
the Lagrange multipliers, we seek the Φm(n) that maximize the functional

J (Φ) :=
1

Nb

Nb∑
n=1

M−1∑
m=0

SNRm(n)− µ(
1

Nb

Nb∑
n=1

M−1∑
m=0

|Φm(n)|2 − P0), (4.2.35)

where Φ := (Φ0(1), . . . , ΦM−1(Nb))T is the subcarrier amplitude matrix, P0 is
the average power over Nb consecutive blocks and µ is the Lagrange multiplier;
SNRm(n) is the signal to noise ratio in the mth subcarrier of the nth block, where
the noise incorporates both thermal noise and prediction error:

SNRm(n) =
|ĤLP (nP, fm)|2|Φm(n)|2σ2

s

σ2
LP (nP, fm)|Φm(n)|2σ2

s + σ2
v

= αm(n)
(
1− 1

ρm(n)|Φm(n)|2 + 1

)
,

(4.2.36)
where

αm(n) :=
|ĤLP (nP, fm)|2
σ2

LP (nP, fm)
and ρm(n) :=

σ2
LP (nP, fm)σ2

s

σ2
v

, (4.2.37)
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and σ2
s is the symbol variance. Setting to zeros the derivatives of J (Φ) with respect

to Φm(n) in (4.2.35), we get

αm(n)ρm(n)
(ρm(n)|Φm(n)|2 + 1)2

Φ∗m(n)− λΦ∗m(n) = 0, (4.2.38)

which implies either Φm(n) = 0 or:

|Φm(n)|2 =

(√
αm(n)ρm(n)

λ
− 1

)
1

ρm(n)
. (4.2.39)

The values |Φm(n)|2 are ordered in decreasing sense. Then, starting from the small-
est value of |Φm(n)|2, if |Φm(n)|2 ≤ 0, the corresponding m-th subchannel in the
nth block is eliminated and the power is redistributed across the remaining subchan-
nels. This procedure is repeated until all remaining |Φm(n)|2 are strictly positive.
Denoting by M(n) the number of subchannels which are really used in the nth
block, enforcing the constraint on the average power we get the Lagrange multiplier

1√
λ

=
NbP0 +

∑Nb

n=1

∑M(n)−1
m=0 ρm(n)−1

∑Nb

n=1

∑M(n)−1
m=0

√
αm(n)/ρm(n)

. (4.2.40)

Plugging (4.2.40) back in (4.2.39) provides the closed form expression for |Φm(n)|2.
Substituting |Φm(n)|2 in (4.2.39) inside (4.2.36) we obtain the SNR in the mth
subchannel of the nth block

SNR(nP, fm) = αm(n)

(
1−

√
λ

αm(n)ρm(n)

)
. (4.2.41)

To analyze the performance of the transmission strategy described above, we con-
sider the case of uncorrelated scattering (US) where the channel covariance matrix
is diagonal, i.e. Rhh(n) := ρt(nP ) diag(σ2

0 , . . . , σ2
L−1) where ρt(τ) denotes the time

correlation coefficient of each channel tap at lag τ (we assume for simplicity that
the correlation coefficient function is the same for all taps) and σ2

l is the variance
of the lth path. Using (4.2.32) and (4.2.33), we can derive the expected value and
variance of H(nP, fm):

ĤLP (nP, fm) = eH
mĥLP (n) = ρt(nP )H(0, fm); (4.2.42)

σ2
LP (nP, fm) = eH

mCLP (n)em = (1− ρ2
t (n))

L∑

l=0

σ2
l . (4.2.43)

From (4.2.43) we note that the US model leads to a σ2
LP (nP, fm) which is constant

across subchannels. Simple choices for ρt(nP ) are: i) exponential:

ρt(nP ) = e−nP/Nc (4.2.44)
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where Nc := Tc/Ts is the coherence time normalized to the sampling rate Ts ≈ 1/B,
and B is the bandwidth; or ii), the isotropic scattering model in [45, p.31],

ρt(nP ) = J0(2πnP/Nc). (4.2.45)

Example 4.2.3. In this example we consider a possible application to a wideband
wireless local area network (LAN). Specifically, we refer to the High Performance
Radio LAN (HIPERLAN) system that provides short distance, high speed radio links
using the 5.2 GHz or the 17.1 GHz frequency bands. We generated random impulse
responses according to the US model, using the power delay profile named “Channel
A” (Fig.4.6), chosen as a typical indoor multipath scenario for HIPERLAN/2 in
[28], operating at 5.2 GHz, with B = 200 MHz (Ts = 5 nsec). The channel order is
L ≈ 19, for the impulse response samples beyond the 19th are strongly attenuated.
We used OFDM blocks of size M = 64 (P = M + L) and modeled Rt(nP ) as
in (4.2.44), with coherence time of 10µsec, which corresponds to Nc ≈ 104 and
approximately to 100 blocks. Fig. 4.7 shows a realization of the channel time-
varying transfer function H(nP, fm).

