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Abstract—In this paper, we present multiple novel applications
for local intrinsic dimension estimation. There has been much
work done on estimating the global dimension of a data set, typi-
cally for the purposes of dimensionality reduction. We show that
by estimating dimension locally, we are able to extend the uses of
dimension estimation to many applications, which are not possible
with global dimension estimation. Additionally, we show that
local dimension estimation can be used to obtain a better global
dimension estimate, alleviating the negative bias that is common
to all known dimension estimation algorithms. We illustrate local
dimension estimation’s uses towards additional applications, such
as learning on statistical manifolds, network anomaly detection,
clustering, and image segmentation.

Index Terms—Geodesics, image segmentation, intrinsic dimen-
sion, manifold learning, nearest neighbor graph.

I. INTRODUCTION

T ECHNOLOGICAL advances in both sensing and media
storage have allowed for the generation of massive

amounts of high-dimensional data and information. Consider
the class of applications that generate these high-dimensional
signals: e.g., digital cameras capture images at enormous reso-
lutions; dozens of video cameras may be filming the exact same
object from different angles; planes randomly drop hundreds
of sensors into the same area to map the terrain. While this has
opened a wealth of opportunities for data analysis, the problem
of the curse of dimensionality has become more substantial, as
many learning algorithms perform poorly in high dimensions.
While the data in these applications may be represented in
high dimensions, strictly based upon the immense capacity for
data retrieval, it is typically concentrated on lower dimensional
subsets—manifolds—of the measurement space. This allows
for significant dimension reduction with minor or no loss of
information. The point at which the data can be reduced with
minimal loss is related to the intrinsic dimensionality of the
manifold supporting the data. This measure may be interpreted
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as the minimum number of parameters required to describe the
data [1].

When the intrinsic dimension is assumed constant over the
data set, several algorithms [2]–[5] have been proposed to es-
timate the dimensionality of the manifold. In several problems
of practical interest, however, data will exhibit varying dimen-
sionality, as there may lie multiple manifolds of varying dimen-
sion within the data. This is easily viewed in images with dif-
ferent textures or in classification tasks in which data from dif-
ferent classes is generated by unique probability density func-
tions (pdfs). In these situations, the local intrinsic dimension
may be of more importance than the global dimension. In pre-
vious work [6], we illustrated the process of local dimension
estimation, in which a dimension estimate is obtained for each
sample within the data, rather than a single dimension estimate
for the entire set.

In this paper, we focus on the applications of local dimen-
sion estimation. One immediate benefit is using local dimension
to estimate the global dimension of a data set. To our knowl-
edge, every method of estimating intrinsic dimension has ex-
pressed an issue with a negative bias. While insufficient sam-
pling is a common source of this bias, a significant portion is
a result of samples near the boundaries or edges of a mani-
fold. These regions appear to be low dimensional when sampled
and contribute a strong negative bias to the global estimate of
dimension. We additionally utilize local dimension estimation
for the purposes of dimensionality reduction. Typically, this has
been presented for Riemannian manifolds in a Euclidean space
[7]–[9], in which the data contain a single manifold of constant
dimension lying in . We extend this to the problem of estima-
tion and reduction of dimensionality on statistical manifolds, in
which the points on the manifold are pdfs rather than points in
a Euclidean space.

We continue by showing novel applications in which the exact
dimension of the data is of no immediate concern, but rather the
differences between the local dimensions. Dimensionality can
be viewed as the number of degrees of freedom in a data set, and
as such may be interpreted as a measure of data complexity. By
comparing the local dimension of samples within a data set, we
are able to identify different subsets of the data for analysis. For
example, in a time-series data set, the intrinsic dimensionality
may change as a function of time. By viewing each time step as
a sample, we can identify changes in the system at specific time
points. We illustrate this ability by finding anomalous activity
in a router network. Additionally, the identification of subsets
within the data allows for the immediate application of clus-
tering and image segmentation. There has been much work pre-
sented on using fractal dimension estimation for image and tex-
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ture segmentation [10], [11]. In this paper, we do not make the
model assumption that textures may be represented as a collec-
tion of fractals [12], and instead segment images using a novel
method based on Euclidean dimension. We show that by using
“neighborhood smoothing” [13] over the dimension estimates,
we are able to find the regions that exhibit differing complexi-
ties, and use the smoothed dimension estimates as identifiers for
the clusters/segments.

The organization of this paper is as follows: We give an
overview of the two-dimension estimation algorithms we will
utilize in our simulations in Section II. In Section III, we
describe the process of neighborhood smoothing as a means
of postprocessing for local dimension estimation. We illustrate
the various novel applications of local dimension estimation
in Section IV, including debiasing for global dimension esti-
mation, manifold learning, anomaly detection, clustering, and
image segmentation. Lastly, we offer a discussion and present
areas for future work in Section V.

II. DIMENSION ESTIMATION

We will now present two algorithms for dimension estima-
tion: the -nearest neighbor ( -NN) algorithm [4], [14] and the
maximum likelihood estimator (MLE) method [5]. Please note
that this paper makes no attempts to claim superiority of these
algorithms over others. While there are many algorithms avail-
able for dimension estimation, we focus on these two as a means
for illustrating the applications we later present. By utilizing two
distinct methods, we hope to quell any concerns that our appli-
cations are algorithm dependent. For a thorough survey of in-
trinsic dimension estimation methods, we encourage the reader
to view [15] and [16], as well as more recent work [17]–[20]

A. The -Nearest Neighbor Algorithm for Dimension
Estimation

Let be independent identically dis-
tributed (i.i.d.) random vectors with values in a compact subset
of . The (1-)nearest neighbor of in is given by

where is an appropriate distance measure between
and ; for the purposes of this paper, let us define

, the standard Euclidean distance. For a general
integer , the -nearest neighbor of a point is defined in
a similar way. The -NN graph assigns an edge between each
point in and its -nearest neighbors. Let
be the set of -nearest neighbors of in . The total edge
length of the -NN graph is defined as

(1)

where is a power weighting constant.
For many data sets of interest, the random vectors are

constrained to lie on an -dimensional Riemannian submani-
fold of . Under this framework, the asymptotic
behavior of (1) is given as

(2)

where is a constant with respect to
that depends on the Rényi entropy of the distribution of

the manifold and is an error residual [6]. Note that for ease
of notation, we will denote simply as , except where the
explicit expression is desirable (e.g., optimizing over ).

As noisy measurements can lead to inaccurate estimates, the
intrinsic dimension should be estimated using a nonlinear
least squares solution. By calculating sampled graph lengths
over varying values of , the effect of noise can be dimin-
ished. In order to calculate graph lengths for differing sample
sizes on the manifold, it is necessary to randomly subsample
from the full set , utilizing the nonoverlap-
ping block bootstrapping method [21]. Specifically, let

be a spatially or temporally sorted version of
, and let be an integer satisfying . Define the

blocks . As
such, we may now redefine .

Let be integers such that
. For each value of , randomly draw

bootstrap datasets , with replacement,
where the blocks of data points within each are chosen
from the entire data set independently. From these samples,
define , where .

Since is dependent on , it is necessary to solve for the
minimum mean squared error, derived from (2), by minimizing
over both and integer values of

(3)

where and is the vector of length whose elements
are all one. We solve over integer values of , as we do not
consider fractal dimensions for this algorithm. This improves
accuracy by constraining the estimation space to discrete values
rather than discretizing estimates in a continuous space. One can
solve (3) in the following general manner.

1: Calculate from the expansion of (3)
a)

2: Calculate the error with and from step 1)

.

This nonlinear least squares solution yields the dimension es-
timate based on the -NN graphs.

B. The Maximum Likelihood Estimator for Intrinsic Dimension

The MLE method [5] for dimension estimation estimates the
intrinsic dimension from a collection of i.i.d. observations

. Similar to the -NN algo-
rithm for dimension estimation, the MLE method assumes that
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close neighbors lie on the same manifold. The estimator pro-
ceeds as follows, letting be a fixed number of nearest neigh-
bors to sample

(4)

where is the distance from point to its th nearest
neighbor in . The intrinsic dimension for the data set can then
be estimated as the average over all observations

Algorithm 1 Local dimension estimation

Input: Data set
1: for to do
2: Initialize cluster
3: for to
4: Find the th NN, , of
5:
6: end for
7:
8: end for

Output: Local dimension estimates for

C. Local Dimension Estimation

While the MLE method inherently generates local dimension
estimates for each sample , the -NN algorithm in itself
is a global dimension estimator. We are able to adopt it (and
any other dimension estimation algorithm) as a local dimen-
sion estimator by running the algorithm over a smaller neigh-
borhood about each sample point. Define a set of samples

from the collection of manifolds
such that each point lies on manifold .

Any small sphere or data cluster of samples centered
at point , with , will contain samples from

distinct manifolds. As , all of the points
in will lie on a single manifold (i.e., ). Intuitively
speaking, as the cluster about point is reduced in size, the
local neighborhood defined by said cluster can be viewed as its
own data set confined to a single manifold. Hence, we can use
a global dimension estimation algorithm on a local subset of
the data to estimate the local intrinsic dimension of each sample
point. This can be performed as described in Algorithm 1, where
“dimension ” refers to applying any method of dimension es-
timation to the data cluster .

One of the keys to local dimension estimation is defining a
value of . There must be a significant number of samples in
order to obtain a proper estimate, but it is also important to keep
a small sample size as to (ideally) only include samples that lie
on the same manifold. Currently, we arbitrarily choose based
on the size of the data set. However, a more definitive method
of choosing is grounds for future work.

We briefly note that our definition of “local” dimension
estimation differs from that of the Fukunaga–Olsen algorithm

[1]. Specifically, we aim to find a dimension estimate for each
sample point, which accounts for sets consisting of multiple
manifolds, while [1] used local subsets of the data to form a
global estimate of dimension.

III. NEIGHBORHOOD SMOOTHING

For the problem of local dimension estimation, results are
often highly variable, where nearby samples from the same
manifold may result in different dimension estimates. This issue
can be a result of a variety of reasons, such as variability due
to random subsampling in the -NN algorithm, or variability
due to the neighborhood size in the MLE method. When con-
structing a global dimension estimate, this variance is relatively
insignificant, as the estimate is constructed as a function of the
local estimates. For local dimension estimation, however, this
variance is of significant concern, and we propose a variance
reduction method known as neighborhood smoothing [13],
which improves estimation accuracy.