In Fig. 4.8 we report the SNR(nP, fm) resulting from the optimal short term
power loading in (4.2.39), obtained with P0 = M , for an average SNR = 10 dBs.
Subchannels with SNR(n, fm) below the value necessary to achieve Pe(n, fm) ≤
10−3 for BPSK, are discarded. This strategy is appropriate for data transmissions
that must guarantee BER values below a certain level. From Fig. 4.8 we notice
that, as n and thus the prediction error increases, i) the power tends to be equally
distributed across channels and ii) the number of channels able to guarantee the
required BER decreases and thus the data rate decreases. Imposing a bound on the
minimal data rate, from curves like Fig. 4.8 we are able to assess after how many
blocks it is necessary to update the channel estimate for not incurring into severe
data rate losses.

4.3 Channel estimation and prediction

The compensation of the linear distortion introduced by the transit through LTV
channels requires knowledge, and thus an estimate, of the channel impulse response.
The estimation can be parametric or not and based on training sequences or blind.
In this section we assume a parametric modeling, which is important to derive per-
formance parameters useful to quantify both estimation accuracy and prediction
capabilities. For transmissions over LTV channels, it is fundamental to address the
following issues: i) describe the channel status information (CSI) parsimoniously to
minimize the information to be fed back to the transmitter and the complexity of
channel prediction; ii) define appropriate estimation procedures for LTV channels;
iii) devise channel prediction strategies; iv) quantify the estimation accuracy; v)
quantify the prediction error. Parametric modeling of the channel impulse response
is particularly useful in this context because it addresses constructively all the is-
sues raised above by providing the following advantages: i) even though the channel
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impulse response is rapidly varying, its physical parameters, such as reflection co-
efficients, delays and Doppler shifts, vary much more slowly, so that transmitting
the channel parameters rather than the impulse response samples is more efficient
(see also [29]); ii) instead of estimating the coefficients of the DT impulse response,
whose number is theoretically infinite, even for channels with finite delay, we can
estimate the parameters of the CT channel, with a considerable reduction in num-
ber of unknowns; iii) the future channel evolution can be predicted by substituting
the channel parameters’ estimates in the channel model; iv) the bound on the chan-
nel parameters estimation accuracy can be evaluated using the Cramér-Rao bound
(CRB), which is useful not only as a benchmark but also as a tool to quantify the im-
pact of order underestimation or to compare blind versus training-based estimation
techniques, independently of the adopted estimation algorithm; v) combining CRB
and channel modeling, (approximate) closed form expressions can be derived for
the channel prediction error, that determine the maximum time between successive
updates of the channel estimates.

The channel parameter estimates are affected by two main error sources: i)
observation noise and ii) mismatching between model and real channel. In this
section we derive the theoretical limits for the accuracy of channel parameter esti-
mates, considering both error sources. To provide a lower bound on the estimation
accuracy and give a result independent of the estimation method, in Section 4.3.1
we derive the Cramér-Rao bound (CRB) for the channel parameters, valid for ad-
ditive Gaussian noise channels. In Section 4.3.2, the CRB is then used to quantify
the prediction error and finally, in Section 4.3.3 we suggest a simple method for
estimating the parameters of a multipath LTV channel.

4.3.1 Cramér-Rao bound for LTV multipath channels

We derive the Cramér-Rao bound (CRB) for the accuracy of the LTV channel
parameter estimates assuming the general multipath model (4.1.13) and additive
white Gaussian noise. We consider, for the sake of brevity, only the case where the
transmitted symbols are known (training-based estimation). However the analysis
can be extended to blind estimators treating the transmitted symbols as nuisance
parameters. We assume that IBI is completely removed thanks to the introduction
of time guard intervals. The observed sequence is

yk[n] =
M−1∑

l=0

h[nP + k, k − l]xl[n] + vk[n] (4.3.1)

where n = 0, . . . , N − 1 is the block index, k = 0, . . . , P − 1 is the element index,
h[nP + k, l] is the DT channel impulse response given by (4.1.27), xl[n] is the lth
coded symbol in the nth block and v(n) := (v0[n], . . . , vP−1[n])T ∼ N (0, σ2

vI)
is AGN. We assume the presence of a linear redundant precoder, so that the nth
encoded block x(n) := (x0(n), . . . , xP−1(n))T is related to the corresponding in-
formation symbols block s(n) := (s0(n), . . . , sM−1(n))T through the P × M full
column rank (complex) matrix F as x(n) = Fs(n).



38 Time-varying fading channels Chapter 4

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Block length N

va
ri
a
n
ce

 x
 S

N
R

σ 2

h
SNR

SNR

SNR

σ 2

σ 2

t

f

Figure 4.9. Cramér-Rao bounds in the estimate of channel amplitude (σ2
h), delay

(σ2
t ) and Doppler shifts (σ2

f ) vs. block length.