An initial intuition for manifold learning algorithms is that
samples that are “close” tend to lie on the same manifold,
which extends to the assumption that they therefore have the
same dimension. With this assumption in place, it follows
that filtering by majority vote over the dimension estimates
of nearby samples should smooth the estimator and reduce
variance. This voting strategy is similar to the methods of
mode filtering, bagging [22] and learning by rule ensembles
[23]. Smoothing simply looks at the distribution of dimension
estimates within each sample point’s local neighborhood and
reassigns each sample a dimension estimate equal to that with
the highest probability within its neighborhood. Specifically

(5)

where is the probability over the neighborhood of the cur-
rent sample . Given a finite number of samples ,
this may be empirically evaluated as

(6)

where is the standard indicator function. This process may
then be iterated until the set converges such that each estimate
remains constant. This has the effect of implicitly incorporating
the neighbors of each sample’s neighbors to some extent, as the
dimension estimates within a local region may change through
iterations.

Intuitively, neighborhood smoothing is similar to itera-
tively imposing a -NN classifier on the local dimension
estimates—under the guise that at each iteration, sample
is a test sample and all points are appropriately
labeled training samples. Similarly to -NN classification, the
key factor to smoothing is defining the neighborhood . If

is too large, oversmoothing will occur. The variance of the
dimension estimates will drastically decrease, but there will
be a strong bias which will remove the detection of coarsely
sampled manifolds. As such, one cannot use a constant region
about a point but must adapt that region to the statistics of the
sample.
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A. Adaptive Neighborhood Selection

Since the number of sample points on each manifold of a
data set is generally unknown, using a constant number of
smoothing samples is not a viable option; samples on a smaller
manifold may have points from a disjoint manifold included
in their smoothing neighborhood. One straightforward method
for neighborhood selection is to define neighbors by some
spherical region or -ball about each sample point. This is
generally acceptable when the disjoint manifolds are easily
separable, as the neighborhood does not adapt to the geometry
of the manifold. When distinct manifolds lie near one another,
or potentially intersect, it is necessary to further adapt the
smoothing neighborhood beyond a spherical region. This is due
to the fact that points on a nearby or intersecting manifold may
be as close (or closer) to a sample as others on its own manifold.
A spherical region may smooth over different manifolds, and
the results will lead to the dimension estimates’ “leaking” from
one manifold to another.

Rather than defining neighborhoods through Euclidean dis-
tance, which will form only spherical regions about each sample
point, we will define neighborhoods using a geodesic distance
metric. This will adapt the neighborhood to the geometry of the
manifold. The geodesic distance is defined as the shortest path
between two points along the manifold and may be approxi-
mated with graph-based methods. For our purposes, this metric
can be determined by taking each point and creating an edge to
its -NN. Then, using Dijkstra’s shortest path algorithm (or any
other algorithm for computing the shortest path), approximate
the geodesic distances between each pair of points in the graph.
Any points that remain unconnected are considered to have an
infinite geodesic distance between them.

To define a local neighborhood, we can now simply choose
the closest points for which the geodesic distance is not infi-
nite. This forms a nonspherical neighborhood that adapts to the
curvature of the manifold, performing much better than spher-
ical neighborhoods. Fig. 1 illustrates the difference in the neigh-
borhoods (black stars) that are formed on the “swiss roll” man-
ifold when using different proximity metrics. The Euclidean
distance [Fig. 1(a)] forms a spherical neighborhood, including
points that are separated from the sample in question (red di-
amond). The geodesic distance [Fig. 1(b)], however, forms a
neighborhood considering points only in close proximity along
the actual manifold. While all points in this example do exist on
the same manifold, it is clear that defining neighborhoods along
the manifold rather than in simple spherical regions reduces the
probability of including samples from a nearby distinct mani-
fold.

Illustrating the effects of neighborhood smoothing, we create
a seven-dimensional data set that includes two distinct hyper-
spheres of intrinsic dimensions two and five, each containing
300 uniformly sampled points intersecting in three common di-
mensions. Fig. 2(a) shows the histogram of the local dimension
estimates of each sample before any neighborhood smoothing
was applied, while Fig. 2(b) shows the results after smoothing.
One can clearly see that the wide histogram was correctly con-
densed to the proper local dimension estimates, even though the
manifolds intersect. The use of the geodesic distance measure

Fig. 1. Neighborhoods of the sample in question defined by (a) Eu-
clidean distance and (b) geodesic distance. (a) Spherical neighborhood and (b)
adaptive neighborhood.

prevents smoothing across distinct manifolds, which lie closely
together in Euclidean space.

It is important to note that, as with any form of postpro-
cessing, neighborhood smoothing can only produce accurate
results given sufficient input. The benefits of smoothing can
be significantly diminished if the initial local dimension esti-
mates are not sufficiently accurate. We note this explicitly be-
cause of the known issues with estimating large dimensions
(e.g., ). Because of variance issues due to insufficient
samples and boundary effects, it is difficult to accurately esti-
mate very large dimensions, and often the estimate can more
appropriately be considered a measure of complexity, where the
difference between and 1 is rather insignificant. This is
important because no single dimension may dominate a given
local neighborhood, yet smoothing will still assign a dimen-
sion estimate equal to the most represented dimension, which
may indeed be inconsistent with the rest. We demonstrate this
scenario with the example shown in Fig. 3, where smoothing
would assign a dimension estimate of , which is the
most represented dimension in the neighborhood. However, a
more accurate dimension estimate could be considered
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Fig. 2. Neighborhood smoothing applied to seven-dimensional data containing
two spheres with intrinsic dimensions two and five.

or , as that would be more consistent with the majority
of the samples. In these scenarios, it may be more appropriate
to smooth over a histogram with user-defined bin sizes, corre-
sponding to significant differences in complexity rather than in-
dividual dimensions. This is an area for future work.

IV. APPLICATIONS

A. Debiasing Global Dimension Estimation

To our knowledge, a phenomenon common to all algorithms
of intrinsic dimension estimation is a negative bias in the di-
mension estimate. It is believed that this is an effect of under-
sampling the high-dimensional manifold. While the bias due to
lack of sufficient samples is inherent, we offer that the sample
size is not the only source of bias; a significant portion is related
to the depth of the data. Specifically, as data samples approach
the boundaries of the manifold, they exhibit a lower intrinsic di-
mension. This issue becomes more prevalent as the dimension
of the manifold increases and is directly related to the curse of
dimensionality. Note that even manifolds that appear “empty” in
their extrinsic-dimensional space (e.g., the Swiss roll) are filled
and contain boundaries in the space of their intrinsic dimension.

Previous work [24] has demonstrated that as dimensionality
increases, the nearest neighbor distances approach those of the

Fig. 3. Issues arise with neighborhood smoothing when estimating very large
dimensions due to the variance of such estimates. In this example, smoothing
would assign a dimension estimate of 40, although the more appropriate esti-
mate would be 33 or 34.

most distant points; this will clearly have an adverse effect on
neighborhood-based estimation algorithms. We are able to fur-
ther correlate this effect on dimension estimation by calculating
the depth of each sample and quantitatively analyzing the rela-
tionship between depth and dimension. We utilize the -data
depth algorithm developed in [25], which calculates depth

as the sum of all the unit vectors between the sample of
interest and the rest of the data set .
Specifically

(7)

where is the unit vector in
the direction of . This depth measure assigns the most
interior points in the data set a depth value approaching one,
while samples along the boundaries approach a depth of zero.

Using this measure, we illustrate the effect of data depth on
dimension estimation in Fig. 4. The data set used was of 3000
points uniformly sampled on a six-dimensional hypercube. We
utilize the MLE method for dimension estimation, and Fig. 4 il-
lustrates the distribution of data depths for samples that estimate
at different dimensions. It is clear that as the depth increased, so
did the probability of estimating at a higher dimension, even to
the point where the most deep points estimated at a dimension
of seven (although we note that there were very few points with
this estimate).

When estimating the global dimension of a data set, one can
substantially reduce the negative bias by placing more emphasis
on the local dimension of those points away from the bound-
aries, as they are more indicative of the true dimension of the
manifold. Specifically, let the global dimension be estimated as
follows:

(8)
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Fig. 4. PDFs of data depth based on estimated intrinsic dimension. Points with
less depth estimate at a lower dimension, contributing to the overall negative
bias.

where is a weighting on each sample point. We offer two
potential definitions of , the first being a binary weighting

otherwise
(9)

where and is the data depth of the
deepest point. Essentially this binary weight amounts

to debiasing by averaging over the local dimension estimates
of the deepest % of points, where the threshold is
user defined. This is worthwhile for potentially large data sets,
where there are enough samples to ignore a large portion of
them. When this is not the case, let us make the definition

(10)

where is a user-defined constant. This weighting may be
viewed as a heat kernel, in which larger depths will yield higher
weights. Unlike the binary weighting, which will ignore a large
number of the data samples, this heat kernel weighting will
utilize all samples (even those lying on a boundary) yet give
preference to those with more depth in the manifold.

We now illustrate this debiasing ability in Fig. 5, in which
we estimated the global dimension of the six-dimensional hy-
percube (3000 i.i.d. samples) over 200 unique trials. Fig. 5(a)
shows the histogram of biased dimension estimates obtained by
using the entire set for dimension estimation, while Fig. 5(b) es-
timates the correct global dimension each trial by using our de-
biasing method (8) with the binary weighting function (9) using

.
To study the number of samples necessary to accurately es-

timate global dimension, we plot estimation results in Fig. 6.
In this simulation, we plot the mean de-biased and
unrounded dimension estimated over a 20-fold cross validation,
based on differing number of samples on the six-dimensional
hypercube. We can see that if rounded to the nearest integer,
the debiased estimate will be correct on average with roughly
2500 samples. On the contrary, without debiasing, the estima-
tion maintains a much stronger negative bias, never correctly
estimating the dimension when rounded.

Fig. 5. Developing a debiased global dimension estimate by averaging over the
50% of points with the greatest depth on the manifold. (a) Biased results and (b)
debiased results.

Fig. 6. Analysis of how many samples are necessary to appropriately estimate
debiased global dimension. Plot shows mean dimension estimated over a 20-fold
cv, with error bars at one standard deviation.

It is important to note that our method of debiasing is only ap-
plicable for data with a relatively low intrinsic dimension. When
dealing with very high dimensional data, the probability of a
sample lying near a boundary approaches one, and the value of
the depth approximation becomes irrelevant. This is shown in
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Fig. 7. As the intrinsic dimension increases, the maximum and minimum data
depth of points in the set converge to the same value. This simulation was over
a fivefold cross-validation with 400 uniformly sampled points on the unit cube.