Under the AWGN assumption, the log-likelihood function relative to N consec-
utive blocks is then

f(ξ) = c− 1
σ2

v

N−1∑
n=0

P−1∑

k=0

|yk[n]−
M−1∑

l=0

h[nP + k, l]xl[n]|2, (4.3.2)

where the parameter vector ξ := (h,θ,ν) includes all channel parameters (for
blind estimators, ξ contains also the transmitted symbols xk[n]); c is a constant
independent of the channel parameters. The derivation of the Fisher’s information
matrix elements is reported in the appendix. Here we report a few basic results to
show the dependence of the estimation accuracy on SNR, block length, and number
of blocks used for the estimation.

Estimation variance vs. N

In Fig. 4.9 we report the variance obtained in the estimate of the channel amplitudes
hq, normalized delays θq := τq/Ts and Doppler shifts νq := fqTs, as a function of the
block length N = M + L, for a second order (i.e. L = 2) channel with parameters:
h = [1, 1, 1], θ = [0.83, 1.45, 2.1], and ν = [0, 1.5/M,−1.5/M ].

To get rid of the dependence on the specific training sequence used for the
estimate, we averaged the results over several independent sequences, generated as
vectors of i.i.d. QPSK symbols. The training is based on transmission of P -long
blocks and the number of blocks used is N = P , for a total number of training
symbols of P 2 = N2. All the variances are inversely proportional to the SNR (the
curves in Fig. 4.9 are multiplied by the SNR, to remove the dependence from the
common factor 1/SNR). The plots in Fig. 4.9 are shown in a log-log scale to
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Figure 4.10. Variance in the estimate of f2 as a function of the frequency fe of
the extra path.

evidence the power law behavior of the estimation variances. More specifically, the
variance of both amplitude and delay estimates decreases as 1/N2, whereas the
variance in the estimate of the Doppler frequency decreases as 1/N6. Considering
that N = P , this means that the variances of the amplitude and delay estimates
are inversely proportional to the number of samples (equal to N2), whereas the
variance in frequency estimate is inversely proportional to the cube of the number
of samples.

Estimation variance in the presence of channel order underestimation

Most channel estimators are only able to track the principal components. It is
then important to assess how the accuracy in the estimation of the dominant paths
parameters is affected by the presence of extra undetected paths. The analysis
of this situation can be performed again using the CRB, treating the extra paths
parameters as nuisance parameters. As an example, we considered a multipath
channel composed of four paths having the following parameters: h = [1, 1, 1, 0.25],
θ = [0.83, 1.45, 2.1, 1.45], and ν = [0, 1.5/P,−1.5/P, fe]. We assume that the chan-
nel order estimate is L = 3, instead of 4, so that there is an extra path (the fourth
one, which is also the weakest one). We fixed the delay of the extra path equal to
the delay of the second path, so that the two paths interfere. Then we changed the
frequency fe of the extra path and analyzed how the variance in the estimate of
the second path is affected by fe. We considered, for simplicity only the variance
of the frequency estimate because, as we will see in the next section, the frequency
estimate is the most critical one, as far as the channel prediction is concerned. In
Fig. 4.10 we show the variance of f2 as a function of fe. Of course, since τ2 = τ4, if
fe coincides with f2, the Fisher Information matrix is not full rank and we cannot
compute σ2

f2
. However, it is interesting to observe the behavior of σ2

f2
as a function

of fe. With reference to Fig. 4.10 we observe that: i) the variance of f2 increases
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as fe approaches f2 (i.e. 1.5/P ), and ii) the estimate of f2 is nearly unaffected by
the fourth path as long as fe differs from f2 by more than the frequency resolution
(i.e. 1/P ). On the basis of the result shown in Fig. 4.10, we may infer that clus-
tered multipath components, i.e. paths whose parameters differ from each other for
less than the time-frequency resolution, may cause considerable performance losses
in case they are not detected, for they can affect the other parameters estimates
considerably. Fortunately, from the channel prediction point of view, the situation
is not so critical because these clustered paths are characterized by a very similar
behavior and then the channel prediction error resulting from the undetected paths
is less relevant than errors due to components which are well separated in time
and/or frequency.

4.3.2 Channel prediction

The estimation of the channel parameters can be used to predict the channel time
evolution inserting the channel parameter estimates in (4.1.26). Of course, since
the estimates are inevitably affected by errors, it is reasonable to expect a channel
prediction error that increases with the increase of the duration of the prediction
interval, so that periodic updating is necessary. The aim of this section is to quantify
the prediction error as a function of the block index, starting from the moment where
the estimate is performed. More specifically, denoting by ĥq, θ̂q and ν̂q the channel
estimates, with q = 0, . . . , Q − 1, the channel impulse response can be predicted
inserting the parameter estimates in (4.1.27)

ĥ[nP + k, l] =
Q−1∑
q=0

ĥqe
jπν̂q(2n−k+θ̂q)g[π(k − l − θ̂q)] (4.3.3)

where we set, for simplicity of notation g(x) := sinc(x). Taking a first order approx-
imation of the error, we get an approximate error expression valid asymptotically,
for high SNR:

ε[nP + k, l] := ĥ[nP + k, l]− h[nP + k, l] ≈
Q−1∑
q=0

ejπνq(nP+k+l+θq)

· {εhqg(π(k − l − θq)) + πhqεθq [jνqg(π(k − l − θq))− ġ(π(k − l − θq))]
+ jπhqενq (nP + k + l + θq)g(π(k − l − θq))}, (4.3.4)

where εhq , εθq and ενq represent the errors in the estimate of the amplitude, delay
and Doppler frequency of the qth channel path, respectively. The MSE can thus be
computed as a function of the block index n, as

MSE(n) := E{|ε[nP + k, l]|2} =
Q−1∑
p=0

Q−1∑
q=0

ejπ(νp(nP+k+l+θp)−νq(nP+k+l+θq))

·
{

cov(ĥp, ĥq) g(π(k − l − θp))g(π(k − l − θq))
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Figure 4.11. Normalized prediction error vs. block index n.

+ 2πRe
[
cov(ĥp, θ̂q) h∗q g(π(k−l−θp))[−jνqg(π(k−l −θq))− ġ(π(k−l−θq))]

]

− 2π Re
[
cov(ĥp, ν̂q) jh∗q g(π(k − l − θp)) g(π(k − l − θq)) (nP + k + l + θq)

]

+ 2π2Re
[
cov(θ̂p, θ̂q) hp h∗q (νpνq g(π(k − l − θp)) g(π(k − l − θq))

+ ġ(π(k − l − θq) ġ(π(k − l − θq))− νp g(π(k − l − θp)) ġ(π(k − l − θq))

+ jνq ġ(π(k − l − θp)) g(π(k − l − θq))) ]

+ 2π2 Re
[
cov(θ̂p, ν̂q)hph

∗
q [νp(nP + k + l + θq) g(π(k−l−θp)) g(π(k−l−θq))

+ j(nP + k + l + θq) ġ(π(k − l − θp) g(π(k − l − θq))) ]

+ π2Re [cov(ν̂p, ν̂q) hph
∗
q (nP + k + l + θq)(nP + k + l + θq)

· g(π(k − l − θp)) g(π(k − l − θq)) ]}. (4.3.5)

Thus, substituting the elements of the error covariance matrix, as given by the CRB
for example, in (4.3.5), we can get MSE(n).

Example 4.3.1. In Fig. 4.11 we report the normalized mean square error MSE(n) ·
SNR/||h(n)||2 (solid line) as a function of the block index. The channel parameters
are: h = [1, 0.9, 0.8], θ = [0, 1.25, 2.375]; ν = [0, 1.5/M,−1.5/M ]. In the same
figure we report (dotted line) the contribution due to the last term in (4.3.5), to
show that, as the block index increases, i) the main contribution to the MSE is given
by the error in the frequency estimate; ii) at high n, MSE(n) goes approximately
as n2.

For high values of n, the dominant contribution of (4.3.5) is the last term. There-
fore, at least asymptotically, i.e. for high values of n, we can approximate (4.3.5)
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with its last term. Furthermore, to provide a result not constrained to a specific
channel realization, we average (4.3.5) with respect to the channel amplitudes hq.
For example, assuming that the amplitudes hq are uncorrelated random variables,
with zero mean and the same variance σ2

h, we can approximate the average value
of (4.3.5), for high n, as follows

MSE(n) ' σ2
h(nP )

Q−1∑
p=0

g2(π(k − l − θp))σ2
ν̂p

. (4.3.6)

This expression can be used to determine the training period. In fact, for a given
maximum tolerable value of MSE(n), (4.3.6) allows us to determine the maximum
value of n beyond which the prediction error becomes intolerably high: That value
of n determines the period of the estimation update.

4.3.3 Channel parameter estimation

Before concluding this section, we propose a simple method for block synchro-
nization and for the estimation of the channel parameters based on the periodic
transmission of training sequences. We do not consider blind estimation here, but
the interested reader may refer to [34] or [90], for example. In contrast to most
common communication systems, where the training sequences are pseudo-noise
and the channel estimators seek the samples of the channel impulse response, here
we use as training sequences linear frequency modulation signals (chirp signals) and
estimate the channel parameters, i.e. delay and Doppler shifts, directly. Recalling
(4.1.26), this implies a much more parsimonious approach in terms of number of
unknowns. In fact, considering the Q triplets (hq, τq, fq), we have 3Q unknowns, in
comparison with the DT impulse response which contains, theoretically, an infinite
number of unknowns.