Fig. 7 where the “deepest” and most “shallow” samples con-
verge to the same depth value as the intrinsic dimension in-
creases.

Prior work on estimating dimension through vector quanti-
zation [20] has reported robustness to negative bias. While not
offering a distinct claim or proof of this robustness, the au-
thors mention their algorithm obtains larger estimates for high-
dimensional data than neighborhood-based methods. Theoreti-
cally, this method will suffer from similar bias issues due to the
intrinsic geometry of the data, which is not explicitly accounted
for in [20]. The improved performance reported is likely due to
the cross-validation implemented. That said, the use of quan-
tization error may indeed be more robust to negative bias than
neighborhood-based methods, and this potential gain is worth
further investigation.

B. Statistical Manifold Learning

Of particular interest in manifold learning is the intrinsic di-
mension to which one can reduce the dimensionality of a data set
with minimal loss of information. This is typically presented for
data that lie on a Riemannian submanifold of Euclidean space.
We extend this application to the problem of learning on statis-
tical manifolds [26], in which each point on the manifold is a
pdf. Rather than defining distance with Euclidean metrics, we
approximate the Fisher information distance—with the Kull-
back–Leibler divergence and Hellinger distance—which is the
natural metric on statistical manifolds [27]. We illustrate the use
of local dimension estimation in these learning tasks for the ap-
plications of flow cytometry analysis and document classifica-
tion.

1) Flow Cytometry Analysis: In clinical flow cytometry,
pathologists gather readings of fluorescent markers and light
scatter off individual blood cells from a patient sample, leading
to a characteristic multidimensional distribution that, de-
pending on the panel of markers selected, may be distinct for a
specific disease entity. The data from clinical flow cytometry
can be considered multidimensional both from the standpoint
of multiple characteristics measured for each cell, and from

the standpoint of thousands of cells analyzed per sample. In
previous work [28], [29], we have shown the ability to derive
an information embedding of the statistical manifold defined
by the space of pdfs, in which each patient’s blood sample
can be considered a realization of a pdf on said manifold.
We developed Fisher information nonparametric embedding
(FINE) as an informationgeometric method of dimensionality
reduction based on Fisher information distances between pdfs
[26]. Using FINE, we are able to embed the pdf realizations
into a low-dimensional Euclidean space, in which each patient
is represented by a single low-dimensional vector. In order to
determine the dimension for this embedding space, we first
apply local dimension estimation to find the desired dimension
of our embedding space.

Let be a collection of data sets where
corresponds to the flow cytometer output of the th patient.

For our analysis, each patient has either chronic lymphocytic
leukemia or mantle cell lymphoma, which display similar
characteristics with respect to many expressed surface antigens
but are generally distinct in their patterns of expression of two
common B lymphocyte antigens CD23 and FMC7. We are
interested in the intrinsic dimension of the statistical manifold,
realized by , as that is what we plan to embed. We define
the dissimilarity matrix , where is the symmetric
Kullback–Leibler divergence approximation of the Fisher in-
formation distance between pdf estimates on and [30].
For this simulation, we estimated the pdfs with kernel density
estimation methods, although any nonparametric method will
suffice. By redefining our local dimension estimation algo-
rithms to take the high-dimensional distance matrix—in the
space of pdfs—as an input (which is not an issue, as both the

-NN and MLE methods are entirely based on nearest neighbor
distances), we are able to estimate the intrinsic dimension of
the statistical manifold. The local dimension estimation results
are shown in Fig. 8, where we can see the intrinsic dimension
is . This result can be interpreted as recognizing
the two specific markers that most significantly differentiate
between classes (i.e., ) but also accounting for the fact
that there still exist subtle differences between members of the
same class, and some patients may not exhibit the expected
response to specific antigens as strongly as others (i.e., ).

After estimating the intrinsic dimension of the data set, we
are able to embed each patient into an -dimensional Euclidean
space, as observed in Fig. 9. In this embedding, each point rep-
resents a single patient data set, which was originally six-dimen-
sional with samples on the order of . We can see that
a two-dimensional unsupervised embedding gives a clear class
separation, which enables effective clustering and classification
of the data. This result is consistent with our dimension estimate
of and illustrates the effectiveness of local dimension
estimation for learning on statistical manifolds.

2) Document Classification: Given a collection of docu-
ments of known class, we wish to best classify a document of
unknown class. A common representation of a document is
known as the term frequency representation. This is essentially
a normalized histogram of word counts within the document.
Specifically, let be the number of times term appears in
a specific document. The PdF of that document can then be
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Fig. 8. Histogram of local dimension estimates for the statistical manifold
defined by flow cytometry results of 43 patients with chronic lymphocytic
leukemia or mantle cell lymphoma. (a) Local -NN dimension estimates and
(b) local MLE dimension estimates.

Fig. 9. The information-based embedding, determined by FINE, of the flow
cytometry data set. Embedding into dimensions yields linear separa-
bility between classes.

characterized as the multinomial distribution of normalized

word counts, with the maximum likelihood estimate provided
as

(11)

For our illustration, we utilized the 20 Newsgroups1 data set,
which has an extrinsic dimension of , which is the
number of terms in its dictionary. This set contains postings
from 20 separate newsgroups, and we wish to classify them
by their highest domain (one of [comp.*, rec.*, sci.*, talk.*]).
To perform this classification task, we first wish to alleviate the
curse of dimensionality by reducing the data to a lower dimen-
sional manifold. For this task we utilize FINE, approximating
the Fisher information distance with the Hellinger distance, such
that

where is the estimate (11) of the pdf of document .
Experimental results have shown there are multiple subman-

ifolds of differing dimension in the data set. In Fig. 10, we
present the distribution of dimension estimates and compare
that to classification performance at reduced dimension. Specif-
ically, we used the MLE method with the matrix of Hellinger
distances (between full-dimensional pdfs) to estimate the local
dimension of each sample, then used FINE to embed a random
subsampling of 1000 points of the data into a lower dimen-
sion. The distribution of these local dimension estimates over
a 20-fold cross-validation is shown in Fig. 10(a). Next, we sep-
arated the embedded data into a training set of 800 samples and
a test set of 200 samples. Results of the linear, “all vs. all” classi-
fication task (i.e., classify each test sample as one of 4 different
potential classes) are shown in Fig. 10(b) as a function of the
embedding dimension (over the same 20-fold cross-validation).

We observe that the apex of the classification rate curve
corresponds to the apex of the pdf curve of local dimen-

sion estimates , which illustrates that the local
dimension estimation method was able to find an appropriate
embedding dimension. Although the range seems
to be large, it is important to remember the extrinsic dimension
of the data is , so we are able to adequately define
the dimension of the manifold. We note that for this simulation,
we did not utilize neighborhood smoothing due to the high-di-
mensional nature of the data, as previously explained. A pdf of
the local dimension estimates is more beneficial towards anal-
ysis than arbitrarily setting a dimension that does not dominate
the neighborhood.

C. Network Anomaly Detection

Anomalies can be detected in router networks through the
use of local dimension estimation [6]. Specifically, when only a
few of the routers contribute disproportionately large amounts
of traffic, there is a decrease in the intrinsic dimension of the en-
tire network; that is, the space of traffic counts per router. Using

1http://people.csail.mit.edu/jrennie/20 Newsgroups/.
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Fig. 10. Comparison of (a) pdf of local dimension estimates and (b) classifi-
cation rate versus embedding dimension for the 20 Newsgroups data set. The
optimal embedding dimension ranges from 20 to 50, which is in the same range
as the apex of the local dimension estimation pdf.

neighborhood smoothing as a form of postprocessing, we are
better able to locate the traffic anomalies, as the variance of the
estimates is reduced. Fig. 11 illustrates the usage of neighbor-
hood smoothing on the results of -NN algorithm for local di-
mension estimation for anomaly detection. The data used are
the number of packets counted on each of the 11 routers on the
Abilene network, on January 1–2, 2005. Each sample is taken
every 5 min, leading to 576 samples with an extrinsic dimension
of .

Fig. 11(b) illustrates that neighborhood smoothing is able to
preserve both the visually obvious ( ) and
nonobvious changes in network complexity.
A detailed investigation of time , for example, reveals
that the Sunnyvale router (SNVA) showed increased contribu-
tion from a single IP address. Large percentages (over half) of
the overall packets had both source and destination IP 128.223.
216.0/24 within port 119. This port showed increased activity
on the Atlanta router as well. This change in dimensionality in-
dicating anomalous activity would generally go unnoticed with

Fig. 11. Neighborhood smoothing applied to Abilene Network traffic data di-
mension estimation results. The -axis represents time series changes in the
network. (a) Before smoothing and (b) after smoothing.

the raw results of local dimension estimation due to the high
variance [Fig. 11(a)].

We note the results shown in Fig. 11 are performed using
nominal settings within the -NN algorithm, which allows the
algorithm to run quickly and accurately with neighborhood
smoothing. We are able to generate results with much less
variance than Fig. 11(a) by applying more averaging and
bootstrapping, but this significantly increases computation time
while still producing results with more variance than Fig. 11(b).

D. Clustering

As discussed previously, data sets often consist of multiple
submanifolds of differing dimension. When the intrinsic di-
mension of these submanifolds becomes increasingly large,
the value of the dimension may be interpreted as a measure of
the complexity of the data. From this interpretation, we may
use local dimension estimation to cluster data within a set by
complexity. Specifically, we can define clusters through the use
of recursive entropy estimation and neighborhood smoothing.
As we increase the neighborhood size , we incorporate more
samples into our smoothing region, eventually oversmoothing
between differing manifolds. By finding the point in which
the smoothing regions extend into multiple manifolds, we can
define clusters in the data. This point of change can be located
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by analyzing the change in the entropy of the dimension
estimates as the region grows, such that

where is the empirical proba-
bility a sample estimates at dimension .

When the regions are stable within each cluster, will be
constant. As the smoothing neighborhood incorporates addi-
tional manifolds, the entropy will leave its constant state and
eventually as (i.e., the region includes every
point). With a priori knowledge of the distribution of dimen-
sionality, one may choose a neighborhood size that yields an
appropriate value of entropy. Without this knowledge, the point
at which leaves its constant state can be used as a threshold
for defining clusters based on dimension. This process is sim-
ilar to dual-rooted diffusion kernels method of clustering [31],
in which the authors used the jump in nearest neighbor distance
as a means to differentiate clusters.