Our estimation method is as follows: At the beginning of each frame we send
two consecutive blocks of length T containing the baseband chirp signals s1(t) =
exp(jπµt2) and s2(t) = exp(−jπµt2) respectively. The two blocks are separated in
time by a null guard interval whose duration Tg is greater than the channel memory.
At the receiver, we multiply the baseband received signal by s∗1(t) in the first block
and by s∗2(t) in the successive block. If the receiver is block synchronous with the
transmitter, in the two successive intervals we receive the two signals

x1(t) =
Q−1∑
q=0

hqe
jπµ(t−τq)2ej2πfqt + v1(t), t ∈ [0, T )

x2(t) =
Q−1∑
q=0

hqe
−jπµ(t−τq)2ej2πfqt + v2(t), t ∈ [T + Tg, 2T + Tg) (4.3.7)

where vk(t) is additive noise in the interval k. After beating the received signals
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with the conjugate of the transmitted chirp, we get

y1(t) := x1(t)e−jπµt2 =
Q−1∑
q=0

h(1)
q ej2π(fq−µτq)t + w1(t), t ∈ [0, T ) (4.3.8)

y2(t) := x2(t)ejπµt2 =
Q−1∑
q=0

h(2)
q ej2π(fq+µτq)t + w2(t), t ∈ [T + Tg, 2T + Tg)

where h
(1)
q = hqe

jπµτ2
q , h

(2)
q = hqe

−jπµτ2
q , w1(t) = v1(t)e−jπµt2 and w2(t) =

v2(t)ejπµt2 . Therefore, in the first block we have a signal composed of sinusoids
of frequency f

(1)
q = fq − µτq, whereas in the second interval we get sinusoids of

frequency f
(2)
q = fq + µτq. Thus equations (4.3.8) allow us to cast the channel

estimation problem in terms of a harmonics retrieval problem. More specifically,
the overall channel estimation method proceeds through the following steps:
1. Estimate complex amplitudes ĥ

(k)
q and frequencies f̂

(k)
q , for q = 0, . . . , Q− 1, of

the sinusoids contained in yk(t), with k = 1, 2 using any harmonic retrieval algo-
rithm (see, e.g. [88]);
2. Pair the sets of estimates obtained in the two blocks using the following proce-
dure. Denoting by (k(i)

0 , . . . , k
(i)
Q−1) the ith permutation of the index set (0, 1, . . . , Q−

1), for each index permutation index i, with i = 1, . . . Q!, estimate the channel
Doppler frequencies and delays as

f̂q,i = (f̂ (1)
q + f̂

(2)

k
(i)
q

)/2

τ̂q,i = (f̂ (2)

k
(i)
q

− f̂ (1)
q )/2µ, i =, . . . , Q!; (4.3.9)

3. Choose the index set that yields the MMSE, i.e.

iopt = argmin{
∫ T

0

|x1(t)−
Q−1∑
q=0

hqe
jπµ(t−τ̂q,i)

2
ej2πf̂q,it|2dt

+
∫ 2T+Tg

T+Tg

|x2(t)−
Q−1∑
q=0

hqe
−jπµ(t−τ̂q,i)

2
ej2πf̂q,it|2dt} (4.3.10)

and thus gives the estimates f̂q,iopt , τ̂q,iopt , q = 0, . . . , Q− 1.
An example of application of this estimation method is reported in Fig. 4.12

where we show the variance in the estimation of amplitude, delay and Doppler shift
as a function of the number of samples N used for the estimate. The channel is
composed of three paths and the SNR is 15 dB. Each curve is the average value of
the variances obtained in the estimates of homologous parameters. From Fig. 4.12
it is interesting to observe that the average variance in the estimate of the Doppler
frequency decreases as 1/N3, whereas the average variances of amplitude and delay
decrease as 1/N , as with the CRB. Clearly the above method has at least a 3 dB
loss due to the linear combination in (4.3.9), but it is also very simple, at least if Q
is not too big to make the pairing operation troublesome.
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Figure 4.12. Average variances vs. number of samples N , in the estimate of
amplitude, delay and Doppler shift of a multipath channel, using the chirp-based
estimation algorithm (SNR=15 dB).

4.4 Conclusion

In this chapter we have addressed a few issues related to LTV systems and to the
transmissions through LTV channels. We have proposed an approximate analytic
model for the eigenfunctions of underspread LTV channels which, even if valid
only in approximate sense, has been useful to envisage suboptimal transmission
strategies and to predict the system performance in asymptotic sense. The joint
time-frequency analysis has played an important role in modeling the eigenfunctions
of linear time-varying channels. Interestingly, the theory developed in this chapter,
valid for channels whose spread function is concentrated along the delay or the
Doppler frequency axis, can be generalized to spread functions concentrated along
curves of the (ν, τ) plane. In that case, the relationship between left and right
singular functions becomes more complicated than in P3, because the phase Ψ0 in
P3 becomes also a function of time, i.e. Ψ0 = Ψ0(t). Clearly the search for accurate
models of the singular functions of LTV systems is one of the most challenging
research areas, whose impact is not limited to transmissions over LTV channels.