For example, let , where is
uniformly distributed in [0,1] ( , a discrete set of
integer values) and constant elsewhere. Hence, is the in-
trinsic dimension of . For our simulation, let and

, and there are samples for each value in
. After obtaining local dimension estimates, we apply neigh-

borhood smoothing to differing neighborhood sizes and mea-
sure the entropy of the local dimension estimates at each size.
The results are shown in Fig. 12, where the entropy exhibits the
same pattern we previously described; after initially decreasing,

remains constant as approaches the region size of each man-
ifold . As the smoothing covers multiple manifolds

, the entropy decreases until the smoothing neighbor-
hood eventually covers all manifolds simultaneously and

. The histogram of local dimension estimates (with both -NN
and MLE methods), which is used to calculate the entropy, is
shown in Fig. 13 to illustrate the evolution of the dimension es-
timates. It is clear that at , the three distinct clusters are
represented, and this value also corresponds to the optimal en-
tropy estimate given a priori knowledge that each dimension is
represented with a constant probability of , which
yields the entropy value . Due to insufficient sampling,
the actual value of the dimension estimates ([2,5,7] for the -NN
algorithm and [2,5,6] for the MLE method) differs from the true
dimensions [2,6,10]. However, this is not of particular concern
since the primary objective is to locate clusters of differing com-
plexity. It is also worth noting that some samples are misidenti-
fied due to the overlapping nature of the three clusters, but the
overall performance is respectable.

We note the dimension estimate obtained when smoothing
over the entire set does not correspond to the global dimension
of the data. Since we are using a majority voting method, the
final value will be equal to the estimated dimension which is
most represented (with simple tie-breaking rules). This is not
necessarily equal to the global dimension, and is often not close
to the dimension which best characterizes the entire data set (as
in our example).

Fig. 12. The entropy of the local dimension estimates changes as a function of
neighborhood size .

Fig. 13. Comparing dimension histograms of dimension estimates at various
neighborhood sizes, we see that samples are clustered very well at ,
which corresponds to a constant point in the entropy plot shown in Fig. 12. (a)

-NN algorithm and (b) MLE method.
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Let us now compare our clustering performance on a separate
synthetic example. Consider the data set
that consists of 200 points uniformly sampled on the “swiss roll”
manifold and 200 points uniformly sampled on an intrinsically
three-dimensional hypersphere. Hence, each (points
sampled from the “swiss roll” have a constant value in the fourth
dimension) and there are two distinct clusters formed. A visual
representation of this set is illustrated in Fig. 14, and we com-
pare our method of clustering by complexity using local dimen-
sion estimation with that of standard clustering methods—fuzzy
c-means [32] and K-means [33]. To demonstrate clustering per-
formance, we utilize the Jaccard index [34], which assesses the
similarity between a predetermined set of class labels and a
clustering result . Specifically

where is the number of pairs of points with the same class label
in and the same cluster label in ; is the number of pairs
that have the same label but differ in ; and is the number
of pairs of points with the same cluster label in but different
class label in . Essentially, the Jaccard index gives a rating
in the range [0,1] in which “1” signifies complete agreement
between the true labels and the results .

We show the results in Table I over a 20-fold cross-validation
with i.i.d. realizations of . We see clustering by dimension
estimation yields far superior performance to standard methods.
While these methods aim to cluster by a variety of means, such
as optimizing distances to centroids, dimension estimation
simply assigns cluster labels based on the local dimensionality
of each data point. In this simulation, we utilized a neighbor-
hood size of when smoothing, as larger values tended
to incorporate both manifolds since they are so close to one
another. We acknowledge that clustering by dimensionality
is not applicable in many practical problems in which the
different clusters exhibit the same dimensionality. However, in
the realm of high-dimensional clustering, there may often exist
an intrinsic difference in dimensionality, in which our method
would be applicable.

1) Image Segmentation: After showing the ability to use
local dimension estimation for clustering data by complexity,
a natural extension is to apply the methods for the problem of
image segmentation. Differing textures in images can be con-
sidered to have different levels of complexity (e.g., a periodic
texture is less complex than a random one). This has been well
stated in [12], where natural images and textures are viewed as a
collection of fractals. For our purposes, we chose to ignore such
model assumptions and see whether or not Euclidean dimension
can be used towards image segmentation. The same framework
as our clustering method applies.

Fig. 14. Clustering based on local intrinsic dimensionality is useful for prob-
lems such as this, in which three-dimensional hypersphere is placed “inside”
the two-dimensional “swiss roll” . Side and front angles of set shown. (a)
Side and (b) front.

TABLE I
COMPARISON OF VARIOUS CLUSTERING METHODS ON DATA SET CONSISTING

OF “SWISS ROLL” AND THREE-DIMENSIONAL HYPERSPHERE MANIFOLDS.
PERFORMANCE REPORTED BASED ON MEAN JACCARD INDEX OVER A 20-FOLD

CROSS-VALIDATION

Consider the satellite image of New York City2 in Fig. 16(a),
which has a resolution of 1452 1500. We wish to segment the
image into land and water masses. To use local dimension es-
timation, we define , where is a 144-di-
mensional vector representing a rasterized 12 12 block of the
image. After obtaining the local dimension estimates, we apply
neighborhood smoothing and recursive entropy estimation as
described above. The results, illustrated in Fig. 15(a), lead us to
define an ideal neighborhood size of , which is where

2http://newsdesk.si.edu/photos/sites_earth_from_space.htm.
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Fig. 15. Plotting the entropy of the dimension estimates suggests a neighbor-
hood size of , denoted by the dotted line, which yields two significant
clusters in the dimension estimates. (a) Entropy versus and (b) histogram of
dimension estimates.

the entropy begins to remain constant for an extended period.
This allows us to segment the image into two regions, defined
by the complexity estimates shown in Fig. 15(b). The final seg-
mentation can be viewed in Fig. 16(b), where the water is well
separated from the land portions of the island of Manhattan and
the surrounding boroughs. We note that this image is that of
the smoothed local dimension estimates, uniformly scaled to the
range [0,255].

We notice there is a relatively low resolution in our segmenta-
tion image, due to the large 12 12 blocks used for estimation.
We can correct this by using a smaller pixel blocks; however,
computational issues prevent us from estimating at much higher
resolutions. We can alleviate this problem by estimating at a
high resolution only in the areas that require such; this may be
determined by using edge detection on the image of local dimen-
sion estimates as in Fig. 16(c). In the regions that are determined
to contain edges, we resegment at a higher resolution—using
4 4 pixel blocks—with the same recursive entropy estimation
process. The results are shown in Fig. 16(d); it is clear that this

Fig. 16. By using local dimension estimation, neighborhood smoothing, and
entropy estimation, we are able to segment the satellite image of New York City
into water and land regions. After segmenting the image at a low resolution, we
perform edge detection to find the regions that should be analyzed at a higher
resolution, yielding a significantly more detailed segmentation. (a) New York
City, (b) low-resolution segmentation, (c) edges of segmented image, and (d)
high-resolution segmentation.

segmentation appears significantly less digitized and more de-
tailed.

While the previous task was simply to segment water from
land in an image, we detailed the “binary” task to demonstrate
the process. The problem is easily extended to the multitexture
case, which we illustrate in Fig. 17 with images of local dimen-
sion estimates scaled to the range [0,255]. In these cases, we
segmented images of a sloth bear3 and a panda bear cub4 using
the same techniques as previously described, only we utilized a
high-resolution segmentation over the entire image along with
small smoothing neighborhoods. This may give a finer segmen-
tation than required (e.g., the bears are not segmented entirely
as one object) but shows the potential segmentation power of
local dimension estimation. If a coarser segmentation was de-
sired, larger smoothing neighborhoods may be applied, similar
to the previous case of New York City. We note that by no means
are we suggesting that dimension alone is a superior means of
image segmentation; we simply illustrate that there is a sem-
blance of power to Euclidean dimension when segmenting nat-
ural images, and that dimension may be used in conjunction with
other means for this complex task.

V. CONCLUSION

We have shown the ability to use local intrinsic dimension es-
timation for a myriad of applications. The negative bias in global
dimension estimation is strongly influenced by the data depth of
the samples on the manifold. By developing a global dimension
estimator based on the local dimension estimates of the deepest
points, we have shown the issue of the negative bias can be sig-
nificantly reduced. Typically, dimension estimation is used for
the purposes of dimensionality reduction of Riemannian man-
ifolds in Euclidean space, and we have extended this to the

3http://newsdesk.si.edu/photos/nzp_sloth_bear.htm.
4http://newsdesk.si.edu/photos/nzp_panda_cub.htm.
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Fig. 17. Segmentation of multitexture images using local dimension estimation
and neighborhood smoothing. The first row contains the original images, the
second row contains the images of local dimension estimates (scaled to [0,255]),
and the third row is the histogram of local dimension estimates.

problem of dimensionality reduction on statistical manifolds, il-
lustrated with the examples of flow cytometry analysis and doc-
ument classification.

By viewing dimension as a substitute for data complexity, we
have applied local dimension estimation to problems that may
not naturally be considered. Local dimension estimates can be
used to find anomalous activity in router networks, as the overall
complexity of the network is decreased when a few sources ac-
count for a disproportionate amount of traffic. We have also ap-
plied complexity estimation towards the problems of data clus-
tering and image segmentation through the use of neighborhood
smoothing. By finding the points in which entropy remains con-
stant as the neighborhood size increases, we are able to opti-
mally cluster the data.

Further analysis into the applications we have presented here
is an area for future work. In terms of debiasing global dimen-
sion estimation, applying significant weight the interior points
in averaging over local dimensions may result in large vari-
ance of the dimension estimate due to a small sample size. The
bias–variance tradeoff and its optimization is of great impor-
tance and should be considered an area for future work. Addi-
tionally, we would like to further investigate using Euclidean
dimension estimation (as opposed to fractal dimensions) for
image segmentation, as we feel this is a very interesting appli-
cation which has not been thoroughly researched. Specifically,
we are interested in combining Euclidean dimension with other
measures of textures in order to optimally segment a natural
image.
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On Local Intrinsic Dimension Estimation and Its
Applications
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Abstract—In this paper, we present multiple novel applications
for local intrinsic dimension estimation. There has been much
work done on estimating the global dimension of a data set, typi-
cally for the purposes of dimensionality reduction. We show that
by estimating dimension locally, we are able to extend the uses of
dimension estimation to many applications, which are not possible
with global dimension estimation. Additionally, we show that
local dimension estimation can be used to obtain a better global
dimension estimate, alleviating the negative bias that is common
to all known dimension estimation algorithms. We illustrate local
dimension estimation’s uses towards additional applications, such
as learning on statistical manifolds, network anomaly detection,
clustering, and image segmentation.