The other main point addressed in this chapter is parametric modeling of the
channel impulse response. The multipath channel parametric model has been used
to derive simple methods for estimating and predicting the channel impulse re-
sponse. But clearly, as with any parametric approach, the method lacks of robust-
ness against mismatching between the real channel and the assumed model.

Probably the most interesting result in the study of LTV channels is that one
realizes that there are so many research areas which are still in their embryonal state
and need to be fully developed if one wants to exploit the potentialities intrinsic in
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the transmission through LTV channels. We try here to suggest a few possible direc-
tions: i) simple yet reliable channel modeling, possibly fitting real data records; ii)
robust channel estimation and prediction methods; iii) simple suboptimal adaptive
methods for optimizing the transmission strategy, resulting from a good compro-
mise between performance and complexity and incorporating the uncertainty in
our channel knowledge; iv) derivation of system performance parameters such as
outage probability or information outage probability for time and frequency disper-
sive stochastic channels; v) channel equalization or, more generally, reliable symbol
detection algorithms incorporating channel fluctuations.

4.5 Appendices

4.5.1 Eigenfunction model

In this appendix we prove properties P1 ÷ P4 assuming the multipath model
(4.1.13). Nonetheless, since we allow Q (4.1.13) to go to infinity, the proof has
wider validity. In fact, for any finite interval, in the time frequency plane (t, f),
of size ∆t × ∆f , the transfer function H(t, f) can be expanded in Fourier series
(the expansion requires only that H(t, f) satisfies Dirichlet’s condition in the finite
interval) as

H(t, f) =
∞∑

k=−∞

∞∑
m=−∞

Hk,mej2π k
∆t te−j2π m

∆f f . (4.5.1)

The corresponding impulse response is thus

h(t, τ) =
∞∑

k=−∞

∞∑
m=−∞

Hk,mej2π k
∆t tδ(τ − m

∆f
). (4.5.2)

Since in the following proof we do not make any assumption about the summation
indices in (4.1.13), we can consider (4.1.13) fairly general to include also (4.5.2) as
a particular case. We adopt the multipath model here only to provide a physical
insight in the approximations made during the proof. Furthermore, we assume
initially that the spread function is centered around the origin. At the end of the
proof we remove this assumption.

We start proving that the eigenfunction model given by (4.1.45) and (4.1.44)
is valid, in approximate sense, for underspread channels. From the underspread
assumption maxp,q |τpνq| ¿ 1, it is evident that we may have i) maxq |τq| ¿ 1,
but not necessarily maxq |νq| ¿ 1 (frequency dispersive channel) ii) maxq |νq| ¿ 1,
but not necessarily maxq |τq| ¿ 1 (time dispersive channel); iii) maxq |νq| ¿ 1 and
maxq |τq| ¿ 1. The last case is the least interesting from the point of view of
its eigenfunctions, because it represents an almost flat fading channel. This is a
limiting case where all the eigenvalues tend to coincide with one single value given
by the flat fading coefficient. Thus we concentrate our attention on the first two
cases. In particular, from the mathematical point of view we can study only the first
case, because, the second case can be analyzed by duality translating the previous
approach in the frequency domain.
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The composed kernel h̃(τ, θ), given by (4.1.40), corresponding to the multipath
channel (4.1.13), is

h̃(τ, θ) =
∑

p

∑
q

h∗phqe
−j2π(νp−νq)(τ+τp)δ(τ − θ − τq + τp). (4.5.3)

Substituting (4.5.3) in (4.1.39), the right singular function vλ(t) must be solution
of the following equation

λ2vλ(t) =
∑

p

∑
q

h∗phqe
−j2π(νp−νq)(t+τp)vλ(t− τq + τp). (4.5.4)

We show next that an approximate solution of this equation, valid for time dispersive
channels but with small dispersion in frequency, assumes the following form

vλ(t) =
1√
Tλ

rectTλ
(t− ξλ)ejφλ(t), (4.5.5)

where φλ(t) satisfies (4.1.45). For channels with maxq|νq| ¿ 1, Tλ is much greater
than maxq|τq|. In fact, in the limit case where νq = 0,∀q, Tλ is infinite (LTI case).
Therefore, for |νq| ¿ 1 we may assume Tλ À maxq|τq|. As a consequence, plugging
(4.5.5) in (4.5.4) and using the assumption Tλ À maxq|τq|, so that rectTλ

(t− ξλ −
τq + τp) ≈ rectTλ

(t− ξλ), we obtain

λ2ejφλ(t) '
∑

p

∑
q

h∗phqe
−j2π(νp−νq)te−j2π(νp−νq)τpejφλ(t−(τq−τp)). (4.5.6)

Since the energy of the left-hand side, in an interval of duration Tλ, is λ2Tλ,
the approximation error is smaller for the highest singular values λ. Consider-
ing also that, in view of the underspread assumption maxp,q |τpνq| ¿ 1, we have
e−j2π(νp−νq)τp ≈ 1, (4.5.6) can be approximated as

λ2ejφλ(t) '
∑

p

∑
q

h∗phqe
−j2π(νp−νq)tejφλ(t−(τq−τp)). (4.5.7)

We are now able to prove that if φλ(t) is chosen according to (4.1.45), (4.5.7) is
satisfied, at least in approximate sense, for channels with small frequency dispersion.
In fact, the time-varying transfer function H(t, f) of such channels is very slowly
varying along t. As a consequence, the function φλ(t) resulting as a solution of
(4.1.45) is also slowly varying. In fact, setting G(t, f) := |H(t, f)|2, from (4.1.45)
we have

φ̈λ(t) = −2π
Gt(t, fλ(t))
Gf (t, fλ(t))

(4.5.8)

where Gt(t, f) := ∂G(t, f)∂t and Gf (t, f) := ∂G(t, f)∂f . Thus, very small values of
Gt(t, fλ(t)) imply small values of φ̈λ(t), unless Gf (t, fλ(t)) is also very small. But
Gf (t, fλ(t)) cannot be also very small, except for a finite number of isolated points,
because we assumed that the channel is dispersive in time and thus it is frequency
selective. The slow variation of φλ(t) implies that we may use the following first
order series expansion

φλ(t− (τq − τp)) ' φλ(t)− (τq − τp)φ̇λ(t). (4.5.9)
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Plugging this expression in (4.5.7), we obtain

λ2 '
∑

p

∑
q

h∗phqe
−j2π(νp−νq)te−j(τq−τp)φ̇λ(t). (4.5.10)

Considering that

|H(t, f)|2 =
∑

p

∑
q

h∗phqe
−j2π(νp−νq)te−j(τq−τp)f (4.5.11)

and comparing (4.5.10) with (4.5.11), we see that the function φλ(t) that solves
(4.5.10) must result as the implicit solution of the following equation

λ2 = |H(t, φ̇λ(t)/2π)|2, (4.5.12)

as in (4.1.45).
The proof in the dual case where the channel has a very small time dispersion,

but a non negligible dispersion in frequency, repeats the same steps, except that
the solution is sought in the frequency domain. Specifically we assume that the
spectrum of vλ(t) has the form

Vλ(f) =
1√
Fλ

rectFλ
(f − ζλ)ejΦλ(f), (4.5.13)

and prove that an approximate solution is obtained by choosing Φλ(f) such that

λ2 = |H(−Φ̇λ(f)/2π, f)|2. (4.5.14)

Repeating the same approach seen above, applied to the kernel h̄(t, θ) defined
in (4.1.41), we arrive at a solution for uλ(t) equal to the solution for vλ(t).

Now we can remove the initial assumption that the channel spread function
is centered around the origin of the (ν, τ) plane. In fact, recalling property P0,
we know that a shift of the spread function in the delay-Doppler domain induces
a shift in time and a modulation of the channel output. Therefore, if we have a
channel whose spread function S̄(ν, τ) is centered around (τ0, ν0), we may consider
the corresponding channel with S(ν, τ) centered around the origin. If S(ν, τ) is
underspread, it satisfies the properties seen before. Therefore, the channel with
S̄(ν, τ) satisfies similar properties except that, for any given input, the output is
shifted in the time-frequency plane. This implies for example, that if vλ(t) and
uλ(t) are the right and left singular functions associated to λ, of the channel with
spread function S(ν, τ), the shifted channel with spread function S̄(ν, τ) admits as
eigenfunctions the pair vλ(t) and uλ(t − τ0)ej2πν0t. This gives rise to the general
relationship P3. The same property P3 states also that vλ(t) is a G-eigenfunction.
Finally, the proof of P4 is straightforward. In fact, according to (4.1.43), the
eigenfunctions wλ(t) of a multipath channel must satisfy the following equation

λwλ(t− td)ej2πfdt =
Q−1∑
q=0

hqwλ(t− τq)ej2πfqt. (4.5.15)
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Assuming, without any loss of generality, that τ0 = 0 and setting td = 0, fd = f0,
and νq = fq − f0, (4.5.15) becomes

λwλ(t) =
Q−1∑
q=0

hqwλ(t− τq)ej2πνqt. (4.5.16)

Applying the Fourier transform to both sides of (4.5.16) we get

λWλ(f) =
Q−1∑
q=0

h′qWλ(f − νq)e−j2πτqf , (4.5.17)

where Wλ(f) is the spectrum of wλ(t) and h′q := hqe
j2πνqτq . Comparing (4.5.17)

with (4.5.16), it is evident that if maxq|νqτq| ¿ 1, i.e. if the channel is underspread,
h′q ≈ hq and thus the eigenfunction wλ(t) and its spectrum Wλ(f) must assume a
similar form because they solve the same kind of equation.