Index Terms—Geodesics, image segmentation, intrinsic dimen-
sion, manifold learning, nearest neighbor graph.

I. INTRODUCTION

T ECHNOLOGICAL advances in both sensing and media
storage have allowed for the generation of massive

amounts of high-dimensional data and information. Consider
the class of applications that generate these high-dimensional
signals: e.g., digital cameras capture images at enormous reso-
lutions; dozens of video cameras may be filming the exact same
object from different angles; planes randomly drop hundreds
of sensors into the same area to map the terrain. While this has
opened a wealth of opportunities for data analysis, the problem
of the curse of dimensionality has become more substantial, as
many learning algorithms perform poorly in high dimensions.
While the data in these applications may be represented in
high dimensions, strictly based upon the immense capacity for
data retrieval, it is typically concentrated on lower dimensional
subsets—manifolds—of the measurement space. This allows
for significant dimension reduction with minor or no loss of
information. The point at which the data can be reduced with
minimal loss is related to the intrinsic dimensionality of the
manifold supporting the data. This measure may be interpreted

Manuscript received November 05, 2008; revised July 20, 2009. . The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Cedric Richard. This work was supported in part by the
National Science Foundation under Grant CCR-0325571.

K. M. Carter is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: km-
carter@umich.edu).

R. Raich is with the School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331 USA (e-mail: raich@eecs.ore-
gonstate.edu).

A. O. Hero III is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
hero@umich.edu).

Digital Object Identifier 10.1109/TSP.2009.2031722

as the minimum number of parameters required to describe the
data [1].

When the intrinsic dimension is assumed constant over the
data set, several algorithms [2]–[5] have been proposed to es-
timate the dimensionality of the manifold. In several problems
of practical interest, however, data will exhibit varying dimen-
sionality, as there may lie multiple manifolds of varying dimen-
sion within the data. This is easily viewed in images with dif-
ferent textures or in classification tasks in which data from dif-
ferent classes is generated by unique probability density func-
tions (pdfs). In these situations, the local intrinsic dimension
may be of more importance than the global dimension. In pre-
vious work [6], we illustrated the process of local dimension
estimation, in which a dimension estimate is obtained for each
sample within the data, rather than a single dimension estimate
for the entire set.

In this paper, we focus on the applications of local dimen-
sion estimation. One immediate benefit is using local dimension
to estimate the global dimension of a data set. To our knowl-
edge, every method of estimating intrinsic dimension has ex-
pressed an issue with a negative bias. While insufficient sam-
pling is a common source of this bias, a significant portion is
a result of samples near the boundaries or edges of a mani-
fold. These regions appear to be low dimensional when sampled
and contribute a strong negative bias to the global estimate of
dimension. We additionally utilize local dimension estimation
for the purposes of dimensionality reduction. Typically, this has
been presented for Riemannian manifolds in a Euclidean space
[7]–[9], in which the data contain a single manifold of constant
dimension lying in . We extend this to the problem of estima-
tion and reduction of dimensionality on statistical manifolds, in
which the points on the manifold are pdfs rather than points in
a Euclidean space.

We continue by showing novel applications in which the exact
dimension of the data is of no immediate concern, but rather the
differences between the local dimensions. Dimensionality can
be viewed as the number of degrees of freedom in a data set, and
as such may be interpreted as a measure of data complexity. By
comparing the local dimension of samples within a data set, we
are able to identify different subsets of the data for analysis. For
example, in a time-series data set, the intrinsic dimensionality
may change as a function of time. By viewing each time step as
a sample, we can identify changes in the system at specific time
points. We illustrate this ability by finding anomalous activity
in a router network. Additionally, the identification of subsets
within the data allows for the immediate application of clus-
tering and image segmentation. There has been much work pre-
sented on using fractal dimension estimation for image and tex-

1053-587X/$26.00 © 2009 IEEE
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ture segmentation [10], [11]. In this paper, we do not make the
model assumption that textures may be represented as a collec-
tion of fractals [12], and instead segment images using a novel
method based on Euclidean dimension. We show that by using
“neighborhood smoothing” [13] over the dimension estimates,
we are able to find the regions that exhibit differing complexi-
ties, and use the smoothed dimension estimates as identifiers for
the clusters/segments.

The organization of this paper is as follows: We give an
overview of the two-dimension estimation algorithms we will
utilize in our simulations in Section II. In Section III, we
describe the process of neighborhood smoothing as a means
of postprocessing for local dimension estimation. We illustrate
the various novel applications of local dimension estimation
in Section IV, including debiasing for global dimension esti-
mation, manifold learning, anomaly detection, clustering, and
image segmentation. Lastly, we offer a discussion and present
areas for future work in Section V.

II. DIMENSION ESTIMATION

We will now present two algorithms for dimension estima-
tion: the -nearest neighbor ( -NN) algorithm [4], [14] and the
maximum likelihood estimator (MLE) method [5]. Please note
that this paper makes no attempts to claim superiority of these
algorithms over others. While there are many algorithms avail-
able for dimension estimation, we focus on these two as a means
for illustrating the applications we later present. By utilizing two
distinct methods, we hope to quell any concerns that our appli-
cations are algorithm dependent. For a thorough survey of in-
trinsic dimension estimation methods, we encourage the reader
to view [15] and [16], as well as more recent work [17]–[20]

A. The -Nearest Neighbor Algorithm for Dimension
Estimation

Let be independent identically dis-
tributed (i.i.d.) random vectors with values in a compact subset
of . The (1-)nearest neighbor of in is given by

where is an appropriate distance measure between
and ; for the purposes of this paper, let us define

, the standard Euclidean distance. For a general
integer , the -nearest neighbor of a point is defined in
a similar way. The -NN graph assigns an edge between each
point in and its -nearest neighbors. Let
be the set of -nearest neighbors of in . The total edge
length of the -NN graph is defined as

(1)

where is a power weighting constant.
For many data sets of interest, the random vectors are

constrained to lie on an -dimensional Riemannian submani-
fold of . Under this framework, the asymptotic
behavior of (1) is given as

(2)

where is a constant with respect to
that depends on the Rényi entropy of the distribution of

the manifold and is an error residual [6]. Note that for ease
of notation, we will denote simply as , except where the
explicit expression is desirable (e.g., optimizing over ).

As noisy measurements can lead to inaccurate estimates, the
intrinsic dimension should be estimated using a nonlinear
least squares solution. By calculating sampled graph lengths
over varying values of , the effect of noise can be dimin-
ished. In order to calculate graph lengths for differing sample
sizes on the manifold, it is necessary to randomly subsample
from the full set , utilizing the nonoverlap-
ping block bootstrapping method [21]. Specifically, let

be a spatially or temporally sorted version of
, and let be an integer satisfying . Define the

blocks . As
such, we may now redefine .

Let be integers such that
. For each value of , randomly draw

bootstrap datasets , with replacement,
where the blocks of data points within each are chosen
from the entire data set independently. From these samples,
define , where .

Since is dependent on , it is necessary to solve for the
minimum mean squared error, derived from (2), by minimizing
over both and integer values of

(3)

where and is the vector of length whose elements
are all one. We solve over integer values of , as we do not
consider fractal dimensions for this algorithm. This improves
accuracy by constraining the estimation space to discrete values
rather than discretizing estimates in a continuous space. One can
solve (3) in the following general manner.

1: Calculate from the expansion of (3)
a)

2: Calculate the error with and from step 1)

.

This nonlinear least squares solution yields the dimension es-
timate based on the -NN graphs.

B. The Maximum Likelihood Estimator for Intrinsic Dimension

The MLE method [5] for dimension estimation estimates the
intrinsic dimension from a collection of i.i.d. observations

. Similar to the -NN algo-
rithm for dimension estimation, the MLE method assumes that
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close neighbors lie on the same manifold. The estimator pro-
ceeds as follows, letting be a fixed number of nearest neigh-
bors to sample

(4)

where is the distance from point to its th nearest
neighbor in . The intrinsic dimension for the data set can then
be estimated as the average over all observations

Algorithm 1 Local dimension estimation

Input: Data set
1: for to do
2: Initialize cluster
3: for to
4: Find the th NN, , of
5:
6: end for
7:
8: end for

Output: Local dimension estimates for

C. Local Dimension Estimation

While the MLE method inherently generates local dimension
estimates for each sample , the -NN algorithm in itself
is a global dimension estimator. We are able to adopt it (and
any other dimension estimation algorithm) as a local dimen-
sion estimator by running the algorithm over a smaller neigh-
borhood about each sample point. Define a set of samples

from the collection of manifolds
such that each point lies on manifold .

Any small sphere or data cluster of samples centered
at point , with , will contain samples from

distinct manifolds. As , all of the points
in will lie on a single manifold (i.e., ). Intuitively
speaking, as the cluster about point is reduced in size, the
local neighborhood defined by said cluster can be viewed as its
own data set confined to a single manifold. Hence, we can use
a global dimension estimation algorithm on a local subset of
the data to estimate the local intrinsic dimension of each sample
point. This can be performed as described in Algorithm 1, where
“dimension ” refers to applying any method of dimension es-
timation to the data cluster .

One of the keys to local dimension estimation is defining a
value of . There must be a significant number of samples in
order to obtain a proper estimate, but it is also important to keep
a small sample size as to (ideally) only include samples that lie
on the same manifold. Currently, we arbitrarily choose based
on the size of the data set. However, a more definitive method
of choosing is grounds for future work.

We briefly note that our definition of “local” dimension
estimation differs from that of the Fukunaga–Olsen algorithm

[1]. Specifically, we aim to find a dimension estimate for each
sample point, which accounts for sets consisting of multiple
manifolds, while [1] used local subsets of the data to form a
global estimate of dimension.

III. NEIGHBORHOOD SMOOTHING

For the problem of local dimension estimation, results are
often highly variable, where nearby samples from the same
manifold may result in different dimension estimates. This issue
can be a result of a variety of reasons, such as variability due
to random subsampling in the -NN algorithm, or variability
due to the neighborhood size in the MLE method. When con-
structing a global dimension estimate, this variance is relatively
insignificant, as the estimate is constructed as a function of the
local estimates. For local dimension estimation, however, this
variance is of significant concern, and we propose a variance
reduction method known as neighborhood smoothing [13],
which improves estimation accuracy.

An initial intuition for manifold learning algorithms is that
samples that are “close” tend to lie on the same manifold,
which extends to the assumption that they therefore have the
same dimension. With this assumption in place, it follows
that filtering by majority vote over the dimension estimates
of nearby samples should smooth the estimator and reduce
variance. This voting strategy is similar to the methods of
mode filtering, bagging [22] and learning by rule ensembles
[23]. Smoothing simply looks at the distribution of dimension
estimates within each sample point’s local neighborhood and
reassigns each sample a dimension estimate equal to that with
the highest probability within its neighborhood. Specifically

(5)

where is the probability over the neighborhood of the cur-
rent sample . Given a finite number of samples ,
this may be empirically evaluated as

(6)

where is the standard indicator function. This process may
then be iterated until the set converges such that each estimate
remains constant. This has the effect of implicitly incorporating
the neighbors of each sample’s neighbors to some extent, as the
dimension estimates within a local region may change through
iterations.

Intuitively, neighborhood smoothing is similar to itera-
tively imposing a -NN classifier on the local dimension
estimates—under the guise that at each iteration, sample
is a test sample and all points are appropriately
labeled training samples. Similarly to -NN classification, the
key factor to smoothing is defining the neighborhood . If

is too large, oversmoothing will occur. The variance of the
dimension estimates will drastically decrease, but there will
be a strong bias which will remove the detection of coarsely
sampled manifolds. As such, one cannot use a constant region
about a point but must adapt that region to the statistics of the
sample.
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A. Adaptive Neighborhood Selection

Since the number of sample points on each manifold of a
data set is generally unknown, using a constant number of
smoothing samples is not a viable option; samples on a smaller
manifold may have points from a disjoint manifold included
in their smoothing neighborhood. One straightforward method
for neighborhood selection is to define neighbors by some
spherical region or -ball about each sample point. This is
generally acceptable when the disjoint manifolds are easily
separable, as the neighborhood does not adapt to the geometry
of the manifold. When distinct manifolds lie near one another,
or potentially intersect, it is necessary to further adapt the
smoothing neighborhood beyond a spherical region. This is due
to the fact that points on a nearby or intersecting manifold may
be as close (or closer) to a sample as others on its own manifold.
A spherical region may smooth over different manifolds, and
the results will lead to the dimension estimates’ “leaking” from
one manifold to another.

Rather than defining neighborhoods through Euclidean dis-
tance, which will form only spherical regions about each sample
point, we will define neighborhoods using a geodesic distance
metric. This will adapt the neighborhood to the geometry of the
manifold. The geodesic distance is defined as the shortest path
between two points along the manifold and may be approxi-
mated with graph-based methods. For our purposes, this metric
can be determined by taking each point and creating an edge to
its -NN. Then, using Dijkstra’s shortest path algorithm (or any
other algorithm for computing the shortest path), approximate
the geodesic distances between each pair of points in the graph.
Any points that remain unconnected are considered to have an
infinite geodesic distance between them.

To define a local neighborhood, we can now simply choose
the closest points for which the geodesic distance is not infi-
nite. This forms a nonspherical neighborhood that adapts to the
curvature of the manifold, performing much better than spher-
ical neighborhoods. Fig. 1 illustrates the difference in the neigh-
borhoods (black stars) that are formed on the “swiss roll” man-
ifold when using different proximity metrics. The Euclidean
distance [Fig. 1(a)] forms a spherical neighborhood, including
points that are separated from the sample in question (red di-
amond). The geodesic distance [Fig. 1(b)], however, forms a
neighborhood considering points only in close proximity along
the actual manifold. While all points in this example do exist on
the same manifold, it is clear that defining neighborhoods along
the manifold rather than in simple spherical regions reduces the
probability of including samples from a nearby distinct mani-
fold.

Illustrating the effects of neighborhood smoothing, we create
a seven-dimensional data set that includes two distinct hyper-
spheres of intrinsic dimensions two and five, each containing
300 uniformly sampled points intersecting in three common di-
mensions. Fig. 2(a) shows the histogram of the local dimension
estimates of each sample before any neighborhood smoothing
was applied, while Fig. 2(b) shows the results after smoothing.
One can clearly see that the wide histogram was correctly con-
densed to the proper local dimension estimates, even though the
manifolds intersect. The use of the geodesic distance measure

Fig. 1. Neighborhoods of the sample in question defined by (a) Eu-
clidean distance and (b) geodesic distance. (a) Spherical neighborhood and (b)
adaptive neighborhood.

prevents smoothing across distinct manifolds, which lie closely
together in Euclidean space.

It is important to note that, as with any form of postpro-
cessing, neighborhood smoothing can only produce accurate
results given sufficient input. The benefits of smoothing can
be significantly diminished if the initial local dimension esti-
mates are not sufficiently accurate. We note this explicitly be-
cause of the known issues with estimating large dimensions
(e.g., ). Because of variance issues due to insufficient
samples and boundary effects, it is difficult to accurately esti-
mate very large dimensions, and often the estimate can more
appropriately be considered a measure of complexity, where the
difference between and 1 is rather insignificant. This is
important because no single dimension may dominate a given
local neighborhood, yet smoothing will still assign a dimen-
sion estimate equal to the most represented dimension, which
may indeed be inconsistent with the rest. We demonstrate this
scenario with the example shown in Fig. 3, where smoothing
would assign a dimension estimate of , which is the
most represented dimension in the neighborhood. However, a
more accurate dimension estimate could be considered
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Fig. 2. Neighborhood smoothing applied to seven-dimensional data containing
two spheres with intrinsic dimensions two and five.

or , as that would be more consistent with the majority
of the samples. In these scenarios, it may be more appropriate
to smooth over a histogram with user-defined bin sizes, corre-
sponding to significant differences in complexity rather than in-
dividual dimensions. This is an area for future work.

IV. APPLICATIONS

A. Debiasing Global Dimension Estimation

To our knowledge, a phenomenon common to all algorithms
of intrinsic dimension estimation is a negative bias in the di-
mension estimate. It is believed that this is an effect of under-
sampling the high-dimensional manifold. While the bias due to
lack of sufficient samples is inherent, we offer that the sample
size is not the only source of bias; a significant portion is related
to the depth of the data. Specifically, as data samples approach
the boundaries of the manifold, they exhibit a lower intrinsic di-
mension. This issue becomes more prevalent as the dimension
of the manifold increases and is directly related to the curse of
dimensionality. Note that even manifolds that appear “empty” in
their extrinsic-dimensional space (e.g., the Swiss roll) are filled
and contain boundaries in the space of their intrinsic dimension.

Previous work [24] has demonstrated that as dimensionality
increases, the nearest neighbor distances approach those of the

Fig. 3. Issues arise with neighborhood smoothing when estimating very large
dimensions due to the variance of such estimates. In this example, smoothing
would assign a dimension estimate of 40, although the more appropriate esti-
mate would be 33 or 34.

most distant points; this will clearly have an adverse effect on
neighborhood-based estimation algorithms. We are able to fur-
ther correlate this effect on dimension estimation by calculating
the depth of each sample and quantitatively analyzing the rela-
tionship between depth and dimension. We utilize the -data
depth algorithm developed in [25], which calculates depth

as the sum of all the unit vectors between the sample of
interest and the rest of the data set .
Specifically

(7)

where is the unit vector in
the direction of . This depth measure assigns the most
interior points in the data set a depth value approaching one,
while samples along the boundaries approach a depth of zero.

Using this measure, we illustrate the effect of data depth on
dimension estimation in Fig. 4. The data set used was of 3000
points uniformly sampled on a six-dimensional hypercube. We
utilize the MLE method for dimension estimation, and Fig. 4 il-
lustrates the distribution of data depths for samples that estimate
at different dimensions. It is clear that as the depth increased, so
did the probability of estimating at a higher dimension, even to
the point where the most deep points estimated at a dimension
of seven (although we note that there were very few points with
this estimate).

When estimating the global dimension of a data set, one can
substantially reduce the negative bias by placing more emphasis
on the local dimension of those points away from the bound-
aries, as they are more indicative of the true dimension of the
manifold. Specifically, let the global dimension be estimated as
follows:

(8)
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Fig. 4. PDFs of data depth based on estimated intrinsic dimension. Points with
less depth estimate at a lower dimension, contributing to the overall negative
bias.

where is a weighting on each sample point. We offer two
potential definitions of , the first being a binary weighting

otherwise
(9)

where and is the data depth of the
deepest point. Essentially this binary weight amounts

to debiasing by averaging over the local dimension estimates
of the deepest % of points, where the threshold is
user defined. This is worthwhile for potentially large data sets,
where there are enough samples to ignore a large portion of
them. When this is not the case, let us make the definition

(10)

where is a user-defined constant. This weighting may be
viewed as a heat kernel, in which larger depths will yield higher
weights. Unlike the binary weighting, which will ignore a large
number of the data samples, this heat kernel weighting will
utilize all samples (even those lying on a boundary) yet give
preference to those with more depth in the manifold.

We now illustrate this debiasing ability in Fig. 5, in which
we estimated the global dimension of the six-dimensional hy-
percube (3000 i.i.d. samples) over 200 unique trials. Fig. 5(a)
shows the histogram of biased dimension estimates obtained by
using the entire set for dimension estimation, while Fig. 5(b) es-
timates the correct global dimension each trial by using our de-
biasing method (8) with the binary weighting function (9) using

.
To study the number of samples necessary to accurately es-

timate global dimension, we plot estimation results in Fig. 6.
In this simulation, we plot the mean de-biased and
unrounded dimension estimated over a 20-fold cross validation,
based on differing number of samples on the six-dimensional
hypercube. We can see that if rounded to the nearest integer,
the debiased estimate will be correct on average with roughly
2500 samples. On the contrary, without debiasing, the estima-
tion maintains a much stronger negative bias, never correctly
estimating the dimension when rounded.

Fig. 5. Developing a debiased global dimension estimate by averaging over the
50% of points with the greatest depth on the manifold. (a) Biased results and (b)
debiased results.

Fig. 6. Analysis of how many samples are necessary to appropriately estimate
debiased global dimension. Plot shows mean dimension estimated over a 20-fold
cv, with error bars at one standard deviation.