4.5.2 Time-frequency representations

We recall here a few basic properties of time frequency distributions (the interested
reader may refer to [18], [32], for example). Within the generalized Cohen’s class of
time-frequency distributions (TFD), the so called Wigner-Ville distribution (WVD)
plays a prominent role because all other TFD’s can be derived from the WVD
through a convolution in the time-frequency domain with the smoothing function
characterizing the desired distribution. Given a signal s(t), its WVD is defined as

Ws(t, f) =
∫ ∞

−∞
s∗(t− τ/2)s(t + τ/2)e−j2πfτdτ. (4.5.18)

The WVD satisfies the following properties.

1.Moyal’s formula: Given two signals x(t) and y(t), their scalar product is preserved
in the time-frequency domain, in the sense that the following property, known as
Moyal’s formula, holds true:∫ ∞

−∞

∫ ∞

−∞
Wx(t, f)Wy(t, f)dtdf =

∣∣∣∣
∫ ∞

−∞
x∗(t)y(t)dt

∣∣∣∣
2

. (4.5.19)

2.Inversion formula: Given the WVD Ws(t, f) of a signal s(t), it is possible to recover
s(t) from Ws(t, f), up to a scalar factor, using the following inversion formula:

s(t) =
1

s∗(0)

∫ ∞

−∞
Ws(

t

2
, f)ej2πftdf. (4.5.20)

3.Moments: The instantaneous frequency fs(t) of a complex signal s(t) is the center
of gravity of its WVD along f :

fs(t) =

∫∞
−∞ fWs(t, f)df∫∞
−∞Ws(t, f)df

. (4.5.21)

By duality, the group delay ts(f) is the center of gravity of the WVD along the t:

ts(f) =

∫∞
−∞ tWs(t, f)dt∫∞
−∞Ws(t, f)dt

. (4.5.22)
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4.5.3 Cramér-Rao Bounds

We report here the computation of the FIM’s elements. Adopting the approach
based on the derivatives in the complex field proposed in [94], the parameter vector
is ξ := (h, θ, ν, h∗) and the Fisher’s information matrix (FIM) is

FIM(n) =




E{ ∂f

∂h
∂f

∂hH } E{ ∂f

∂h
∂f

∂θT } E{ ∂f

∂h
∂f

∂νT } E{ ∂f

∂h
∂f(h)

∂hT }
E{ ∂f

∂θ
∂f

∂hH } E{ ∂f

∂θ
∂f

∂θT } E{ ∂f

∂θ
∂f

∂νT } E{ ∂f

∂θ
∂f(h)

∂hT }
E{ ∂f

∂ν
∂f

∂hH } E{ ∂f
∂ν

∂f

∂θT } E{ ∂f
∂ν

∂f
∂νT } E{ ∂f

∂ν
∂f(h)

∂hT }
E{ ∂f

∂h∗
∂f

∂hH } E{ ∂f

∂h∗
∂f

∂θT } E{ ∂f

∂h∗
∂f

∂νT } E{ ∂f

∂h∗
∂f(h)

∂hT }




(4.5.23)
with f(h, θ, ν) defined as in (4.3.2). Specifically, we have

E

{
∂f

∂hp

∂f

∂h∗q

}
=

1
σ2

v

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

xl(n)x∗l′(n)ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−νq)]

· g[π(k − l − θp)]g[π(k − l′ − θq)]

E

{
∂f

∂hp

∂f

∂hq

}
= 0

E

{
∂f

∂hp

∂f

∂θq

}
=

πh∗q
σ2

v

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

xl(n)x∗l′(n)ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−νq)]

· g[π(k − l − θp)]{−jνqg[π(k − l′ − θq)]− ġ[π(k − l′ − θq)]}

E

{
∂f

∂hp

∂f

∂νq

}
=
−jπh∗q

σ2
v

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

xl(n)x∗l′(n)ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−νq)]

· (nP + k + l′ + θq)g[π(k − l − θp)]g[π(k − l′ − θq)]

E

{
∂f

∂θp

∂f

∂θq

}
=

2π2

σ2
v

Re{hph
∗
q

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−θq)]

· [jνpg(π(k − l − θp))− ġ(π(k − l − θp))]xl(n)x∗l′(n)
· [−jνqg(π(k − l′ − θq))− ġ(π(k − l′ − θq))]}

E

{
∂f

∂θp

∂f

∂νq

}
=

2π2

σ2
v

Re{hph
∗
q

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

xl(n)x∗l′(n)ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−θq)]

· [νpg(π(k − l − θp)) + jġ(π(k − l − θp))](nP + k + l′ + θq)g(π(k − l′ − θq))}

E

{
∂f

∂νp

∂f

∂νq

}
=

2π2

σ2
v

Re{hph
∗
q

N−1∑
n=0

P−1∑

k=0

M−1∑

l=0

N−1∑

l′=0

xl(n)x∗l′(n)ejπ[νp(nP+k+l+θp)−νq(nP+k+l′−θq)]

· (nP + k + l + θp)(nP + k + l′ + θq)g[π(k − l − θp)]g[π(k − l′ − θq)]}
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