It is important to note that our method of debiasing is only ap-
plicable for data with a relatively low intrinsic dimension. When
dealing with very high dimensional data, the probability of a
sample lying near a boundary approaches one, and the value of
the depth approximation becomes irrelevant. This is shown in
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Fig. 7. As the intrinsic dimension increases, the maximum and minimum data
depth of points in the set converge to the same value. This simulation was over
a fivefold cross-validation with 400 uniformly sampled points on the unit cube.

Fig. 7 where the “deepest” and most “shallow” samples con-
verge to the same depth value as the intrinsic dimension in-
creases.

Prior work on estimating dimension through vector quanti-
zation [20] has reported robustness to negative bias. While not
offering a distinct claim or proof of this robustness, the au-
thors mention their algorithm obtains larger estimates for high-
dimensional data than neighborhood-based methods. Theoreti-
cally, this method will suffer from similar bias issues due to the
intrinsic geometry of the data, which is not explicitly accounted
for in [20]. The improved performance reported is likely due to
the cross-validation implemented. That said, the use of quan-
tization error may indeed be more robust to negative bias than
neighborhood-based methods, and this potential gain is worth
further investigation.

B. Statistical Manifold Learning

Of particular interest in manifold learning is the intrinsic di-
mension to which one can reduce the dimensionality of a data set
with minimal loss of information. This is typically presented for
data that lie on a Riemannian submanifold of Euclidean space.
We extend this application to the problem of learning on statis-
tical manifolds [26], in which each point on the manifold is a
pdf. Rather than defining distance with Euclidean metrics, we
approximate the Fisher information distance—with the Kull-
back–Leibler divergence and Hellinger distance—which is the
natural metric on statistical manifolds [27]. We illustrate the use
of local dimension estimation in these learning tasks for the ap-
plications of flow cytometry analysis and document classifica-
tion.

1) Flow Cytometry Analysis: In clinical flow cytometry,
pathologists gather readings of fluorescent markers and light
scatter off individual blood cells from a patient sample, leading
to a characteristic multidimensional distribution that, de-
pending on the panel of markers selected, may be distinct for a
specific disease entity. The data from clinical flow cytometry
can be considered multidimensional both from the standpoint
of multiple characteristics measured for each cell, and from

the standpoint of thousands of cells analyzed per sample. In
previous work [28], [29], we have shown the ability to derive
an information embedding of the statistical manifold defined
by the space of pdfs, in which each patient’s blood sample
can be considered a realization of a pdf on said manifold.
We developed Fisher information nonparametric embedding
(FINE) as an informationgeometric method of dimensionality
reduction based on Fisher information distances between pdfs
[26]. Using FINE, we are able to embed the pdf realizations
into a low-dimensional Euclidean space, in which each patient
is represented by a single low-dimensional vector. In order to
determine the dimension for this embedding space, we first
apply local dimension estimation to find the desired dimension
of our embedding space.

Let be a collection of data sets where
corresponds to the flow cytometer output of the th patient.

For our analysis, each patient has either chronic lymphocytic
leukemia or mantle cell lymphoma, which display similar
characteristics with respect to many expressed surface antigens
but are generally distinct in their patterns of expression of two
common B lymphocyte antigens CD23 and FMC7. We are
interested in the intrinsic dimension of the statistical manifold,
realized by , as that is what we plan to embed. We define
the dissimilarity matrix , where is the symmetric
Kullback–Leibler divergence approximation of the Fisher in-
formation distance between pdf estimates on and [30].
For this simulation, we estimated the pdfs with kernel density
estimation methods, although any nonparametric method will
suffice. By redefining our local dimension estimation algo-
rithms to take the high-dimensional distance matrix—in the
space of pdfs—as an input (which is not an issue, as both the

-NN and MLE methods are entirely based on nearest neighbor
distances), we are able to estimate the intrinsic dimension of
the statistical manifold. The local dimension estimation results
are shown in Fig. 8, where we can see the intrinsic dimension
is . This result can be interpreted as recognizing
the two specific markers that most significantly differentiate
between classes (i.e., ) but also accounting for the fact
that there still exist subtle differences between members of the
same class, and some patients may not exhibit the expected
response to specific antigens as strongly as others (i.e., ).

After estimating the intrinsic dimension of the data set, we
are able to embed each patient into an -dimensional Euclidean
space, as observed in Fig. 9. In this embedding, each point rep-
resents a single patient data set, which was originally six-dimen-
sional with samples on the order of . We can see that
a two-dimensional unsupervised embedding gives a clear class
separation, which enables effective clustering and classification
of the data. This result is consistent with our dimension estimate
of and illustrates the effectiveness of local dimension
estimation for learning on statistical manifolds.

2) Document Classification: Given a collection of docu-
ments of known class, we wish to best classify a document of
unknown class. A common representation of a document is
known as the term frequency representation. This is essentially
a normalized histogram of word counts within the document.
Specifically, let be the number of times term appears in
a specific document. The PdF of that document can then be
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Fig. 8. Histogram of local dimension estimates for the statistical manifold
defined by flow cytometry results of 43 patients with chronic lymphocytic
leukemia or mantle cell lymphoma. (a) Local -NN dimension estimates and
(b) local MLE dimension estimates.

Fig. 9. The information-based embedding, determined by FINE, of the flow
cytometry data set. Embedding into dimensions yields linear separa-
bility between classes.

characterized as the multinomial distribution of normalized

word counts, with the maximum likelihood estimate provided
as

(11)

For our illustration, we utilized the 20 Newsgroups1 data set,
which has an extrinsic dimension of , which is the
number of terms in its dictionary. This set contains postings
from 20 separate newsgroups, and we wish to classify them
by their highest domain (one of [comp.*, rec.*, sci.*, talk.*]).
To perform this classification task, we first wish to alleviate the
curse of dimensionality by reducing the data to a lower dimen-
sional manifold. For this task we utilize FINE, approximating
the Fisher information distance with the Hellinger distance, such
that

where is the estimate (11) of the pdf of document .
Experimental results have shown there are multiple subman-

ifolds of differing dimension in the data set. In Fig. 10, we
present the distribution of dimension estimates and compare
that to classification performance at reduced dimension. Specif-
ically, we used the MLE method with the matrix of Hellinger
distances (between full-dimensional pdfs) to estimate the local
dimension of each sample, then used FINE to embed a random
subsampling of 1000 points of the data into a lower dimen-
sion. The distribution of these local dimension estimates over
a 20-fold cross-validation is shown in Fig. 10(a). Next, we sep-
arated the embedded data into a training set of 800 samples and
a test set of 200 samples. Results of the linear, “all vs. all” classi-
fication task (i.e., classify each test sample as one of 4 different
potential classes) are shown in Fig. 10(b) as a function of the
embedding dimension (over the same 20-fold cross-validation).

We observe that the apex of the classification rate curve
corresponds to the apex of the pdf curve of local dimen-

sion estimates , which illustrates that the local
dimension estimation method was able to find an appropriate
embedding dimension. Although the range seems
to be large, it is important to remember the extrinsic dimension
of the data is , so we are able to adequately define
the dimension of the manifold. We note that for this simulation,
we did not utilize neighborhood smoothing due to the high-di-
mensional nature of the data, as previously explained. A pdf of
the local dimension estimates is more beneficial towards anal-
ysis than arbitrarily setting a dimension that does not dominate
the neighborhood.

C. Network Anomaly Detection

Anomalies can be detected in router networks through the
use of local dimension estimation [6]. Specifically, when only a
few of the routers contribute disproportionately large amounts
of traffic, there is a decrease in the intrinsic dimension of the en-
tire network; that is, the space of traffic counts per router. Using

1http://people.csail.mit.edu/jrennie/20 Newsgroups/.
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Fig. 10. Comparison of (a) pdf of local dimension estimates and (b) classifi-
cation rate versus embedding dimension for the 20 Newsgroups data set. The
optimal embedding dimension ranges from 20 to 50, which is in the same range
as the apex of the local dimension estimation pdf.

neighborhood smoothing as a form of postprocessing, we are
better able to locate the traffic anomalies, as the variance of the
estimates is reduced. Fig. 11 illustrates the usage of neighbor-
hood smoothing on the results of -NN algorithm for local di-
mension estimation for anomaly detection. The data used are
the number of packets counted on each of the 11 routers on the
Abilene network, on January 1–2, 2005. Each sample is taken
every 5 min, leading to 576 samples with an extrinsic dimension
of .

Fig. 11(b) illustrates that neighborhood smoothing is able to
preserve both the visually obvious ( ) and
nonobvious changes in network complexity.
A detailed investigation of time , for example, reveals
that the Sunnyvale router (SNVA) showed increased contribu-
tion from a single IP address. Large percentages (over half) of
the overall packets had both source and destination IP 128.223.
216.0/24 within port 119. This port showed increased activity
on the Atlanta router as well. This change in dimensionality in-
dicating anomalous activity would generally go unnoticed with

Fig. 11. Neighborhood smoothing applied to Abilene Network traffic data di-
mension estimation results. The -axis represents time series changes in the
network. (a) Before smoothing and (b) after smoothing.

the raw results of local dimension estimation due to the high
variance [Fig. 11(a)].

We note the results shown in Fig. 11 are performed using
nominal settings within the -NN algorithm, which allows the
algorithm to run quickly and accurately with neighborhood
smoothing. We are able to generate results with much less
variance than Fig. 11(a) by applying more averaging and
bootstrapping, but this significantly increases computation time
while still producing results with more variance than Fig. 11(b).

D. Clustering

As discussed previously, data sets often consist of multiple
submanifolds of differing dimension. When the intrinsic di-
mension of these submanifolds becomes increasingly large,
the value of the dimension may be interpreted as a measure of
the complexity of the data. From this interpretation, we may
use local dimension estimation to cluster data within a set by
complexity. Specifically, we can define clusters through the use
of recursive entropy estimation and neighborhood smoothing.
As we increase the neighborhood size , we incorporate more
samples into our smoothing region, eventually oversmoothing
between differing manifolds. By finding the point in which
the smoothing regions extend into multiple manifolds, we can
define clusters in the data. This point of change can be located
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by analyzing the change in the entropy of the dimension
estimates as the region grows, such that

where is the empirical proba-
bility a sample estimates at dimension .

When the regions are stable within each cluster, will be
constant. As the smoothing neighborhood incorporates addi-
tional manifolds, the entropy will leave its constant state and
eventually as (i.e., the region includes every
point). With a priori knowledge of the distribution of dimen-
sionality, one may choose a neighborhood size that yields an
appropriate value of entropy. Without this knowledge, the point
at which leaves its constant state can be used as a threshold
for defining clusters based on dimension. This process is sim-
ilar to dual-rooted diffusion kernels method of clustering [31],
in which the authors used the jump in nearest neighbor distance
as a means to differentiate clusters.

For example, let , where is
uniformly distributed in [0,1] ( , a discrete set of
integer values) and constant elsewhere. Hence, is the in-
trinsic dimension of . For our simulation, let and

, and there are samples for each value in
. After obtaining local dimension estimates, we apply neigh-

borhood smoothing to differing neighborhood sizes and mea-
sure the entropy of the local dimension estimates at each size.
The results are shown in Fig. 12, where the entropy exhibits the
same pattern we previously described; after initially decreasing,

remains constant as approaches the region size of each man-
ifold . As the smoothing covers multiple manifolds

, the entropy decreases until the smoothing neighbor-
hood eventually covers all manifolds simultaneously and

. The histogram of local dimension estimates (with both -NN
and MLE methods), which is used to calculate the entropy, is
shown in Fig. 13 to illustrate the evolution of the dimension es-
timates. It is clear that at , the three distinct clusters are
represented, and this value also corresponds to the optimal en-
tropy estimate given a priori knowledge that each dimension is
represented with a constant probability of , which
yields the entropy value . Due to insufficient sampling,
the actual value of the dimension estimates ([2,5,7] for the -NN
algorithm and [2,5,6] for the MLE method) differs from the true
dimensions [2,6,10]. However, this is not of particular concern
since the primary objective is to locate clusters of differing com-
plexity. It is also worth noting that some samples are misidenti-
fied due to the overlapping nature of the three clusters, but the
overall performance is respectable.

We note the dimension estimate obtained when smoothing
over the entire set does not correspond to the global dimension
of the data. Since we are using a majority voting method, the
final value will be equal to the estimated dimension which is
most represented (with simple tie-breaking rules). This is not
necessarily equal to the global dimension, and is often not close
to the dimension which best characterizes the entire data set (as
in our example).

Fig. 12. The entropy of the local dimension estimates changes as a function of
neighborhood size .

Fig. 13. Comparing dimension histograms of dimension estimates at various
neighborhood sizes, we see that samples are clustered very well at ,
which corresponds to a constant point in the entropy plot shown in Fig. 12. (a)

-NN algorithm and (b) MLE method.



IE
EE

 P
roo

f

Pr
int

 V
ers

ion

CARTER et al.: ON LOCAL INTRINSIC DIMENSION ESTIMATION AND ITS APPLICATIONS 11

Let us now compare our clustering performance on a separate
synthetic example. Consider the data set
that consists of 200 points uniformly sampled on the “swiss roll”
manifold and 200 points uniformly sampled on an intrinsically
three-dimensional hypersphere. Hence, each (points
sampled from the “swiss roll” have a constant value in the fourth
dimension) and there are two distinct clusters formed. A visual
representation of this set is illustrated in Fig. 14, and we com-
pare our method of clustering by complexity using local dimen-
sion estimation with that of standard clustering methods—fuzzy
c-means [32] and K-means [33]. To demonstrate clustering per-
formance, we utilize the Jaccard index [34], which assesses the
similarity between a predetermined set of class labels and a
clustering result . Specifically

where is the number of pairs of points with the same class label
in and the same cluster label in ; is the number of pairs
that have the same label but differ in ; and is the number
of pairs of points with the same cluster label in but different
class label in . Essentially, the Jaccard index gives a rating
in the range [0,1] in which “1” signifies complete agreement
between the true labels and the results .

We show the results in Table I over a 20-fold cross-validation
with i.i.d. realizations of . We see clustering by dimension
estimation yields far superior performance to standard methods.
While these methods aim to cluster by a variety of means, such
as optimizing distances to centroids, dimension estimation
simply assigns cluster labels based on the local dimensionality
of each data point. In this simulation, we utilized a neighbor-
hood size of when smoothing, as larger values tended
to incorporate both manifolds since they are so close to one
another. We acknowledge that clustering by dimensionality
is not applicable in many practical problems in which the
different clusters exhibit the same dimensionality. However, in
the realm of high-dimensional clustering, there may often exist
an intrinsic difference in dimensionality, in which our method
would be applicable.

1) Image Segmentation: After showing the ability to use
local dimension estimation for clustering data by complexity,
a natural extension is to apply the methods for the problem of
image segmentation. Differing textures in images can be con-
sidered to have different levels of complexity (e.g., a periodic
texture is less complex than a random one). This has been well
stated in [12], where natural images and textures are viewed as a
collection of fractals. For our purposes, we chose to ignore such
model assumptions and see whether or not Euclidean dimension
can be used towards image segmentation. The same framework
as our clustering method applies.

Fig. 14. Clustering based on local intrinsic dimensionality is useful for prob-
lems such as this, in which three-dimensional hypersphere is placed “inside”
the two-dimensional “swiss roll” . Side and front angles of set shown. (a)
Side and (b) front.

TABLE I
COMPARISON OF VARIOUS CLUSTERING METHODS ON DATA SET CONSISTING

OF “SWISS ROLL” AND THREE-DIMENSIONAL HYPERSPHERE MANIFOLDS.
PERFORMANCE REPORTED BASED ON MEAN JACCARD INDEX OVER A 20-FOLD

CROSS-VALIDATION

Consider the satellite image of New York City2 in Fig. 16(a),
which has a resolution of 1452 1500. We wish to segment the
image into land and water masses. To use local dimension es-
timation, we define , where is a 144-di-
mensional vector representing a rasterized 12 12 block of the
image. After obtaining the local dimension estimates, we apply
neighborhood smoothing and recursive entropy estimation as
described above. The results, illustrated in Fig. 15(a), lead us to
define an ideal neighborhood size of , which is where

2http://newsdesk.si.edu/photos/sites_earth_from_space.htm.
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Fig. 15. Plotting the entropy of the dimension estimates suggests a neighbor-
hood size of , denoted by the dotted line, which yields two significant
clusters in the dimension estimates. (a) Entropy versus and (b) histogram of
dimension estimates.

the entropy begins to remain constant for an extended period.
This allows us to segment the image into two regions, defined
by the complexity estimates shown in Fig. 15(b). The final seg-
mentation can be viewed in Fig. 16(b), where the water is well
separated from the land portions of the island of Manhattan and
the surrounding boroughs. We note that this image is that of
the smoothed local dimension estimates, uniformly scaled to the
range [0,255].

We notice there is a relatively low resolution in our segmenta-
tion image, due to the large 12 12 blocks used for estimation.
We can correct this by using a smaller pixel blocks; however,
computational issues prevent us from estimating at much higher
resolutions. We can alleviate this problem by estimating at a
high resolution only in the areas that require such; this may be
determined by using edge detection on the image of local dimen-
sion estimates as in Fig. 16(c). In the regions that are determined
to contain edges, we resegment at a higher resolution—using
4 4 pixel blocks—with the same recursive entropy estimation
process. The results are shown in Fig. 16(d); it is clear that this

Fig. 16. By using local dimension estimation, neighborhood smoothing, and
entropy estimation, we are able to segment the satellite image of New York City
into water and land regions. After segmenting the image at a low resolution, we
perform edge detection to find the regions that should be analyzed at a higher
resolution, yielding a significantly more detailed segmentation. (a) New York
City, (b) low-resolution segmentation, (c) edges of segmented image, and (d)
high-resolution segmentation.

segmentation appears significantly less digitized and more de-
tailed.

While the previous task was simply to segment water from
land in an image, we detailed the “binary” task to demonstrate
the process. The problem is easily extended to the multitexture
case, which we illustrate in Fig. 17 with images of local dimen-
sion estimates scaled to the range [0,255]. In these cases, we
segmented images of a sloth bear3 and a panda bear cub4 using
the same techniques as previously described, only we utilized a
high-resolution segmentation over the entire image along with
small smoothing neighborhoods. This may give a finer segmen-
tation than required (e.g., the bears are not segmented entirely
as one object) but shows the potential segmentation power of
local dimension estimation. If a coarser segmentation was de-
sired, larger smoothing neighborhoods may be applied, similar
to the previous case of New York City. We note that by no means
are we suggesting that dimension alone is a superior means of
image segmentation; we simply illustrate that there is a sem-
blance of power to Euclidean dimension when segmenting nat-
ural images, and that dimension may be used in conjunction with
other means for this complex task.

V. CONCLUSION

We have shown the ability to use local intrinsic dimension es-
timation for a myriad of applications. The negative bias in global
dimension estimation is strongly influenced by the data depth of
the samples on the manifold. By developing a global dimension
estimator based on the local dimension estimates of the deepest
points, we have shown the issue of the negative bias can be sig-
nificantly reduced. Typically, dimension estimation is used for
the purposes of dimensionality reduction of Riemannian man-
ifolds in Euclidean space, and we have extended this to the

3http://newsdesk.si.edu/photos/nzp_sloth_bear.htm.
4http://newsdesk.si.edu/photos/nzp_panda_cub.htm.
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Fig. 17. Segmentation of multitexture images using local dimension estimation
and neighborhood smoothing. The first row contains the original images, the
second row contains the images of local dimension estimates (scaled to [0,255]),
and the third row is the histogram of local dimension estimates.

problem of dimensionality reduction on statistical manifolds, il-
lustrated with the examples of flow cytometry analysis and doc-
ument classification.

By viewing dimension as a substitute for data complexity, we
have applied local dimension estimation to problems that may
not naturally be considered. Local dimension estimates can be
used to find anomalous activity in router networks, as the overall
complexity of the network is decreased when a few sources ac-
count for a disproportionate amount of traffic. We have also ap-
plied complexity estimation towards the problems of data clus-
tering and image segmentation through the use of neighborhood
smoothing. By finding the points in which entropy remains con-
stant as the neighborhood size increases, we are able to opti-
mally cluster the data.

Further analysis into the applications we have presented here
is an area for future work. In terms of debiasing global dimen-
sion estimation, applying significant weight the interior points
in averaging over local dimensions may result in large vari-
ance of the dimension estimate due to a small sample size. The
bias–variance tradeoff and its optimization is of great impor-
tance and should be considered an area for future work. Addi-
tionally, we would like to further investigate using Euclidean
dimension estimation (as opposed to fractal dimensions) for
image segmentation, as we feel this is a very interesting appli-
cation which has not been thoroughly researched. Specifically,
we are interested in combining Euclidean dimension with other
measures of textures in order to optimally segment a natural
image.
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